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Abstract—The problem of computing sparse (mostly
zero) or sparsifiable (by linear transformation) solu-
tions to greatly underdetermined linear systems of
equations has applications in compressed sensing. The
locations of the nonzero elements in the solution is a
much smaller set of variables than the solution itself.
We present explicit equations for the relatively few
variables that determine these nonzero locations and
also propose an iterative algorithm for their solution.
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I. INTRODUCTION

A. Problem Statement

The goal is to solve underdetermined linear system

y = H̃z̃ = H̃W ′Wz̃ = Gx̃;G = H̃W ′; x̃ = Wz̃ (1)

• G and H̃ are both M×N matrices, with N>>M;
• W is an N×N unitary transformation matrix that
sparsifies the unknown column N-vector z̃ to x̃;
• x̃ has only K out of N non-zero elements; K<M;
• y, H̃, W, G, M, N are known; x̃, z̃ are unknown.

The sparsifying transformation W is any orthonor-
mal transform, such as the wavelet transform.
We note that if G is substantially underdetermined

N >> M , but each row is known to be bandlim-
ited to π M

N , then our non-iterative algorithm [1] can
be used. We have also used related but different
approaches to X-ray crystallography [2] and to the
limited-angle tomography formulation of SAR [3].

B. Relevant Previous Approaches

Use of sparseness as side information in signal re-
construction goes back at least as far as 1979 [4].
Most early work considered the deconvolution of
sparse 1D spike trains arising in reflections from lay-
ered media in seismic exploration, although [5] con-
sidered 1D reconstruction from bandlimited data.
The first use of sparseness in 2D (image) reconstruc-
tion of which we are aware is [6]. All of this early
work minimized the 
1 norm (sum of absolute values)
of the signal, using linear programming. The idea
was that the 
1 norm solution lies on a vertex of the

simplex and so is sparse. This idea has recently been
put on a firmer theoretical ground in [7] and other
recent papers. More recent work using this approach
is [8]-[10]. Using the 
1 norm for the signal and 
2

for the error is called LASSO. The problem with this
approach is the amount of computation required by
linear programming for image reconstruction.
Another way of formulating the linear sparse re-

construction problem is as a matrix “subset selec-
tion” problem [11]-[14]. The forward greedy algo-
rithm successively selects the matrix column closest
(in the mean-square sense) to the residual error re-
sulting from the previous matrix column selections.
The backward greedy algorithm starts with a gen-
eral solution and successively removes the matrix col-
umn that increases the mean-square residual error
the least. The latter algorithm has been shown to
give the correct answer if the noise level is sufficiently
small [13]. However, again the problem is the amount
of computation required here by subset selection.
Still another recent approach is to include a thresh-

olding constraint in a Landweber-like iterative algo-
rithm [15]-[18], often arising from statistical image
priors that implicitly (but not explicitly) maximize
sparsity. This is a straightforward approach, and un-
like the above methods requires reasonable computa-
tion for 2-D problems. However, even in the absence
of noise, convergence to an optimally-sparse solution
is not in general guaranteed for these algorithms.

C. New Approach of This Paper

By focusing only on the K locations of the nonzero
elements of the solution, we greatly reduce the size of
the problem from N to K, where N>>M>K. Further-
more, by avoiding use of the 
1 norm to sparsify the
solution, we avoid all of the requirements of that ap-
proach (random selection of matrices, M> K logK).

II. Derivation of Equations

A. Fourier Reformulation

Recall from (1) that the goal is to solve y = Gx̃,
where x̃ has K nonzero elements. Rewrite (1) as

y = Gx̃ → 0 = [−y|G][1|x̃]T = Hx (2)
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where we have defined H = [−y|G] and x has K+1
nonzero elements, including a 1st element of one.
The N-point discrete Fourier transform (DFT) is

X̂ = Dx, [D]nk = e−j2π(n−1)(k−1)/N . (3)

Let Ĥ be the matrix of the complex conjugates of the
N-point DFTs of each row of H :

Ĥ = HDH , [Ĥ ]ik =
N∑

n=1

[H ]inej2π(n−1)(k−1)/N . (4)

Then Parseval’s theorem leads to

0 = NHx = H(DHD)x = (HDH)(Dx) = ĤX̂. (5)

B. Indicator Function

Let {ni, 1 ≤ i ≤ K + 1} be the indices of the
nonzero elements of x, so that only xni �= 0. Let

sn =
K+1∏
i=1

(ej2πn/N − ej2πni/N ). (6)

• sni = 0 and sn �= 0 for n �= ni;
• The DFT Ŝ=Ds has length K+2;
• These K+2 numbers indicate nonzero xn.

Now let [Ŝ] and [X̂] be the circulant matrices having
first rows Ŝ and X̂ and eigenvalues sn and xn. Since
[Ŝ] and [X̂] have the same matrix of eigenvectors D,
and snxn=0, we have

[Ŝ][X̂] = [0]→ [Ŝ]X̂ = 0 (7)

Or, the DFT of snxn=0 is Ŝ c©X̂=0, where c© denotes
circular convolution. This can be written in matrix
form as (7). Also note that

∑
Ŝk = 0 since s1=0 (the

1st element of xn is one), so Ŝk has K+1 unknowns
(K and an overall scale factor).

C. Reduced-Rank Matrix Equation

Combining (5) and (7) into a single equation gives
[

Ĥ
[Ŝ]

]
X̂ =

[
0
0

]
(8)

This is M+N equations in N+K+1 unknowns, which
are overdetermined if K≤M-1 since an overall scale
factor cancels. Looking only at the matrix, the condi-
tion that it drops rank gives M+1 equations in K+1
unknowns. This is overdetermined if K<M, and the
number of unknowns is K+1<<N+K+1.
These equations can be solved using any of these:

• Structured total least squares, in which the K+1
unknowns are perturbed in the direction that reduces
the minimum singular value toward zero;
• Multiplying out the minors to give an explicit sys-
tem of simultaneous polynomial equations;
• An iterative algorithm in which the steps are:

1. Compute the SVD and determine the minimum
Frobenius norm perturbation that drops its rank;
2. Insert altered Ŝk in the original matrix;
3. Repeat. Each operation is norm-reducing; the
global convergence theorem guarantees convergence.

Our numerical experiments indicate that this con-
verges to the correct solution if the initial Ŝk are close
to the actual Ŝk. The huge SVD computation makes
another algorithm desirable. This is discussed next.

D. Simultaneous Quadratic Equations

Multiplying each of (5) by Ŝk and augmenting this
to (7) gives the simultaneous quadratic equations




Ĥ 0 · · · 0
0 Ĥ · · · 0
...

...
. . .

...
0 0 · · · Ĥ

C0 C1 · · · CK







ŜK+2X̂0

...
ŜK+2X̂N

...
Ŝ0X̂N



=


 0
...
0


 (9)

where the N×N circulant shift matrix C has the form

C =




0 1 0 · · · 0
0 0 1 · · · 0
. . . . . . . . . . . . . . .
1 0 0 · · · 0


 , (10)

a set of simultaneous quadratic equations in ŜiX̂j .
We propose the following algorithm for solving (9):

1. Start with initial X̂ from the least-squares solution
to (1). Compute Ŝ from the smallest values of x;
2. Form the N(K+2)-vector ŜiX̂j;
3. Project ŜiX̂j onto the nullspace of (9);
4. Arrange N(K+2)-vector to an N×(K+2) matrix;
5. Compute the minimum Frobenius norm perturba-
tion of this matrix that drops its rank to one;
6. Use the result to define new X̂ and Ŝ;
7. Repeat. Each operation is norm-reducing; the
global convergence theorem guarantees convergence.

Our numerical experiments indicate that this con-
verges to the correct solution if the initial X̂k are
close to the actual X̂k. The difference is that the
rank-one approximation can be computed quickly us-
ing the power method; no SVD is required.
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III. Numerical Examples

A. Tiny Example

This merely illustrates the forms of the equations.
The goal is to solve the underdetermined system


 5
16
38


 =


 1 4 1 5 9
2 6 5 3 5
8 9 7 9 3


 x̃ (11)

with the side information that only two elements, lo-
cations unknown, of x̃ are nonzero.
The problem is reformulated as


 0
0
0


 =


 −5 1 4 1 5 9
−16 2 6 5 3 5
−38 8 9 7 9 3







x1

x2

x3

x4

x5

x6




(12)

with x1=1. Combining (5) and (7) gives


15 9.54e−j2.19 14.8e−j2.72 −7 14.8ej2.72 9.54ej2.19

5 −22 19.7e−j2.87 −19 19.7ej2.87 −22
−2 48.7ej3.05 45.7ej3.05 −38 45.7e−j3.05 48.7e−j3.05

Ŝ4 Ŝ3 Ŝ2 Ŝ1 0 0
0 Ŝ4 Ŝ3 Ŝ2 Ŝ1 0
0 0 Ŝ4 Ŝ3 Ŝ2 Ŝ1

Ŝ1 0 0 Ŝ4 Ŝ3 Ŝ2
Ŝ2 Ŝ1 0 0 Ŝ4 Ŝ3
Ŝ3 Ŝ2 Ŝ1 0 0 Ŝ4




This 9×6 matrix must have rank=5. Hence four mi-
nors are zero, and these are four equations in the four
unknowns Ŝ. However, since the sum of the elements
of Ŝ are zero, there are really only three unknowns.
Solution of this overdetermined system of equations

Ŝ = [3 + j5.2,−6,−3− j5.2, 6, 0, 0] (13)

and an inverse DFT of this yields

s = [0, 0, 1.73ej0.52, 0, 3.46ej0.52, 3ej2.1] (14)

which identifies x1 = 1, x2, x4 as nonzero xn. The
values of these nonzero xn are easily found to be

x = [1, 3, 0, 2, 0, 0]′ (15)

Matlab code for this example:
clear;X=[3 0 2 0 0]’; %2-Sparse solution
H=[1 4 1 5 9;2 6 5 3 5;8 9 7 9 3]; %from pi
Y=H*X; FH=(fft([-Y H]’))’; FX=fft([1;X]);
S= (exp(j*2*pi*[0:5]/6)-exp(j*2*pi*0/6));
S=S.*(exp(j*2*pi*[0:5]/6)-exp(j*2*pi*1/6));
S=S.*(exp(j*2*pi*[0:5]/6)-exp(j*2*pi*3/6));
FS=fft(S); %Indicator function S.*[1;X]’=0
C=[FS(4) 0 0 FS(1:3)];R=[FS(4:-1:1) 0 0];
T=toeplitz(C,R);[FH;T]*FX %=0 to roundoff
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