Non-Iterative Reweighted-Norm Least-Squares
Local £y Minimization for Sparse Solutions to

Underdetermined Linear Systems of Equations

Andrew E. Yagle
Department of EECS, The University of Michigan, Ann Arbor, MI 48109-2122

Abstract— We present a non-iterative algorithm for
computing sparse solutions to underdetermined M xN
linear systems of equations. The algorithm computes
a solution which is a local minimum of the /3 norm
(number of nonzero values) obtained from the ¢; norm
(sum of absolute values) minimum. At each step, it
uses reweighted-norm least-squares minimization to
compute the (5 norm for values of p decreasing from
2 to 0. The result is similar to the ¢; solution, but
uses less computation (solution of ten MxM systems
of equations), and there are no convergence issues.
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I. INTRODUCTION
A. Problem Statement

The goal is to compute a sparse solution to the un-
derdetermined (M<<N) linear system of equations
A :M x N; x:Nvector;

y = Az; y :M vector.

This can be done by solving any of the following;:
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where the ¢, (and ¢1) norms is defined as
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and TV is the Total Variation functional in 1-D.

If A has random entries, then ¢; norm minimiza-
tion of x tends to sparsify the solution x to y = Az as
much as possible. This problem is currently of great
interest in compressed sensing, since many real-world
signals and images have sparse (mostly zero) repre-
sentations in an appropriate basis, such as a set of
wavelet or curvelet basis functions.

Sparse solutions can be computed using matching
pursuit, in which the columns of A most highly corre-
lated with y— A%; are successively chosen to minimize
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the residual y — AZ; 1. Here Z; is the approximation
to x after i iterations. This produces a sparse solu-
tion that approximately satisfies y = Az, but it does
not always find the optimally sparse solution.

The solution to (1) can be computed using basis
pursuit (BP), in which linear programming is used to
minimize the functional (1). This has been done in
the geophysics literature since the 1960s, for deconvo-
lution of sparse spike trains in reflection seismology.

The functional (2) is appropriate when zero-mean
Gaussian white noise is present in the data. The
solution to (2) or (3) can be computed using gradient
methods, coordinate descent, thresholded Landweber
iteration, or iterative reweighted-norm least-squares.

Many review papers have appeared recently on
these problems; we will not attempt to review all of
the recent work on all of these problems here.

B. Iterative Reweighted Least Squares (IRLS)

We propose a variation of IRLS that is applicable
to all of the above problems. IRLS uses the fact that
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and the weighted-least-squares (WLS) problem

N
MIN {Zdnxi} such that y= Az (6)
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with d,, > 0 has the closed-form solution
x=DTAT(AD ' AT Yy; D = diag[d; ...dn] (7)

which requires as its main computation the solution
of an MxM system of equations (recall M<<N).
IRLS iteratively solving the WLS problem (1) with

1

dp = —5——
n |J)n|2_p+€

(®)

where the x,, are from the previous iteration and we
ensure d,, > € to avoid problems when x,,=0.



II. NEW ALGORITHM
A. Recursion in Decreasing p

We propose to minimize ||z|[5 recursively, not it-
eratively, by slightly reducing the norm order p at
each recursion. At each step, we have minimized
|||[5 and wish to minimize ||x||§:g for some small
d = 2/L, where L is the number of recursions re-
quired to compute the local minimum of ||z[|3. We
do this as follows. For convenience we demonstrate
this for the BP criterion (1), then modify to LASSO.

At a given recursion we have minimized |[|[}. This
minimum Z is the solution to WLS problem (6) with
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We could not have computed & by inserting (9) in (7)
since we need to know & in order to compute it.

The minimizer of ||:c||§:§ is the solution to the
WLS problem (6) with the weights d,, set to
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Since this minimizer x,, ~ &, and |z,|® ~ 1, we have
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Hence we can, to a good approximation, compute
the minimizer of ||x||5:§ by using the minimizer of
||x|[5 to compute the weights d,, for the WLS prob-
lem using (9). This seems to be a trivial observation,
but in fact it can be viewed as a type of continua-
tion algorithm, in which an easily-solvable problem
is perturbed into the desired problem.

More importantly, there are no covergence issues,
and the algorithm terminates after a known and finite
number of operations. We have found experimentally
that using §=0.2 as the reduction of norm order p at
each recursion seems to work reasonably well, so that
a total of O%:l() recursions are then required.

B. LASSO Functional

We can apply the same idea to the LASSO func-
tional (2). The minimizer of

N
MIN {Ily — A3 + Zdnxi} (12)
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with d,, > 0 has the closed-form solution
r=(ATA+ D) *ATy; D =diag[d;...dn] (13)

which has as its main computation the solution of an

NxN system of equations. Since N>>M, we use
(ATA+ D) AT = D' AT(AD AT + )7t (14)
to rewrite the closed-form solution as

x=DTAT(AD AT + )~y (15)
which has as its main computation the solution of an
MxM system of equations. Since M<<N, this is a
significant computational savings at each recursion.

III. NUMERICAL EXAMPLE

We compare the results of our proposed algorithm
with IRLS for a simple problem in which:
e Ais arandom 25 x 50 matrix;
e x is an 8-sparse length-50 vector;
e €=0.00001 in (9) for both algorithms.
Results are shown in the figure. Note that result of
our algorithm is very close to the solution (mean-
square error=0.15) while IRLS is still quite far away
(mean-square error=0.96). Similar results were ob-
tained for other random matrices and are not shown.
We note that IRLS eventually converged to the
solution, but dozens of iterations could be required
before the mean-square error became smaller than
our algorithm. Of course, the results of our algorithm
could be improved with a couple of final iterations.
Matlab code used to generate this example:

clear;rand(’seed’,0);H=rand(25,50);X(50)=0;
X(3)=1;X(9)=1;X(13)=1;X(23)=1;X (30)=1;X (38)=1;
X(43)=1;X(46)=1;X=X";Y=H*X;
Z1=ones(1,50);B1=[];Z2=o0nes(1,50);B2=[];for I=1:9
G1=H*diag(abs(Z1)+0.00001);
Z1=G1'*((G1*G1’)\Y);B1=[B1 Z1];end;
subplot(211),plot(1:50,X,1:50,7Z1),for I=1:9
G2=H*diag(abs(Z2).” (0.2*1)+0.00001);
72=G2*((G2*G2)\Y);B2=(B2 Z2];end
subplot(212),plot(1:50,X,1:50,Z2)
MSEl=sum((X-Z1).”2);

MSE2=sum((X-Z2).” 2);[MSE1 MSE2]
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