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Abstract—We propose a new non-iterative algorithm
for the blind deconvolution problem of reconstructing
both a sparsifiable image and a point-spread function
(PSF) from their valid 2D convolution. No support
constraint is needed for either the image or the PSF,
nor is non-negativity of the image. The only require-
ments are that the PSF be modelled as having a finite-
support inverse or equalizing filter (IF), and that the
product of the (known) numbers of nonzero pixels in
this inverse filter and the sparsified image be less than
the total number of image pixels. The algorithm re-
quires only the solution of a large linear system of
equations and a small rank-one matrix decomposition.
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I. INTRODUCTION

A. Background

Many imaging problems in optics, medicine and
astronomy require computation of an image from its
2D convolution with a 2D impulse response or point-
spread function (PSF). The PSF can sometimes be
determined by imaging a bead or an isolated star;
then the image can be obtained by deconvolution.
In blind deconvolution, both the image and the PSF
are unknown, which at first glance seems to be one
equation in two unknowns, without unique solution.

If both the image and PSF have finite or compact
support (they are known to be zero outside a finite
region), then blind deconvolution theoretically has a
unique solution in dimensions higher than one, sub-
ject to trivial ambiguities noted below. Iterative al-
gorithms such as Ayers-Dainty and Lucy-Richardson
have been developed for this case. But these al-
gorithms converge to the solution only if they are
initialized close to it. The Ayers-Dainty algorithm
also requires two deconvolutions in each iteration;
these are often poorly-conditioned problems, which
can lead to error propagation as it progresses.

Another approach is to model the PSF as having
a finite-support inverse or equalizing filter (IF). This
approach has been used successfully, along with im-
age finite support and nonnegativity constraints, in
the NAS-RIF algorithm. This avoids deconvolution
and it is globally convergent to the solution, since
the cost functional is convex. But it does not yield a

unique solution without an image support constraint.
ARMA modelling models the image as having a 2D

AR model and the PSF as being finite, or vice-versa.
Again, this requires a known support constraint.

B. Contribution of This Paper

This paper replaces the image support constraint
with a sparsifiability constraint: the image has a
sparse (mostly zero) representation in some known
basis, such as a wavelet basis. The locations of
nonzero basis coefficients are unknown. This model
has been used successfully in compressed sensing,
since many real-world images do in fact have sparse
representations. It also uses a finite inverse or equal-
izing filter (IF) model for the unknown PSF.

The only other requirement is that the product of
the number of nonzero pixels in the sparsified image
and in the inverse filter is less than the total num-
ber of image pixels. The algorithm is non-iterative:
it requires only the solution of a single large linear
system of equations and a small rank-one matrix de-
composition. While iterative algorithms can be used
for each of these operations, non-iterative algorithms
(such as Gaussian elimination) are still available.

II. Problem Formuation

A. Problem Statement

The goal of this paper is to solve the valid blind
deconvolution problem, formuated as follows:
Given: The known valid 2D convolution

yi,j = hi,j ∗ xi,j =
L̃−1∑
m=0

L̃−1∑
n=0

hm,nxi−m,j−n (1)

• Unknown image xi,j is M̃ × M̃ ;
• Unknown PSF hi,j is L̃ × L̃;
• Known “‘valid” yi,j is N×N;
• No support constraint: N=M̃–L̃+1.

Model: The image and PSF are modelled as:

xi,j =
M−1∑
m=0

M−1∑
n=0

Φi,j,m,nzm,n (2)
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δi,j =
L−1∑
m=0

L−1∑
n=0

gm,nhi−m,j−n (3)

The sizes of various images are as follows:

• Unknown xi,j is now on an M×M subset of M̃×M̃ ;
• Unknown IF gi,j is L×L; likely L<< L̃;
• Unknown sparse image zi,j is M×M;
• M=N–L+1=M̃–L̃–L+2.

The first valid convolution yi,j=hi,j ∗ xi,j means yi,j

is known on an N×N subset of the larger M̃ × M̃
region on which xi,j is defined. The second valid
convolution xi,j=gi,j ∗yi,j means xi,j is computed on
an M×M subset of the larger N×N region on which
yi,j is observed. On the sparsification of xi,j to zi,j :

• Known Φi,j,m,n is an M×M matrix of basis vectors;
• Φi,j,m,n is orthonormal if the basis is orthonormal;
• We assume: zi,j has only K–1 nonzero values;
• We require: M2 > KL2.

Goal: Compute gi,j , zi,j, hence hi,j , xi,j , from yi,j .
In fact, we have the following:

• Computing gi,j suffices, since xi,j=yi,j ∗ gi,j ;
• We deal with only an M×M sparsifiable subset of
the larger M̃ × M̃ image;
• Different parts can be blurred by different hi,j .

B. Trivial Ambiguities

The blind deconvolution problem in all dimensions
is known to have the following 3 trivial ambiguities:

• Translation: If {hi,j , xi,j} is a solution, then for
any a,b {hi+a,j+b, xi−a,j−b} is also a solution;
• Scale Factor: If {hi,j, xi,j} is a solution, then for
any constant c { 1

chi,j , cxi,j} is also a solution;
• Exchange: There is no way to tell which of
{hi,j , xi,j} is the image and which is the PSF.

The problem is considered solved when {hi,j , xi,j}
is determined to within these three ambiguities.

III. Problem Solution

A. Sparsity Equation

We consider only the 1D case for clarity. The 2D
or 3D problem can be uwrapped to the 1D prob-
lem using the Agarwal-Cooley fast convolution algo-
rithm. This regards the 2D or 3D problem indices
as a residue number system representation of the 1D
problem indices. The problem size M×M must be
adjusted to M1 × M2, with M1, M2 relatively prime.

Let zn=0 except for n∈ {ni1 . . . niK−1}. So nij are
the locations of nonzero values of sparse signal zn.

Let sn be the indicator function for nonzero zn:{
sn = 0 if zn �= 0
sn �= 0 if zn = 0

{
Sk �= 0 0 ≤ k ≤ K
Sk = 0 otherwise

(4)

where Sk is the M-point DFT of sn. Then we have

snzn = 0 →
M−1∑
k=0

ZkSm−k = 0, m = 0 . . .M − 1 (5)

where Zk is the M-point DFT of zn.
The polynomial of degree K–1 with coefficients Sk

has zeros {ejni}, where ni are the locations of the
nonzero values of zn. So the inverse DFT of Sk is
zero at locations of nonzero zn, indicating them.

B. Derivation of Linear System

Applying the inverse filter to data yi,j gives:

zi,j =
M−1∑
m=0

M−1∑
n=0

Φ−1
i,j,m,n(gm,n ∗ ym,n) (6)

Inserting this into the sparsity equation

0 =
M−1∑
k=0

Sm−kDFT{zi,j} (7)

gives a linear system of M2 equations in the KL2

unknowns consisting of all possible products {Skgi,j}.
If M2 > KL2 this system has a unique solution.

Then the solution {Skgi,j} is arranged into a rank
one K×L2 matrix. A rank one decomposition yields
Sk and gi,j to scale factors, the scale factor ambiguity.
Distinguishing Sk, gi,j is the exchange ambiguity.

IV. Numerical Example

We present a small numerical example to illustrate
the algorithm. The problem is kept small to enable
the reader to follow construction of the matrices used
in the algorithm Matlab code given below.

A. Problem Specification

Image: The image xi,j is 53×54. It consists of an
11×12 block letter “E” surrounded by random pix-
els. The block letter is the only part of the image
that can be sparsified. xi,j is shown in Figure #1.

PSF: The PSF hi,j is the 41×41 truncation of
hi,j=(1

2 )
(|i|+|j|). This PSF has four-fold symmetry.

The PSF, unknown to the algorithm, is shown in Fig-
ure #2. Many real-world PSFs look like this.
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The inverse filter gi,j is computed to be

gi,j =
1
9


 4 −10 4
−10 25 −10
4 −10 4


 (8)

The IF is assumed to have the form

gi,j =


 a b a

b c b
a b a


 (9)

reflecting the assumed four-fold symmetry.

Data: The valid convolution yi,j=hi,j ∗ xi,j is
13×14, where 13=53–41+1 and 14=54–41+1. The
data is shown in Figure #3. Note that this includes
contributions from the random part of the image.

Sparsification: The 11×12 sparsifiable part of
the image xi,j is assumed to be sparsifiable by valid
convolution with the corner detecting PSF

Φ−1
i−m,j−n =

[
1 −1
−1 1

]
(10)

The resulting sparsified image zi,j = Φ−1
i,j ∗ xi,j is

10×11, where 10=11–2+1 and 11=12–2+1. The
sparsified image zi,j is shown in Figure #4.

Goal: Tbe goal is to compute the sparsifiable re-
gion of the image xi,j from the following items:

• Knowledge of only the blurred image yi,j ;
• Assumed four-fold form of gi,j ;
• The image is sparsifiable to 12 nonzero values.

B. Problem Solution

The 10×11 2D problem is unwrapped to a
(10)(11)=110-point 1D problem using the Agarwal-
Cooley algorithm. Since gi,j is parametrized by only
three variables a,b,c, the total number of unknowns is
(12+1)(3)=39. The large linear system is thus heav-
ily overdetermined, with a 110×39 system matrix.
The structure of this matrix is shown in Figure #5.

Despite overdetermination, its singular values are

σ1 = 123.; σ38 = 0.12; σ39 = 0.000022. (11)

so the matrix null vector is fairly well defined.
The length-39 vector is arranged into a 13×3 ma-

trix, which has the singular values

σ1 = 1.;σ2 = 0.00000021;σ3 = 0.000000074. (12)

so the rank-one decomposition is well-defined. This

decomposition yields, after scaling,

[a, b, c] = [−4.0000,−10.0000, 25.0000] (13)

which match the actual values. Inserting these into
the form of the IF gi,j yields the 11×12 reconstructed
xi,j=gi,j ∗ yi,j , where 11=13–3+1 and 12=14–3+1.
The reconstructed sparsifiable part of the image is
shown in Figure #6. Compare this to Figure #1.

Matlab code used to generate this example:

clear;X(11,12)=0; %CONSTRUCT BLOCK E:
X(2:9,2:3)=ones(8,2);X(2:3,4:9)=ones(2,6);
X(5:6,4:7)=ones(2,4);X(8:9,4:9)=ones(2,6);
H=[2.̂ [-20:-1] 1 0.5.̂ [1:20]];H=H’*H;
XX=rand(53,54);XX(22:32,22:33)=X;
Y=conv2(XX,H,’valid’); %GIVEN DATA Y.
D1=conv2([1 -1;-1 1],[1 0 1;0 0 0;1 0 1]);
D2=conv2([1 -1;-1 1],[0 1 0;1 0 1;0 1 0]);
D3=conv2([1 -1;-1 1],[0 0 0;0 1 0;0 0 0]);
ZZ1=conv2(Y,D1,’valid’);ZZ2=conv2(Y,D2,’valid’);
ZZ3=conv2(Y,D3,’valid’);for I=0:109;
Z1(I+1)=ZZ1(mod(I,10)+1,mod(I,11)+1);
Z2(I+1)=ZZ2(mod(I,10)+1,mod(I,11)+1);
Z3(I+1)=ZZ3(mod(I,10)+1,mod(I,11)+1);end
FZ1=fft(Z1);T1=toeplitz(FZ1’,FZ1);
FZ2=fft(Z2);T2=toeplitz(FZ2’,FZ2);
FZ3=fft(Z3);T3=toeplitz(FZ3’,FZ3);
TT=[T1(:,1:13) T2(:,1:13) T3(:,1:13)];
[U S V]=svd(TT);VV=reshape(V(:,39),13,3);
[U2 S2 V2]=svd(VV);N=real(V2(:,1)/V2(1,1))*4
GHAT= [1 0 1;0 0 0;1 0 1]*N(1);
GHAT=GHAT+[0 1 0;1 0 1;0 1 0]*N(2);
GHAT=GHAT+[0 0 0;0 1 0;0 0 0]*N(3);
XHAT=conv2(Y,GHAT,’valid’);
figure,imagesc(XX),colormap(gray)
figure,imagesc(H),colormap(gray)
figure,imagesc(Y),colormap(gray)
figure,imagesc(abs(TT)),colormap(gray)
figure,imagesc(XHAT),colormap(gray)
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ORIGINAL IMAGE
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MATRIX STRUCTURE
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