
Working with Classes

Atul Prakash

Class

• Corresponds to real-world entities, such as
student, course, dog, animal, shape, etc.,
which are represented inside a program

• E.g., a class of students

• Objects or class instances: individual
instances that belong to the class

Filing Cabinet Analogy
• Think of a class as a drawer in a

filing cabinet

• Think of objects as folders
within the drawer. Each folder
has information about the
object

• Folders can be added/removed
over time

Example
public class Bicycle {
	 public int gear;
	 public int maxspeed;
}

/* Create two bicycles */

.... this code should be in main or another function ...

Bicycle b1 = new Bicycle();
Bicycle b2 = new Bicycle();
b1.gear = 10;
b1.maxspeed = 40;
b2.gear = 1;
b2.maxspeed = 20;

The above code defines a drawer for containing
information about bicycles. We created two bicycles

with different gears and maximum speeds, respectively.

Static variables

• In a filing cabinet, there is often information
that is specific to a drawer, not a folder. In
our example:

• Total number of bicycles created

• Maximum possible speed of a bicycle

• Static variables are drawer-specific, rather
than folder-specific.

Static variables - sticky
notes on a drawer

Representation in Java
public class Bicycle {
	 public int gear;
	 public int maxspeed;
	 public static int numberOfBicycles = 0;

}

Bicycle b1 = new Bicycle();
Bicycle.numberOfBicycles++;
Bicycle b2 = new Bicycle();
Bicycle.numberOfBicycles++;
b1.gear = 10;
b1.maxspeed = 40;
b2.gear = 1;
b2.maxspeed = 20;

Which variables are object-specific, which ones are
global to the whole class?

Constructors

• We want an invariant that the number of
bicycles created is always equal to the
numberOfBicycles.

• But, right now, there is no guarantee of that
public class Bicycle {
	 public int gear;
	 public int maxspeed;
	 public static int numberOfBicycles = 0;
}
// code that uses the class...
Bicycle b1 = new Bicycle();
Bicycle b2 = new Bicycle();
Bicycle.numberOfBicycles++;

Two bikes were created,
but the user forgot to bump up

the count

Constructors provide
safety

• Constructors are
public functions
within the class
with the same
name as the class
name.

• Parameters can be
passed in to
initialize the object

public class Bicycle {
	 public int gear;
	 public int maxspeed;
	 private static int numberOfBicycles = 0;
	
	 public Bicycle(int g, int s) {
	 	 this.gear = g;
	 	 this.maxspeed = s;

 Bicycle.numberOfBicycles++;
	 }
}
// Use
Bicycle b1 = new Bicycle(10,40);
Bicycle b2 = new Bicycle(1, 20);
// Correct count will be printed
System.out.println(Bicycle.numberOfBicycles);

	

Details

public class Bicycle {
	 public int gear;
	 public int maxspeed;
	 public static int numberOfBicycles = 0;
	
	 public Bicycle(int g, int s) {
	 	 this.gear = g;
	 	 this.maxspeed = s;

 Bicycle.numberOfBicycles++;
	 }
}

g and s are parameters

this.gear means this object’s
gear value, etc.

this is a keyword in the
language

Variables in classes

public class Bicycle {
	 public int gear;
	 public int maxspeed;
	 public static int numberOfBicycles = 0;
	
	 public Bicycle(int g, int s) {
	 	 gear = g;
	 	 maxspeed = s;

 numberOfBicycles++;
	 }
}

OK to omit “this” in most places. The system figures out
that gear refers to this bicycle’s gear, etc.

Innermost rule

• Here, this.gear is
necessary. There
are two variables
called gear in the
constructor.
Without “this”,
the innermost
definition of gear
wins.

public class Bicycle {
	 public int gear;
	 public int maxspeed;
	 public static int numberOfBicycles = 0;
	
	 public Bicycle(int gear, int s) {
	 	 this.gear = gear;
	 	 maxspeed = s;

 numberOfBicycles++;
	 }
}

this.gear -> bicycle’s gear variable
gear -> local parameter gear

maxspeed -> bicycle’s maxspeed, since no local
variable with the same name

Class invariants

• We may want to guarantee certain
properties for all objects in a class. For
example, suppose we want all bikes to have
the following constraints:

• 0 <= gears

• 0 <= maxspeed <= 150

Problem
• A user of the class can violate the

constraints easily by accessing the class
variables directly

public class Bicycle {
	 public int gear;
	 public int maxspeed;
...
}

/* Create two bicycles */

.... this code should be in main or another function ...

Bicycle b1 = new Bicycle(10, 40);
b1.gear = -100; // bad value, but legal in Java
b1.maxspeed = 5000;

Private variables and
public methods

• Solution: make variables private in the class

• Provide safe public methods for users to
read/write the variables

Using private variable and public methodspublic class Bicycle {
	 private int gear;
	 private int maxspeed;
	 public static int numberOfBicycles = 0;
	
	 public Bicycle(int g, int s) {
 assert(g >= 0);

 assert(s >= 0 && s <= 150);
	 	 gear = g;
	 	 maxspeed = s;

 numberOfBicycles++;
// invariant should be true at this point

	 }

	 public boolean setSpeed(int s) {
	 	 if (s < 0 || s > 150) {
	 	 	 return false;
	 	 }
	 	 maxspeed = s;
	 	 return true;

 }

 public int getSpeed() {

	 	 return maxspeed;
	 }

	

 public boolean setGear(int g) {
	 	 if (g < 0) return false;
	 	 gear = g;
	 	 return true;
	 }

	 public int getGear() {
	 	 return gear;
	 }
	
} // end class

gear and maxspeed made private. Added setters and getters. (Eclipse can generate setters and getters.)

Parsing a Method

• setSpeed takes a parameter s of type integer as
an argument

• It returns a boolean value as a result

	 public boolean setSpeed(int s) {
	 	 if (s < 0 || s > 150) {
	 	 	 return false;
	 	 }
	 	 maxspeed = s;
	 	 return true;

 }

Getters and Setters

• Methods to read private variables are called
getters. Usually, named getVariableName().

• Methods to set private variables safely are
called setters. Usually, named
setVariableName().

Public versus Private

• private: visible only within the class

• private String myname;

• public: visible outside the class and package

• public String getName()

With gear and
maxspeed as private:

• Following is possible:

• Bicycle b = new Bicycle(10, 60);

• b.gear = -2; // should be illegal

• b.maxspeed = -10; // should be illegal

Methods
• Besides getters and setters, additional

methods can exist to access or modify the
state of an object. In the filing drawer
analogy, think of a method as a standard
recipe attached to each folder that explains
how to access or modify the folder data

• Public methods: intended for outsider use

• Private methods: intended as helper
functions to assist the public methods. Not
accessible directly from outside the class

Testing Invariants

• How do we know that we implemented
setters correctly, respecting the invariants?

• Test the invariants at the end of the
constructor and at start and exit from each
public method

Adding invariants for safer code
	 public boolean setSpeed(int s) {

 testInvariants();
	 	 if (s < 0 || s > 150) {

testInvariants();
	 	 	 return false;
	 	 }
	 	 maxspeed = s;
 testInvariants();
	 	 return true;

 }

	 private void testInvariants() {
	 	 assert (maxspeed >= 0);

 assert (maxspeed <= 150);
 assert (gear >= 0);

 }
If you forget a check in setSpeed, hopefully, the invariant

checks will catch the error

Constant variables

• Variables can be declared as "final" to tell
Java that they will not change in value.

• public static final double PI =
3.14159265358979323846;

Example

• double x = Math.PI;

• Declaration of PI within the Math class:

• public static final double PI =
3.14159265358979323846;

Class methods

• You may need methods that are associated
with the drawer, rather than a particular
folder within the drawer

• For example, reading the number of
bicycles, which is a static variable

• Declare a method as “static” to indicate
that it is not object-specific, but a class
method

public class Bicycle {
	 private int gear;
	 private int maxspeed;
	 private static int numberOfBicycles;

	 public static int getNumberOfBicycles() {
	 	 // int x = this.gear; // illegal

return numberOfBicycles;
	 }

	 public Bicycle(int g, int s) {
	 	 gear = g;
	 	 maxspeed = s;
	 	 numberOfBicycles++;
	 }
 … rest same as before …
}
// usage:
int count = Bicycle.getNumberOfBycles();

Note the word static in getNumberOfBicycles()

Functions

• In Python and C++, you are used to simply
using functions that do not belong to a
particular class

• Java does not permit functions to be
outside a class

• But, functions can emulated in Java by using
static methods and placing them in a class
like “Global” or in any class of your choice
and making them public

Example

sqrt and sin functions in Math class: They are class
methods, not object methods. They can be used
without creating Math objects.

Code for the Math
class

http://www.docjar.com/html/api/java/lang/Math.java.html

Or google search for "Math java source"

main program in Java
• To run a Java program:

java <Classname>

• Java executes
<Classname>.main()
method.

• Must be declared
static since it is class-
specific, not object-
specific

• When the method
completes, the program
ends.

• It is OK for multiple
classes to have main()
methods. E.g.,
SpaceshipGame and
SpaceshipGameTest.
Only one is executed.

javadoc

• Java provides an automatic HTML
documentation generator from code.

• It generates HTML from the code +
comments

• For it to work, the comments must follow a
certain style

• Javadoc enclosed within /** and */

Example
 124 /**
 125 * Returns the trigonometric cosine of an angle. Special cases:
 126 * If the argument is NaN or an infinity, then the
 127 * result is NaN.
 128 *
 129 * <p>The computed result must be within 1 ulp of the exact result.
 130 * Results must be semi-monotonic.
 131 *
 132 * @param a an angle, in radians.
 133 * @return the cosine of the argument.
 134 */
 135 public static double cos(double a) {
 136 return StrictMath.cos(a); // default impl. delegates to StrictMath
 137 }
 138

cos

public static double cos(double a)
Returns the trigonometric cosine of an angle. Special cases:
 • If the argument is NaN or an infinity, then the result is NaN.
The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

Parameters:
a - an angle, in radians.
Returns:
the cosine of the argument.

Source
code

HTML
docs

Special tags in Javadoc

• @param <tab> parameter <tab> description

• @return <tab> description of what is returned

• @author <tab> name of the author

The above show up properly formatted in HTML

Eclipse and Javadoc

• Eclipse can automatically insert Javadoc-
style comment stub for you.

• Select a method name, go to Source ->
Generate Element Comment

• To generate javadoc files, do Project ->
generate Javadoc...

• Browse to the project’s doc directory to
see the generated HTML files

Command-line Javadoc

• Use the javadoc command

• E.g., % javadoc <Java files>

• More details on Javadoc. Read:
 http://java.sun.com/j2se/1.5.0/docs/
tooldocs/windows/javadoc.html

Object References
• Dog d;

• d is a reference to a
dog. It is not the
actual dog.

• d = null;

• null is a special
object to help
initialize references.
Like 0.

• d = new Dog("Fido",
"woof");

• d now refers to a dog
object

d

Dog class code

Dog d; // Does not create a dog. Just a reference to dog.
d = new Dog("Fido", "woof");
d.bark(); d

Constructor
method

method on a dog

Creating Objects

• Usually, done using the new operator.

• Point p = new Point(10, 15);

• Dog d = new Dog("fido", "woof");

d refers to an
object of type

Dog

create a new dog object
whose name is fido and who woofs

Assigning Object
References

• Dog d1, d2;

• Creates two object
references

• d1 = new Dog("Fido",
"woof");

• d2 = d1

• Only copies the
reference, not the
object

d1

d1
d2

Aliasing of references

• d1.setBark("huff");

• What are d1.getBark() and d2.getBark()?

d1
d2

name: "Fido"
bark: "huff"

d1
d2

name: "Fido"
bark: "woof"

Java Variables

• All variables in Java are really pointers or
references to objects.

• Exceptions: variables of primitive types,
such as int, boolean, float, double, long,
short, etc.

• Array variables are always references

Example: Primitive
Types vs. object types

	 public static void main(String[] args) {
	 	 int i, j; // Not references. Basic types. i = 0, j = 0
	 	 i = 2; // i = 2, j = 0
	 	 j = i; // i = 2, j = 2.
	 	 i = 3; // i = 3, j = 2
	 	 System.out.println(j); // will print 2, not 3.
	 	
	 	 Dog d1, d2; // References.
	 	 d1 = new Dog("Fido", "woof");
	 	 d2 = d1;
	 	 d1.setBark("huff");
	 	 d2.bark(); // will print "huff", not "woof"
	 	

	 }

Java convention: Types starting with small cap (e.g., int)
are primitive. Others should start with a capital letter

(e.g., String, Dog) and are object types.

d1
d2

name: "Fido"
bark: "huff"

Arrays of Objects
	 	 // Arrays of objects
	 	 Dog[] dogarray;// Create a reference to an array
	 	 dogarray = new Dog[3]; // Create 3 references to dogs

 // Create the dogs
	 	 dogarray[0] = new Dog("Fido", "woof");
	 	 dogarray[1] = new Dog("Daisy", "huff");
	 	 dogarray[2] = new Dog("Ginger", "woof");

