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Presentation Overview

Why sparse images and non-iterative?

Review of “valid” 2-d deconvolution

Valid reconstruction of sparse images [3]:
. Valid deconvolution of bandlimited PSF;
. Slightly underdetermined reconstruction;

. Kronecker-product-based reconstruction.

Valid phase retrieval of sparse images [1]

Conclusion
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Why are sparse images important?

« DEF: 1-d x(n) is K-sparse if x(n) is nonzero
only at K (unknown) values of index n.

- EX: x(n)={2,0,0,0,3,0,0,1,0,0,0,0,4,0,0,1,0}
(all other values of x(n) are 0) is S-sparse.

Extension to 2-d (images) should be evident.
Example: atoms in X-ray crystallography.

Example: atoms in magnetic resonance
force microscopy (MRFM).
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What are sparsifiable images?

x(n) is sparsifiable if x(n)=) ¢(n,m)z(m) for
some known matrix of basis functions ¢(n,m)
and z(n) is sparse (x(n) sparse in some basis).

Example: ¢(n,m) are wavelet basis functions.

Extension to 2-d (images) is evident (but this
requires 4 indices; more if wavelets are used!)

Example: block letters or symbols (next slide).
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Exam le of sparsifiable image

Using corner detector, we can sparsifty block letters:

Corner detector: y(i,j)=x(i,j)-x(i,j-1)-x(i-1,j)+x(i-1,j-1)
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Problems with iterative algorithms

* Does the algorithm converge at all?
How long does it take to converge?
To what does the algorithm converge?
What bias is introduced by stopping?
Can take long, unknown time to converge.
Non-parallelizable in iteration number.
Non-iterative: avoids all of these issues.
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Complete 2-d convolution

y(i,j)=>_.Y h(m,n)x(i-m,j-n). DET: X(k)=Y x(n)e >N for k.
Deconvolution: X(k,,k,)=Y(k,,k,)/H(k,,k,) for [H(k,,k,)[>O0.
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X(1,)) y(,j)=h(i,j)*x(i,])
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Valid 2-d convolution

y(i,j)=)_> h(m,n)x(i-m,j-n). BUT: no image edge info used.

Deconvolution: Underdetermined—need info about image.
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valid deconvolution
also downsampled:
Deconvolution: undo
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Formulation of Basic Problem

GIVEN: Underdetermined linear system.
y=Hx. Data y: known M-vector.

Solution x: unknown N-vector.

Infinite number of solutions, since M<N.
Compute the unique K-sparse solution x.
Assume it exists (a priori knowledge).
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Why not use {, minimization?

Minimize ) |x(n)| such that y=Hx (constrained)

Min
Min
Min

y-Hx
y-Hx
y-Hx

2_|_;\'Z

1A
2+;"Z

x(n)
x(n)

(LASSO functional)
(LAD functional)

x(n)-x(n-1)| (total variation)

Minimizing ) |x(n)| tends to sparsify x(n) IF

H is a random matrix (or other conditions)
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Why not use {, minimization?

 Minimize functionals using: gradient, or

linear programming or coordinate descent
(all iterative methods; may take long time)

« BUT: H matrix in image reconstruction is
NOT a random matrix! £, doesn’t work!
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Alternative to £, norm minimization

Suppose x(n) has length=N and is K-sparse.
Then there is an indicator function s(n) s.t.:
s(n)x(n)=0 and DFT S(k) has length=K+1.

DFT: X(k)=)> x(n)eJ?>™KN for N values of k.

* Locations of nonzero x(n): {n,, n,, n;... N}.

* Polynomial > S(k)zK has K zeros at locations
{exp(-j2nn,/N)...exp(-j2nn, /N)}.
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Example: Indicator function

x(n)={0,0,2,0,3,0,0,0}. Length=8; 2-sparse.
s(n)={(1+j)/4, .177j, 0, .073, 0, -.177j, (1-j)/4, .427}
S(k)={1, 1+, J, 0, 0, 0, 0, 0}. Roots: {-j, -1}.

x(n) K-sparse—s(n)x(n)=0—S(k)*X(k)=0.

K-+1 unknowns S(Kk) impose sparsity on x(n).
Use this in the following NEW algorithms.
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1. Bandlimited matrix H: Needs
« ASSUME: Each row of H to M.
« THEN: K-sparse x(n) computed by solving:
* (1) MxM system to compute X(Kk),0<k<M/2;

* (2) KxK Toeplitz to compute s(n), locations n,

* (3) KxXK system to compute x(n) values.

« APPLICATION: Deconvolving bandlimited
point-spread functions (PSF) h(i,)) from x(i,j).

« EXAMPLE: 2-d Gaussian PSF.
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1. Bandlimited matrix H: Procedure
* Let H(i,k)=) h(i,n)e 1™ “N=DFT{rows of h(i,j)}
 yv(i)=Yh(i,j)x(j)=Y H(i,k)"X(k)/N (Parseval).
 H(i,k) rows bandlimited to M implies H(i,k)=0

for M/2<k<N-M/2 for each row #i of H(i,Kk).

Solve MxM linear system for X(k), 0<k<M/2.
Solve KXK Toeplitz equations S(K)*X(k)=0.
Solve KXK linear system for values of x(n).
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1. Bandlimited matrix H: Example
IMAGE x(i,j): 72%x72 and sparsifiable.

PSF: 2-d Gaussian h(i,j)=0.98"(i*+j?) bandlimited

DATA: y(i,j)=h(1,j)*x(i,j) & downsampled, since
h(i,j) bandlimited implies y(i,j) also bandlimited.

« GOAL: Compute x(i,j) from downsampled y(i.)).

* NOTE: Clearly underdetermined linear problem
(see next slide for numerical details).
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1. Bandlimited matrix H: Example
« Unknowns: 722=5184 pixels x(i,j).

« Knowns: 362=1296 values y(i,j) of
downsampled h(i,j)*x(i,j) (cyclic *).

* Side information: x(1,J) sparsifiable by
z(1,))=x(1,))-x(1,J-1)-x(i-1,j)+x(1-1,j-1).

* y(i,j) known at 19x19 lowest wavenumbers.
« NEED: sparsified z(i,j) is 102-1=99-sparse.
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1. Bandlimited matrix H: Example

Computational requirements:
Null of 100100 Toeplitz-block-Toeplitz;

72%72 2-d DFT of 10x10 rearrangement of
null vector of Toeplitz-block-Toeplitz;

Solution of 98%x98 to compute z(1,J) values;

Deconvolve corner detector: z(1,j)—x(1,])).
Requires knowledge of 2 edges of x(i,)).




Blurred and downsampled image data. 2-d Gaussian blurring PSF h(i,j)

Can you guess the original image?




1. Bandlimited matrix H: Example

Reconstructed sparsified image z(i,)) Reconstructed original image x(i,j)
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2. Slightly Underdetermined H: Needs

ASSUME: y=Hx only slightly underdetermined:
N>(N-M)(K)=(#underdetermined)(#nonzero x(n))
Actually need N>(N-M+1)(K+1) (counting issues).

APPLICATION: Valid deconvolution of PSFs
that are spatially varying; other underdetermined
linear transformations of K-sparse signals.
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2. Slightly Underdetermined H: Procedure

THEN: y=Hx—[H —y][xT 1]T=0 (include y in H).
Rename: H=[H —y] and x"=[x" 1]Tin the sequel.

Now y=Hx has become 0=HXx. Using Parseval:
0=Hx=) h(i,j)x(j)=> H(i,k) "X (k)=Hx (DFT of H,Xx).

x=Gw where G spans right nullspace of H.
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2. Slightly Underdetermined H: Procedure

« BUT: G and vector w have dimensions N-M.

* SO: S(k)*) G(i,k)w(k)=0 is N equations in (N-M)
unknowns w(k) and K unknowns S(k). Becomes:

N linear equations in (N-M)(K) unknowns S(k,)w(k,)
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2. Slightly Underdetermined H: Example
« IMAGE x(1,)): 30x30; sparsifiable to 12-sparse.

e LINEAR TRANSFORMATION H: Random
832x900 matrix times inverse corner detector.

DATA: y=Hx where x(i,j) unwrapped by rows.

GOAL: Compute x from y. Underdetermined.
NEED: N>(N-M+1)(K+1) not (N-M)K (counting)
HAVE: 900>897=(900-832+1)(12+1) so can do it.
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2. Slightly Underdetermined H: Example

 Computational requirements:
Null of 900897 Toeplitz-blocks matrix;

Rearrange null vector into 69x13 matrix;

Rank-one factorization of this matrix;
900-point DFT of length=13 rank-one factor;

12 values of this were zero; these specified
locations of nonzero elements of sparsified x.
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2. Slightly Underdetermined H: Example

832%900 is only slightly underdetermined linear system.
Can’t we just use least-squares to find 12 nonzero values?
This is the least-squares solution. Find 12 nonzero values:

This is the least-squares
SOLUTION, not the data!
Only 12 of these pixels are
supposed to be nonzero!
Can you pick out the 12?
HINT: They aren’t the
brightest pixels you see.




Reconstructed sparsified image z(i,)) Reconstructed original image x(i,j)




Presentation Overview

Why sparse images and non-iterative?
Review of “valid” 2-d deconvolution
Valid reconstruction of sparse images [3/3]
. Valid deconvolution of bandlimited PSF;
. Slightly underdetermined reconstruction;

Valid phase retrieval of sparse images [1]
Conclusion
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3. Kronecker Product H: Needs

* GIVEN: y=Hx where H=H,xH,
 H,xH, = Kronecker product of H; & H,.

y is an M? vector & x is an N? vector.

x Is (M-1) sparse or less; very sparse.

GOAL: Compute x from y. Note M><<N?,
ADVANTAGE: Much less computation.




3. Kronecker Product H: Review

{56 s (6 [10]12
3 4 |7 8 SR |8 [14]16
Relevant properties of the

Kronecker product here:

(AXB)(CXD)=(AC)x(BD).  vecFREY] =
vec(AXB)=(BTxA)vec(X). 314
vec(Y)=(H,xH,)vec(X) means Y=H,XH,!.
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3. Kronecker Product H: Applications

e 2-d deconvolution with separable 2-d PSF.
Example: 2-d Gaussian PSF is separable.

e 2-d reconstruction from partial DFT data.
2-d DFT is Kronecker product of 1-d DFTs.

* Image sparsifiable by separable 2-d transform.
2-d wavelet transform is usually separable.
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3. Kronecker Product H: Procedure |1/3|

» y=(H,xH,)x same as Y= H,XH,! where:
vec(X)=x and vec(Y)=y. X is NxN; Y is MxM.
SVD’s: H,=U,S,V,and H,=U,S,V, (identical?)

Y= H,XH,'=(U,S,V,)X(U,S,V,)! becomes
VXV, 1=(S,)'U,"YU,(S,)! computed from y.
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3. Kronecker Product H: Procedure [2/3]

* V, XV, is MxN but has rank at most M-1, since
at most M-1 entries of X are nonzero.

e Can have more than M-1 nonzero entries of X if
some lie on same row or column: Need at most
M-1 nonzero-containing rows and M-1 columns.

* Null n of V,XV,!is same as null of XV,".
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3. Kronecker Product H: Procedure [3/3]

it" row of X all zeros—i" element of XV, 'n=0.
(i,j)™ element of X nonzero—(j* row of V,")n=0.
Zeros of V,'n—X columns with nonzero element.

Repeat with (V,XV,1)'->X rows with nonzeros.
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3. Kronecker Product H: Example

256%256 sparse image X with 21 nonzero pixels.
222=484%65536=2567 random system matrix H.
H=Kronecker product of two 22x256 matrices.

Goal: Compute unknown 65536-element x from
known 484-element y. Know that x is 21-sparse.
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3. Kronecker Product H: Example

Computational requirements:

SVD’s of two 22%256 matrices (maybe identical).
Can precompute these for given imaging system.

Left and right nulls of 22x22 data matrix.

Compute V,'n from null n; repeat for V,'n.

Very little computation for this big a problem!
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DATA IMAGE

Original data
arranged into a
22 by 22 array.
Can you guess
locations of 21

nonzero pixels?




3. Kronecker Product H: Example

INDICATOR SPARSE IMAGE

Locations of possible nonzero pixels Original image with 21 nonzero pixels
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Valid reconstruction of sparse images [3]

Conclusion
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4. Phase Retrieval of Sparse Images
* GIVEN: 2-d DFT Fourier magnitude [X(k,,k,)|.

« BUT: Don’t have Fourier phase arg{X(k,,k,)}.

 GOAL: Compute x(i,j) from 2-d DFT |X(k,.k,)|.

« HENCE: “Phase retrieval” (from magnitude).

« APPLICATIONS: X-ray crystallography; optics
(measure only diffraction patterns); astronomy.
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4. Phase Retrieval: Problem set-up

ASSUME: x(i,j) is either sparse or sparsifiable
by an LTI transformation (e.g., corner detector).

GIVEN: Autocorrelation y(i,j)=DFT-1{|X(k,.k,)[*}

UNWRAP: 2-d problem to 1-d using either:

Kronecker transformation: substitute y=x™ in:
Y(X,y)=XX XLy D)= Y(xx")=Xxx") X (x1,xM);
Agarwal-Cooley convolution (residue # system).
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4. Phase retrieval: Ambiguities

SCALE FACTOR: Solution x(n)—-x(n) also.
TRANSLATION: Solution x(n)—x(n-d) also.
REVERAL: Solution x(n)—x(-n) also a solution.
These extend to 2-d case in obvious fashion.

All of these will appear in the sparse algorithm!
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4. Phase Retrieval: Problem set-up

e GOAL: Solve 1-d phase retrieval; rewrap to 2-d.
 SOLVE: y(n)=y(-n)=x(n)*x(-n)=) x(i)x(i+n).

* If x(n) sparsifiable to z(n) by x(n)=h(n)*z(n) for
some known function h(n) (e.g., corner detector):

e y(n)=[h(n)*h(-n)]*[z(n)*z(-n)]. Then deconvolve
h(n)*h(-n) from y(n)—sparse problem z(n)*z(-n).
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4. Phase Retrieval: Algorithm [1/5]

ASSUME: Each y(n) is a single x(i)x(i+n) term.
True if x(n) is sparse and sampling of x(n) fine.

THEN: Can replace nonzero x(n) and y(n) with 1
to find locations of nonzero x(n). Then actual x(n)
computed from rank-one decomposition of r(n).

GIVEN: r(n)=r(-n) support -M<n<M for some M.
Initialize: x(0)=x(M)=1 since r(M)=1.
NOTE: This resolves translation ambiguity!
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4. Phase Retrieval: Algorithm [2/5]

Recursion#1: Let n, be next largest n s.t. r(n)#0.
Either x(n,) or x(M-n,)#0, but which one?
Can’t tell at this point-this is reversal ambiguity!

Pick, without loss of generality, x(n,)#0.
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4. Phase Retrieval: Algorithm [3/5]

Recursion #2: Let n, be next largest n s.t. r(n)#0.
Either x(n,) or x(M-n,)#0, but which one?
Now can tell! Check the following two cases:

If x(n,)#0, then r(n,-n,)#0 and r(]M-n,-n,|)=0.
If x(M-n,)#0, then r(|M-n,-n,|)#0 and r(n,-n,)=0.
This specifies which of x(n,) or x(M-n,)#0.




University of

IMICHIGY

4. Phase Retrieval: Algorithm [4/5]

Recursion #3: Let n; be next largest n s.t. r(n)#0.
Either x(n;) or x(M-n;)#0, but which one?
Suppose x(n,), not x(M-n,), was #0. Then:

If x(n;)#0, then r(n,-n;)#0 and r(n,-n,)#0.
If x(M-n;)#0, r(|M-n,-n,|)#0 and r(M-n;-n,)=0.
This specifies which of x(n,) or x(M-n,)#0.

NOTE: As recursions progress, more checks.
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4. Phase Retrieval: Algorithm [5/5]

AT END: Have all indices n; at which x(n;)70.
THEN: Each r(n;)=x(n;)x(n;+n;) for a known n;.

SO: Form symmetric matrix of nonzero r(n,).
Rank-one factorization—actual x(n;) values.

BUT: Sign ambiguity in outer product: This is
Scale factor ambiguity!
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4. Phase Retrieval: Example #1

Sparse 100x99 image; 16 nonzero pixels.

GIVEN: 100%x99 cyclic autocorrelation;
no image support constraint; just sparse.

GOAL: reconstruct sparse 10099 image.

NOTE: Agarwal-Cooley used to map to 1-d.

NOTE: Cyclic autocorrelation is 240-sparse;
16 values x(n)£0—16(16-1)=240 values r(n)Z0.
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RECONSTRUCTED RECONSTRUCTED

Autocorrelation (zeroth lag suppressed) Reconstructed 16-sparse image
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4. Phase Retrieval: Example #2
(by corner detector) 30%29 image.

GIVEN: 30x29 cyclic autocorrelation of image;
no image support constraint; just sparsifiable.

GOAL: reconstruct 30%29 image.

NOTE: Agarwal-Cooley used to map to 1-d.

NOTE: 15t deconvolve the corner detector from
cyclic autocorrelation; then it is 132-sparse:

12 values x(n)#Z0—12(12-1)=132 values r(n)#0.
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RECONSTRUCTED IMAGE

Fourier transform magnitude Reconstructed sparsifiable image

note no support constraint known
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4. Phase Retrieval: Example #2

NOTE: Weird-looking block letter “E.” Why?
Need to ensure that after deconvolving corner
detector: Each y(n) is a single x(i)x(i+n) term.

NOTE: In a realistic-size problem, this is not
likely to be an issue (use fine discretization).

Used small-size problem to illustrate the issue.

NOTE: Do need a small support constraint:
2 edges of image are row and column of zeros,
so can deconvolve corner detector from image.




i ¥ “' —_— "' .
Universityof A—_—h.

MICRIGAN b aa

CONCLUSION

Non-iterative algorithms are fast: Most of these
require only solution of an MxM linear system.

1%%: For bandlimited valid image deconvolution

2"d: For non-bandlimited valid deconvolution
with non-separable PSF; valid linear transform

3rd: For separable valid linear transforms of
very sparse or sparsifiable images; VERY fast.

Phase retrieval of sparse or sparsifiable images
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THANK YOU FOR LISTENING!

* Papers and Matlab code for small examples at:
http://www.eecs.umich.edu/~aey/sparse.html

* I would like to thank Jison for his hospitality
(and for being such a good Ph.D student!)

* Any questions?




