

Non-Iterative Reconstruction of Sparse Images from Limited Data

Professor Andrew E. Yagle
Dept. of Electrical Engineering
and Computer Science
The University of Michigan
Ann Arbor, Michigan USA

Presentation Overview

- Why sparse images and non-iterative?
- Review of "valid" 2-d deconvolution
- Valid reconstruction of sparse images [3]:
- 1. Valid deconvolution of bandlimited PSF;
- 2. Slightly underdetermined reconstruction;
- 3. Kronecker-product-based reconstruction.
- Valid phase retrieval of sparse images [1]
- Conclusion

Presentation Overview

- Why sparse images and non-iterative?
- Review of "valid" 2-d deconvolution
- Valid reconstruction of sparse images [3]
- Valid phase retrieval of sparse images [1]
- Conclusion

Why are sparse images important?

- <u>DEF</u>: 1-d x(n) is K-sparse if x(n) is nonzero only at K (unknown) values of index n.
- EX: $x(n)=\{2,0,0,0,3,0,0,1,0,0,0,0,4,0,0,1,0\}$ (all other values of x(n) are 0) is 5-sparse.
- Extension to 2-d (images) should be evident.
- Example: atoms in X-ray crystallography.
- Example: atoms in magnetic resonance force microscopy (MRFM).

What are sparsifiable images?

- x(n) is sparsifiable if $x(n)=\sum c(n,m)z(m)$ for some known matrix of basis functions c(n,m) and z(n) is sparse (x(n)) sparse in some basis).
- Example: c(n,m) are wavelet basis functions.
- Extension to 2-d (images) is evident (but this requires 4 indices; more if wavelets are used!)
- Example: block letters or symbols (next slide).

Example of sparsifiable image

Using corner detector, we can sparsify block letters:

Corner detector: y(i,j)=x(i,j)-x(i,j-1)-x(i-1,j)+x(i-1,j-1)

Problems with iterative algorithms

- Does the algorithm converge at all?
- How long does it take to converge?
- To what does the algorithm converge?
- What bias is introduced by stopping?
- Can take long, unknown time to converge.
- Non-parallelizable in iteration number.
- Non-iterative: avoids all of these issues.

Presentation Overview

- Why sparse images and non-iterative?
- Review of "valid" 2-d deconvolution
- Valid reconstruction of sparse images [3]
- Valid phase retrieval of sparse images [1]
- Conclusion

Complete 2-d convolution

 $y(i,j)=\sum \sum h(m,n)x(i-m,j-n)$. DFT: $X(k)=\sum x(n)e^{-j2\pi nk/N}$ for k.

Deconvolution: $X(k_1,k_2)=Y(k_1,k_2)/H(k_1,k_2)$ for $|H(k_1,k_2)|>0$.

1	4	1	5	9
2	6	5	3	5
8	9	7	9	3
2	3	8	4	6
2	6	4	3	3

1	5	5	6	14	9
3	13	16	14	22	14
10	25	27	24	20	8
10	22	27	28	22	9
4	13	21	19	16	9
2	8	10	7	6	3

y(i,j)=h(i,j)*x(i,j)

Valid 2-d convolution

 $y(i,j) = \sum \sum h(m,n)x(i-m,j-n)$. BUT: no image edge info used.

Deconvolution: Underdetermined—need info about image.

1	4	1	5	9
2	6	5	3	5
8	9	7	9	3
2	3	8	4	6
2	6	4	3	3

*	*	*	*	*	*
*	13	16	14	22	*
*	25	27	24	20	*
*	22	27	28	22	*
*	13	21	19	16	*
*	*	*	*	*	*

* = unknown values

What 2-d convolution does to images

valid deconvolution also downsampled:

Deconvolution: undo

Formulation of Basic Problem

- GIVEN: Underdetermined linear system.
- y=Hx. Data y: known M-vector.
- Solution x: unknown N-vector.
- Infinite number of solutions, since M<N.
- Compute the unique K-sparse solution x.
- Assume it exists (a priori knowledge).

Why not use ℓ_1 minimization?

- Minimize $\sum |x(n)|$ such that y=Hx (constrained)
- Min $||y-Hx||^2 + \lambda \sum |x(n)|$ (LASSO functional)
- Min $||y-Hx||_1 + \lambda \sum |x(n)|$ (LAD functional)
- Min $||y-Hx||^2 + \lambda \sum |x(n)-x(n-1)|$ (total variation)

- Minimizing $\sum |\mathbf{x}(\mathbf{n})|$ tends to sparsify $\mathbf{x}(\mathbf{n})$ IF
- H is a random matrix (or other conditions)

Why not use ℓ_1 minimization?

- Minimize functionals using: gradient, or linear programming or coordinate descent (all iterative methods; may take long time)
- BUT: H matrix in image reconstruction is NOT a random matrix! ℓ_1 doesn't work!

Alternative to ℓ_1 norm minimization

- Suppose x(n) has length=N and is K-sparse.
- Then there is an indicator function s(n) s.t.:
- s(n)x(n)=0 and DFT S(k) has length=K+1.
- DFT: $X(k) = \sum x(n)e^{-j2\pi nk/N}$ for N values of k.
- Locations of nonzero x(n): $\{n_1, n_2, n_3... n_K\}$.
- Polynomial $\sum S(k)z^k$ has K zeros at locations $\{\exp(-j2\pi n_1/N)...\exp(-j2\pi n_K/N)\}.$

Example: Indicator function

- $x(n)=\{0,0,2,0,3,0,0,0\}$. Length=8; 2-sparse.
- $s(n)=\{(1+j)/4, .177j, 0, .073, 0, -.177j, (1-j)/4, .427\}$
- $S(k)=\{1, 1+j, j, 0, 0, 0, 0, 0\}$. Roots: $\{-j, -1\}$.

- x(n) K-sparse \rightarrow s $(n)x(n)=0\rightarrow$ S(k)*X(k)=0.
- K+1 unknowns S(k) impose sparsity on x(n).
- Use this in the following NEW algorithms.

Presentation Overview

- Why sparse images and non-iterative?
- Review of "valid" 2-d deconvolution
- Valid reconstruction of sparse images [1/3]:
- 1. Valid deconvolution of bandlimited PSF;
- 2. Slightly underdetermined reconstruction;
- 3. Kronecker-product-based reconstruction.
- Valid phase retrieval of sparse images [1]
- Conclusion

1. Bandlimited matrix H: Needs

- ASSUME: Each row of H bandlimited to M.
- THEN: K-sparse x(n) computed by solving:
- (1) $M \times M$ system to compute $X(k), 0 \le k \le M/2$;
- (2) K×K Toeplitz to compute s(n), locations n_i
- (3) K×K system to compute x(n) values.

- <u>APPLICATION</u>: Deconvolving bandlimited point-spread functions (PSF) h(i,j) from x(i,j).
- EXAMPLE: 2-d Gaussian PSF.

1. Bandlimited matrix H: Procedure

- Let $H(i,k)=\sum h(i,n)e^{-j2\pi nk/N}=DFT\{rows of h(i,j)\}$
- $y(i)=\sum h(i,j)x(j)=\sum H(i,k)^*X(k)/N$ (Parseval).
- H(i,k) rows bandlimited to M implies H(i,k)=0 for M/2<k<N-M/2 for each row #i of H(i,k).

- Solve $M \times M$ linear system for X(k), $0 \le k \le M/2$.
- Solve K×K Toeplitz equations S(k)*X(k)=0.
- Solve $K \times K$ linear system for values of x(n).

- IMAGE x(i,j): 72×72 and sparsifiable.
- PSF: 2-d Gaussian h(i,j)=0.98^(i²+j²) bandlimited
- <u>DATA</u>: y(i,j)=h(i,j)*x(i,j) & downsampled, since h(i,j) bandlimited implies y(i,j) also bandlimited.

- GOAL: Compute x(i,j) from downsampled y(i,j).
- NOTE: Clearly underdetermined linear problem (see next slide for numerical details).

- Unknowns: 72²=5184 pixels x(i,j).
- Knowns: 36²=1296 values y(i,j) of downsampled h(i,j)*x(i,j) (cyclic *).

- Side information: x(i,j) sparsifiable by z(i,j)=x(i,j)-x(i,j-1)-x(i-1,j)+x(i-1,j-1).
- y(i,j) known at 19×19 lowest wavenumbers.
- NEED: sparsified z(i,j) is 10²-1=99-sparse.

- Computational requirements:
- Null of 100×100 Toeplitz-block-Toeplitz;
- 72×72 2-d DFT of 10×10 rearrangement of null vector of Toeplitz-block-Toeplitz;

- Solution of 98×98 to compute z(i,j) values;
- Deconvolve corner detector: $z(i,j) \rightarrow x(i,j)$. Requires knowledge of 2 edges of x(i,j).

Blurred and downsampled image data.

2-d Gaussian blurring PSF h(i,j)

Can you guess the original image?

Reconstructed sparsified image z(i,j)

Reconstructed original image x(i,j)

Presentation Overview

- Why sparse images and non-iterative?
- Review of "valid" 2-d deconvolution
- Valid reconstruction of sparse images [2/3]
- 1. Valid deconvolution of bandlimited PSF;
- 2. Slightly underdetermined reconstruction;
- 3. Kronecker-product-based reconstruction.
- Valid phase retrieval of sparse images [1]
- Conclusion

2. Slightly Underdetermined H: Needs

- ASSUME: y=Hx only slightly underdetermined:
- N>(N-M)(K)=(#underdetermined)(#nonzero x(n))
- Actually need N>(N-M+1)(K+1) (counting issues).

• <u>APPLICATION</u>: Valid deconvolution of PSFs that are spatially varying; other underdetermined linear transformations of K-sparse signals.

2. Slightly Underdetermined H: Procedure

- THEN: $y=Hx\rightarrow [H-y][x^T 1]^T=0$ (include y in H).
- Rename: H=[H-y] and $x^T=[x^T 1]^T$ in the sequel.

- Now y=Hx has become 0=Hx. Using Parseval:
- $0=Hx=\sum h(i,j)x(j)=\sum H(i,k)^*X(k)=\underline{Hx}$ (DFT of H,x).

• x=Gw where G spans right nullspace of H.

2. Slightly Underdetermined H: Procedure

• BUT: G and vector w have dimensions N-M.

• SO: $S(k)^* \sum G(i,k) w(k) = 0$ is N equations in (N-M) unknowns w(k) and K unknowns S(k). Becomes:

N linear equations in (N-M)(K) unknowns S(k₁)w(k₂)

2. Slightly Underdetermined H: Example

- IMAGE x(i,j): 30×30; sparsifiable to 12-sparse.
- <u>LINEAR TRANSFORMATION H</u>: Random 832×900 matrix times inverse corner detector.
- DATA: y=Hx where x(i,j) unwrapped by rows.
- GOAL: Compute x from y. Underdetermined.
- <u>NEED</u>: N>(N-M+1)(K+1) not (N-M)K (counting)
- HAVE: 900>897=(900-832+1)(12+1) so can do it.

2. Slightly Underdetermined H: Example

- Computational requirements:
- Null of 900×897 Toeplitz-blocks matrix;

- Rearrange null vector into 69×13 matrix;
- Rank-one factorization of this matrix;
- 900-point DFT of length=13 rank-one factor;
- 12 values of this were zero; these specified locations of nonzero elements of sparsified x.

2. Slightly Underdetermined H: Example

832×900 is only *slightly* underdetermined linear system. Can't we just use least-squares to find 12 nonzero values? This is the least-squares solution. Find 12 nonzero values:

This is the least-squares SOLUTION, not the data! Only 12 of these pixels are supposed to be nonzero! Can you pick out the 12? HINT: They aren't the brightest pixels you see.

2. Slightly underdetermined H: Example

Reconstructed sparsified image z(i,j)

Reconstructed original image x(i,j)

Presentation Overview

- Why sparse images and non-iterative?
- Review of "valid" 2-d deconvolution
- Valid reconstruction of sparse images [3/3]
- 1. Valid deconvolution of bandlimited PSF;
- 2. Slightly underdetermined reconstruction;
- 3. Kronecker-product-based reconstruction.
- Valid phase retrieval of sparse images [1]
- Conclusion

3. Kronecker Product H: Needs

- GIVEN: y=Hx where $H=H_1\times H_2$
- $H_1 \times H_2 = Kronecker product of H_1 \& H_2$.
- y is an M^2 vector & x is an N^2 vector.
- x is (M-1) sparse or less; very sparse.
- GOAL: Compute x from y. Note $M^2 << N^2$.
- ADVANTAGE: Much less computation.

3. Kronecker Product H: Review

×

5	6
7	8

=

5	6	10	12
7	8	14	16
15	18	20	24
21	24	28	32

Relevant properties of the

Kronecker product here:

$$(A \times B)(C \times D)=(AC)\times(BD).$$

 $vec(AXB)=(B^T \times A)vec(X).$

$$vec(Y)=(H_1\times H_2)vec(X)$$
 means $Y=H_2XH_1^T$.

3. Kronecker Product H: Applications

2-d deconvolution with separable 2-d PSF.
 Example: 2-d Gaussian PSF is separable.

2-d reconstruction from partial DFT data.
 2-d DFT is Kronecker product of 1-d DFTs.

Image sparsifiable by separable 2-d transform.
 2-d wavelet transform is usually separable.

3. Kronecker Product H: Procedure [1/3]

- $y=(H_1\times H_2)x$ same as $Y=H_2XH_1^T$ where:
- vec(X)=x and vec(Y)=y. X is N×N; Y is M×M.
- SVD's: $H_1=U_1S_1V_1$ and $H_2=U_2S_2V_2$ (identical?)
- $Y = H_2XH_1^T = (U_2S_2V_2)X(U_1S_1V_1)^T$ becomes
- $V_2XV_1^T = (S_2)^{-1}U_2^TYU_1(S_1)^{-1}$ computed from y.

3. Kronecker Product H: Procedure [2/3]

V₂XV₁^T is M×N but has rank at most M-1, since at most M-1 entries of X are nonzero.

 Can have more than M-1 nonzero entries of X if some lie on same row or column: Need at most M-1 nonzero-containing rows and M-1 columns.

• Null n of $V_2XV_1^T$ is same as null of XV_1^T .

3. Kronecker Product H: Procedure [3/3]

• i^{th} row of X all zeros $\rightarrow i^{th}$ element of $XV_1^T n=0$.

• $(i,j)^{th}$ element of X nonzero $\rightarrow (j^{th} \text{ row of } V_1^T)_{n=0}$.

• Zeros of $V_1^T n \rightarrow X$ columns with nonzero element.

• Repeat with $(V_2XV_1^T)^T \rightarrow X$ rows with nonzeros.

- 256×256 sparse image X with 21 nonzero pixels.
- 22²=484×65536=256² random system matrix H.
- H=Kronecker product of two 22×256 matrices.

• Goal: Compute unknown 65536-element x from known 484-element y. Know that x is 21-sparse.

- Computational requirements:
- SVD's of two 22×256 matrices (maybe identical). Can precompute these for given imaging system.

- Left and right nulls of 22×22 data matrix.
- Compute $V_1^T n$ from null n; repeat for $V_2^T n$.
- Very little computation for this big a problem!

Original data arranged into a 22 by 22 array. Can you guess locations of 21 nonzero pixels?

Locations of possible nonzero pixels

Original image with 21 nonzero pixels

Presentation Overview

- Why sparse images and non-iterative?
- Review of "valid" 2-d deconvolution
- Valid reconstruction of sparse images [3]
- Valid phase retrieval of sparse images [1]
- Conclusion

4. Phase Retrieval of Sparse Images

- GIVEN: 2-d DFT Fourier magnitude |X(k₁,k₂)|.
- BUT: Don't have Fourier phase $arg\{X(k_1,k_2)\}$.
- GOAL: Compute x(i,j) from 2-d DFT $|X(k_1,k_2)|$.
- HENCE: "Phase retrieval" (from magnitude).
- <u>APPLICATIONS</u>: X-ray crystallography; optics (measure only diffraction patterns); astronomy.

4. Phase Retrieval: Problem set-up

- <u>ASSUME</u>: x(i,j) is either *sparse* or *sparsifiable* by an LTI transformation (e.g., corner detector).
- GIVEN: Autocorrelation y(i,j)=DFT⁻¹{|X(k₁,k₂)|²}
- UNWRAP: 2-d problem to 1-d using either:
- Kronecker transformation: substitute $y=x^M$ in: $Y(x,y)=X(x,y)X(x^{-1},y^{-1}) \rightarrow Y(x,x^M)=X(x,x^M)X(x^{-1},x^{-M});$
- Agarwal-Cooley convolution (residue # system).

4. Phase retrieval: Ambiguities

- SCALE FACTOR: Solution $x(n) \rightarrow -x(n)$ also.
- TRANSLATION: Solution $x(n) \rightarrow x(n-d)$ also.
- REVERAL: Solution $x(n) \rightarrow x(-n)$ also a solution.
- These extend to 2-d case in obvious fashion.

All of these will appear in the sparse algorithm!

4. Phase Retrieval: Problem set-up

- GOAL: Solve 1-d phase retrieval; rewrap to 2-d.
- SOLVE: $y(n)=y(-n)=x(n)*x(-n)=\sum x(i)x(i+n)$.
- If x(n) sparsifiable to z(n) by x(n)=h(n)*z(n) for some known function h(n) (e.g., corner detector):

• y(n)=[h(n)*h(-n)]*[z(n)*z(-n)]. Then deconvolve h(n)*h(-n) from $y(n) \rightarrow sparse$ problem z(n)*z(-n).

4. Phase Retrieval: Algorithm [1/5]

- <u>ASSUME</u>: Each y(n) is a *single* x(i)x(i+n) term. True if x(n) is sparse and sampling of x(n) fine.
- THEN: Can replace nonzero x(n) and y(n) with 1 to find locations of nonzero x(n). Then actual x(n) computed from rank-one decomposition of r(n).
- GIVEN: r(n)=r(-n) support $-M \le n \le M$ for some M.
- Initialize: x(0)=x(M)=1 since r(M)=1.
- NOTE: This resolves translation ambiguity!

4. Phase Retrieval: Algorithm [2/5]

- Recursion#1: Let n_1 be next *largest* n s.t. $r(n)\neq 0$.
- Either $x(n_1)$ or $x(M-n_1)\neq 0$, but which one?
- Can't tell at this point-this is reversal ambiguity!

• Pick, without loss of generality, $x(n_1)\neq 0$.

4. Phase Retrieval: Algorithm [3/5]

- Recursion #2: Let n_2 be next *largest* n s.t. $r(n)\neq 0$.
- Either $x(n_2)$ or $x(M-n_2)\neq 0$, but which one?
- Now can tell! Check the following two cases:

- If $x(n_2)\neq 0$, then $r(n_1-n_2)\neq 0$ and $r(|M-n_1-n_2|)=0$.
- If $x(M-n_2)\neq 0$, then $r(|M-n_1-n_2|)\neq 0$ and $r(n_1-n_2)=0$.
- This specifies which of $x(n_2)$ or $x(M-n_2)\neq 0$.

4. Phase Retrieval: Algorithm [4/5]

- Recursion #3: Let n_3 be next *largest* n s.t. $r(n)\neq 0$.
- Either $x(n_3)$ or $x(M-n_3)\neq 0$, but which one?
- Suppose $x(n_2)$, not $x(M-n_2)$, was $\neq 0$. Then:

- If $x(n_3)\neq 0$, then $r(n_1-n_3)\neq 0$ and $r(n_2-n_3)\neq 0$.
- If $x(M-n_3)\neq 0$, $r(|M-n_3-n_1|)\neq 0$ and $r(M-n_3-n_2)=0$.
- This specifies which of $x(n_3)$ or $x(M-n_3)\neq 0$.
- NOTE: As recursions progress, more checks.

4. Phase Retrieval: Algorithm [5/5]

- AT END: Have all indices n_j at which $x(n_j)\neq 0$.
- THEN: Each $r(n_i)=x(n_j)x(n_j+n_i)$ for a known n_j .
- <u>SO</u>: Form symmetric matrix of nonzero $r(n_i)$. Rank-one factorization—actual $x(n_i)$ values.
- <u>BUT</u>: Sign ambiguity in outer product: This is Scale factor ambiguity!

- Sparse 100×99 image; 16 nonzero pixels.
- GIVEN: 100×99 cyclic autocorrelation; no image support constraint; just sparse.
- GOAL: reconstruct sparse 100×99 image.
- NOTE: Agarwal-Cooley used to map to 1-d.
- NOTE: Cyclic autocorrelation is 240-sparse; 16 values $x(n)\neq 0\rightarrow 16(16-1)=240$ values $r(n)\neq 0$.

Autocorrelation (zeroth lag suppressed)

Reconstructed 16-sparse image

- Sparsifiable (by corner detector) 30×29 image.
- GIVEN: 30×29 cyclic autocorrelation of image; no image support constraint; just sparsifiable.
- GOAL: reconstruct sparsifiable 30×29 image.
- NOTE: Agarwal-Cooley used to map to 1-d.
- NOTE: 1^{st} deconvolve the corner detector from cyclic autocorrelation; then it is 132-sparse: $12 \text{ values } x(n) \neq 0 \rightarrow 12(12-1) = 132 \text{ values } r(n) \neq 0.$

Fourier transform magnitude

Reconstructed sparsifiable image note no support constraint known

- NOTE: Weird-looking block letter "E." Why? Need to ensure that after deconvolving corner detector: Each y(n) is a single x(i)x(i+n) term.
- <u>NOTE</u>: In a realistic-size problem, this is not likely to be an issue (use fine discretization).
- Used small-size problem to illustrate the issue.
- NOTE: Do need a small support constraint:
 2 edges of image are row and column of zeros,
 so can deconvolve corner detector from image.

CONCLUSION

- Non-iterative algorithms are fast: Most of these require only solution of an M×M linear system.
- 1st: For bandlimited valid image deconvolution
- 2nd: For non-bandlimited valid deconvolution with non-separable PSF; valid linear transform
- 3rd: For separable valid linear transforms of very sparse or sparsifiable images; VERY fast.
- Phase retrieval of sparse or sparsifiable images

THANK YOU FOR LISTENING!

• Papers and Matlab code for small examples at: http://www.eecs.umich.edu/~aey/sparse.html

• I would like to thank Jison for his hospitality (and for being such a good Ph.D student!)

Any questions?