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Abstract— The problem of computing sparse (mostly
zero) or sparsifiable (by linear transformation) solu-
tions to greatly underdetermined linear systems of
equations has applications in compressed sensing and
reduced-exposure imaging. We show that coordinate
descent, in which a single variable is varied while all
others are held constant, is applicable to a wide vari-
ety of such problems. The method is useful for very
large problems having dense system matrices.
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I. INTRODUCTION
A. Problem Statement
The goal is to minimize the cost functional

2
N
F= Z yi— Y Agz; | +
i=1 j=1

N 2
ZA ZBW% +Z% chxj (1)

e Ais an MxN system matrix with M<<N;

e B is an NxN invertible sparsifying matrix;

o C is an NxN matrix, but need not be invertible.
e y is an M-vector of known observations (data);

e x is an N-vector of unknown variables to find;

o Bz is desired to be sparse (mostly zero-valued);
e )\; and ~; are penalty term weights.

B. Discussion of the Cost Functional

The ¢1-norm penalty term ||Bzx||; penalizes small
deviations of the elements of Bx from zero. A con-
siderable amount of research since 2000 has proved
what the geophysical community has observed since
the 1960s: The ¢; norm produces sparse solutions.
In fact, the ¢; norm produces the maximally sparse
solution if the number K of nonzero elements has
Klog K <M and A is a matrix of random elements.

The ¢2-norm penalty term ||Cx||2 does not penalize
small deviations, since its slope is zero at zero. But
it does penalize large deviations more heavily than
the 1 norm, and thus stabilizes the solution in the
presence of noise. Use of an £ norm penalty term
for this purpose is called Tikhonov regularization.

Thus the cost functional finds a solution to the un-
derdetermined linear system y = Ax such that:

o Bux is sparse (mostly zero);
e Cz does not become large;
e Zero-mean white Gaussian noise in the data y.

The cost functional admits the stochastic interpre-
tation of MAP estimation by minimizing the log-
likelihood function when the data y includes white
Gaussian noise and the unknown x is modelled by
a mixture of independent zero-mean Gaussian and
Laplacian (two-sided exponential) random variables.

C. The Sparsifying Linear Transformation B

The choice of B is important, since this specifies
the variables to be sparsified. One choice is an or-
thogonal or biorthogonal wavelet transform. Another
useful choice is the successive difference operator
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useful for piecewise-constant signals or images.

The difference operator can also be used for C to
impose smoothness without flatness. For images, the
Kronecker product B ) B is applied to the image by
rows or columns. The weights A; and ~; are usually
chosen to be constant over ¢, but different pixels can
be penalized differently if a priori information about
different regions of the signal or image is available.

D. Reformulation as LASSO functional

Defining z = Bz, the cost functional (1) can be
rewritten as the familiar LASSO cost functional
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e The system is now overdetermined;

o If C=0 it is still underdetermined;

o B=0 gives least-squares regularization;

o Strangely, the variable change z = Bz seems to be
unfamiliar in much of the statistics literature.

II. COORDINATE DESCENT ALGORITHMS
A. Overview

Coordinate descent, sometimes called “one-at-a-
time” algorithms, minimize a cost functional by mini-
mizing it over a single variable while holding all other
variables constant. There are two approaches:

o Cyclic algorithms cycle through all of the variables;
o Greedy algorithms choose the variable that reduces
the cost by the largest amount in each iteration.

Coordinate descent has these advantages over meth-
ods that deal with the entire problem each iteration:

e The minimization problem for a single variable is
much simpler to compute than for all variables;

o Each problem has size M instead of MN;

o Guaranteed global convergence to minimum F'.

Cyclic coordinate descent is guaranteed to converge
to the global minimum of the cost functional f(z)
from any initial point if the cost functional f(x) is:

o Convex: f(ax+(1-a)y)<af(x)+(1-a)f(y); and
 Continuously differentiable: continuous V{(x); or
o LASSO (which is convex but not differentiable).

Roughly, this is because V{(x) must have a nonzero
component in some direction unless = is the global
minimum, and so coordinate descent will reduce f(x).

B. Application to LASSO
Define the partial residual r;, in LASSO (4) as
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rip is related to the error e; in LASSO (4) by
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Setting the partial derivative %(LASSO)zo gives
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Solving this equation for z, and defining 7T}, as
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and the fo-norm of the p** column of matrix A as
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gives the thresholded inner product computation

(T, — >‘p/2)/||Ap||2 T, > +Ap/2;
(T, + >‘p/2)/||Ap||2 T, <—=Ap/2;
0 it |T,| < Ap/2.
The smaller ), is, the smaller the interval in which
Zp is thresholded to zero. Also note the following:

e To minimize fewer than N linear combinations of x
in (1), choose A;=0 for the undesired terms of || Bz||
(note that B must be NxN to be invertible);

o ;=0 computes the weighted least squares solution.
This is called “relaxation” and dates to the 1940s;

o If £,=0, r;;, isn’t updated, saving computation;

CL'p:
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« A in (5) should be a random matrix for ¢;-norm
minimization to sparsify the solution.

III. RELATION TO THRESHOLDED LANDWEBER

If we make the following two alterations:
o Pre-normalize the matrix A so that ||4;||=1;
« Update the residual r; only after a complete pass;
then the update (9) can be written as
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since ||Ap||=1. Collecting these for all p gives

T =7+ AT (] — AZ) (13)
followed by thresholding each element of T.

We recognize this as a thresholded Landweber it-
eration (also called the Van Cittert iteration). This
means that thresholded Landweber iteration is equiv-
alent to coordinate descent without updating, with the
matrix normalized so that each column has unity
norm. Unless the matrix A has Toeplitz structure,
enabling fast computation of AZ and AT, there is
therefore no point in using thresholded Landweber.



A. Review of Landweber Iteration

The Landweber iteration is a Neumann series:
(I-B)y'=1+B+B*+...;B=1-A"A (14)

x=(AT A)~1 ATy can be computed recursively as
enpw = Bx + ATy = (I — ATA)x + ATy (15)

which can be rewritten as the Landweber iteration.
Hence the Landweber iteration converges only if

IIB]| = ||I — ATA|| <1 =04 <2 (16)

where o4 are the singular values of A. Note that
normalization of the columns of A does not guaran-
tee this, so thresholded Landweber, and coordinate
descent without updating, may both be unstable.

IV. SMALL EXAMPLE

We apply the algorithm to reconstruct a 10x10
block “E“ from a 49x100 linear transformation of it.
We use for B the Kronecker product of the difference
operator defined in (2) with itself. This sparsifies the
block letter to its 12 nonzero corners. Since B is
invertible, the block letter can be quickly computed
from its sparsified version, since B is invertible.

Reconstruction using 49 observations is shown in
Figure #1, and is visually excellent. The unwrapped
sparsified letter and its reconstruction are both plot-
ted in Figure #2 and match closely, despite the close
proximity of several nonzero values of opposite sign.

Reconstruction is using 47 (two fewer) observations
is shown in Figure #3. Note that just two fewer ob-
servations significantly degrades the reconstruction.
This is a property of the £1-norm minimization itself.

The Matlab program is given below.

clear;rand(’seed’,0) ;A=rand(49,100);L=0.1;
X(10,10)=0; %49 works well; 47 doesn’t
X(2:3,2:9)=ones(2,8);X(8:9,2:9)=ones(2,8);
X(5:6,2:9)=ones(2,8);X(2:9,2:3)=ones(8,2);
B=toeplitz([1 zeros(1,9)],[1 -1 zeros(1,8)]);
IB=toeplitz([1 zeros(1,9)],ones(1,10));
A=Axkron(B,B) ; Y=A*X(:) ;W=kron(B,B) *X(:);
%GOAL:Recover block letter E from data Y

%W is sparsified block letter for reference
%Need system matrix A*kron(B,B) so A random
A=Axkron(IB,IB);AP(1:100)=sum(A.2) ;R=Y;
Z=zeros(100,1) ;for I=1:1000;for J=1:100;
R=R+A(:,J)*Z(J);T=R’>*A(:,J);

if (T>+L/2);Z(J)=(T-L/2)/AP(J) ;end

if (T<-L/2);Z(J)=(T+L/2)/AP(J) ;end

if (abs(T)<L/2);Z(J)=0;end
R=R-A(:,J)*Z(J);end;end;
XHAT=IB*reshape(Z,10,10)*IB;
figure,plot(1:100,W,1:100,Z)

figure, imagesc (XHAT) ,colormap(gray)

Fig. 1. Reconstruction using 49 observations
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Fig. 2. Unwrapped original and reconstruction

Fig. 3. Reconstruction using 47 observations



