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Abstract—The problem of computing sparse (mostly
zero) or sparsifiable (by linear transformation) solu-
tions to greatly underdetermined linear systems of
equations has applications in compressed sensing and
reduced-exposure imaging. We show that coordinate
descent, in which a single variable is varied while all
others are held constant, is applicable to a wide vari-
ety of such problems. The method is useful for very
large problems having dense system matrices.
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I. INTRODUCTION

A. Problem Statement

The goal is to minimize the cost functional
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• A is an M×N system matrix with M<<N;
• B is an N×N invertible sparsifying matrix;
• C is an N×N matrix, but need not be invertible.
• y is an M-vector of known observations (data);
• x is an N-vector of unknown variables to find;
• Bx is desired to be sparse (mostly zero-valued);
• λi and γi are penalty term weights.

B. Discussion of the Cost Functional

The 
1-norm penalty term ||Bx||1 penalizes small
deviations of the elements of Bx from zero. A con-
siderable amount of research since 2000 has proved
what the geophysical community has observed since
the 1960s: The 
1 norm produces sparse solutions.
In fact, the 
1 norm produces the maximally sparse
solution if the number K of nonzero elements has
K log K <M and A is a matrix of random elements.

The 
2-norm penalty term ||Cx||2 does not penalize
small deviations, since its slope is zero at zero. But
it does penalize large deviations more heavily than
the 
1 norm, and thus stabilizes the solution in the
presence of noise. Use of an 
2 norm penalty term
for this purpose is called Tikhonov regularization.

Thus the cost functional finds a solution to the un-
derdetermined linear system y = Ax such that:

• Bx is sparse (mostly zero);
• Cx does not become large;
• Zero-mean white Gaussian noise in the data y.

The cost functional admits the stochastic interpre-
tation of MAP estimation by minimizing the log-
likelihood function when the data y includes white
Gaussian noise and the unknown x is modelled by
a mixture of independent zero-mean Gaussian and
Laplacian (two-sided exponential) random variables.

C. The Sparsifying Linear Transformation B

The choice of B is important, since this specifies
the variables to be sparsified. One choice is an or-
thogonal or biorthogonal wavelet transform. Another
useful choice is the successive difference operator

B =




1 −1 0 · · · 0
0 1 −1 · · · 0
. . . . . . . . . . . . . . .
0 0 0 · · · 1


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


1 1 1 · · · 1
0 1 1 · · · 1
. . . . . . . . . . . . . . .
0 0 0 · · · 1


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useful for piecewise-constant signals or images.
The difference operator can also be used for C to

impose smoothness without flatness. For images, the
Kronecker product B

⊗
B is applied to the image by

rows or columns. The weights λi and γi are usually
chosen to be constant over i, but different pixels can
be penalized differently if a priori information about
different regions of the signal or image is available.

D. Reformulation as LASSO functional

Defining z = Bx, the cost functional (1) can be
rewritten as the familiar LASSO cost functional
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• The system is now overdetermined;
• If C=0 it is still underdetermined;
• B=0 gives least-squares regularization;
• Strangely, the variable change z = Bx seems to be
unfamiliar in much of the statistics literature.

II. Coordinate Descent Algorithms

A. Overview

Coordinate descent, sometimes called “one-at-a-
time” algorithms, minimize a cost functional by mini-
mizing it over a single variable while holding all other
variables constant. There are two approaches:

• Cyclic algorithms cycle through all of the variables;
• Greedy algorithms choose the variable that reduces
the cost by the largest amount in each iteration.

Coordinate descent has these advantages over meth-
ods that deal with the entire problem each iteration:

• The minimization problem for a single variable is
much simpler to compute than for all variables;
• Each problem has size M instead of MN;
• Guaranteed global convergence to minimum F .

Cyclic coordinate descent is guaranteed to converge
to the global minimum of the cost functional f(x)
from any initial point if the cost functional f(x) is:

• Convex: f(ax+(1–a)y)<af(x)+(1–a)f(y); and
• Continuously differentiable: continuous ∇f(x); or
• LASSO (which is convex but not differentiable).

Roughly, this is because ∇f(x) must have a nonzero
component in some direction unless x is the global
minimum, and so coordinate descent will reduce f(x).

B. Application to LASSO

Define the partial residual rip in LASSO (4) as

rip = yi −
N∑

j=1
j �=p

Aijxj p denotes j skipped (6)

rip is related to the error ei in LASSO (4) by

ei = yi −
N∑

j=1

Aijxj = rip − Aipxp (7)

Setting the partial derivative ∂
∂xp

(LASSO)=0 gives
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Solving this equation for xp and defining Tp as
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and the 
2-norm of the pth column of matrix A as

M+N∑
i=1

A2
ip = ||Ap||2 > 0 unless Aip = 0 for all i (10)

gives the thresholded inner product computation

x̂p =




(Tp − λp/2)/||Ap||2 if Tp > +λp/2;
(Tp + λp/2)/||Ap||2 if Tp < −λp/2;
0 if |Tp| < λp/2.

(11)

The smaller λp is, the smaller the interval in which
x̂p is thresholded to zero. Also note the following:
• To minimize fewer than N linear combinations of x
in (1), choose λi=0 for the undesired terms of ||Bx||1
(note that B must be N×N to be invertible);
• λi=0 computes the weighted least squares solution.
This is called “relaxation” and dates to the 1940s;
• If x̂p=0, rip isn’t updated, saving computation;
• Ã in (5) should be a random matrix for 
1-norm
minimization to sparsify the solution.

III. Relation to Thresholded Landweber

If we make the following two alterations:
• Pre-normalize the matrix A so that ||Ai||=1;
• Update the residual ri only after a complete pass;
then the update (9) can be written as

Tp = xp +
M+N∑
i=1

Aip
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since ||Ap||=1. Collecting these for all p gives

�T = �x + AT (�y − A�x) (13)

followed by thresholding each element of �T .
We recognize this as a thresholded Landweber it-

eration (also called the Van Cittert iteration). This
means that thresholded Landweber iteration is equiv-
alent to coordinate descent without updating, with the
matrix normalized so that each column has unity
norm. Unless the matrix A has Toeplitz structure,
enabling fast computation of A�x and AT�r, there is
therefore no point in using thresholded Landweber.
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A. Review of Landweber Iteration

The Landweber iteration is a Neumann series:

(I − B)−1 = I + B + B2 + . . . ; B = I − AT A (14)

x=(AT A)−1AT y can be computed recursively as

xNEW = Bx + AT y = (I − AT A)x + AT y (15)

which can be rewritten as the Landweber iteration.
Hence the Landweber iteration converges only if

||B|| = ||I − AT A|| < 1 ↔ σA < 2 (16)

where σA are the singular values of A. Note that
normalization of the columns of A does not guaran-
tee this, so thresholded Landweber, and coordinate
descent without updating, may both be unstable.

IV. Small Example

We apply the algorithm to reconstruct a 10×10
block “E“ from a 49×100 linear transformation of it.
We use for B the Kronecker product of the difference
operator defined in (2) with itself. This sparsifies the
block letter to its 12 nonzero corners. Since B is
invertible, the block letter can be quickly computed
from its sparsified version, since B is invertible.

Reconstruction using 49 observations is shown in
Figure #1, and is visually excellent. The unwrapped
sparsified letter and its reconstruction are both plot-
ted in Figure #2 and match closely, despite the close
proximity of several nonzero values of opposite sign.

Reconstruction is using 47 (two fewer) observations
is shown in Figure #3. Note that just two fewer ob-
servations significantly degrades the reconstruction.
This is a property of the 
1-norm minimization itself.

The Matlab program is given below.

clear;rand(’seed’,0);A=rand(49,100);L=0.1;
X(10,10)=0; %49 works well; 47 doesn’t
X(2:3,2:9)=ones(2,8);X(8:9,2:9)=ones(2,8);
X(5:6,2:9)=ones(2,8);X(2:9,2:3)=ones(8,2);
B=toeplitz([1 zeros(1,9)],[1 -1 zeros(1,8)]);
IB=toeplitz([1 zeros(1,9)],ones(1,10));
A=A*kron(B,B);Y=A*X(:);W=kron(B,B)*X(:);
%GOAL:Recover block letter E from data Y
%W is sparsified block letter for reference
%Need system matrix A*kron(B,B) so A random
A=A*kron(IB,IB);AP(1:100)=sum(A.̃2);R=Y;
Z=zeros(100,1);for I=1:1000;for J=1:100;
R=R+A(:,J)*Z(J);T=R’*A(:,J);
if(T>+L/2);Z(J)=(T-L/2)/AP(J);end
if(T<-L/2);Z(J)=(T+L/2)/AP(J);end
if(abs(T)<L/2);Z(J)=0;end
R=R-A(:,J)*Z(J);end;end;
XHAT=IB*reshape(Z,10,10)*IB;
figure,plot(1:100,W,1:100,Z)
figure,imagesc(XHAT),colormap(gray)
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Fig. 1. Reconstruction using 49 observations
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Fig. 2. Unwrapped original and reconstruction
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Fig. 3. Reconstruction using 47 observations


