Divide and Conquer Strategy for Problem Solving - Recursive Functions

Atul Prakash

References:
I. Ch. 4, Downey.
2. Introduction to Recursion Online Notes Ch. 70 by B. Kjell : http://chortle.ccsu.edu/java5/ Notes/chap70/ch70_I.html
3.

Divide and Conquer

- Basic Idea of Divide and Conquer:
- If the problem is easy, solve it directly
- If the problem cannot be solved as is, decompose it into smaller parts.. Solve the smaller parts

Some Examples

- Finding the exit from within a hotel
- Finding your car in a parking lot
- Looking up a name in a phone book

Mental Exercise

- You are at the end of a very long hotel lobby with a long series of doors, with one door next to you. You are looking for the door that leads to the fire exit.
- What is your first step?

First Step

What do you do if the
 first step does not work?

FindExit Strategy

- Try the door next to you for the exit
- If it does not lead to an exit, advance to the next door. And repeat the FindExit strategy

Elements of the Solution

- Try a direct solution: check the nearby door for the exit
- If it does not work, use the same strategy on the smaller problem after advancing to the next door

Recursion in Words of Wisdom

- Philosopher Lao-tzu:
- The journey of a thousand miles begins with a single step

Breaking a Stone into Dust

- BreakStone:You want to ground a stone into dust (very small stones)
- What is your first step?

First Step

- Use a hammer and strike the stone

Next Step

- If a stone pieces that result is small enough, we are done with that part
- For pieces that are too large, repeat the BreakStone process

Common Elements

- If the problem is small enough to be solved directly, do it
- If not, find a smaller problem and use its solution to create the solution to the larger problem

Looking up a Phone Number

- You have a phone book with names in alphabetical order
- Given a name, what is your first step?

First Step

- Open the phone book in the middle (or on a random page)
- If name within the range of names on that page, find it , and we are done

Smaller Problem Step

- If name not in the page, you can exclude either the left part or the right part
- Search in the remaining part

After another step

Other Problems

- Recursively-defined functions
- Factorial: $n!$
- Fibonacci numbers
- Ackermann Function
- Tower of Hanoi
- Fractals
- Tree and data searches

Glue in Divide and

Conquer

- Often, the parts must be "glued"into a solution

Factorial Problem

- Example: Finding factorial of $n>=$ ।
- $n!=n(n-I)(n-2) \ldots l$
- Divide and Conquer Strategy:
- if $\mathrm{n}=\mathrm{I}: \mathrm{n}$! = I (direct solution), else: $\mathrm{n}!=\mathrm{n}$ * (n - I)!

factorial(n)

Solve simpler
\pm problem if $n>1$
factorial(n-I)

$$
\text { factorial }(1)=1
$$

Divide and Conquer

Recursion in Functions

- When a function makes use of itself, as in a divide-and-conquer strategy, it is called recursion
- Recursion requires:
- Base case or direct solution step. (e.g., factorial(I))
- Recursive step(s):
- A function calling itself on a smaller problem. E.g., n*factorial(n-I)
- Eventually, all recursive steps must reduce to the base case

Java Code

- Definition: n ! is defined as I if $\mathrm{n}=0$ (direct solution),

```
Otherwise, n! = n*(n-l)! (divide-and-conquer)
```

Direct solution

Divide and
Conquer for larger case

```
public static int factorial(int n) {
    if (n == 0) return 1;
    else return n * factorial(n-1);
        // post-condition: returns n!
    }
```


Understanding
 Recursive Programs

- Why does it work?

```
public static int factorial(int n) {
    if (n == 0) return 1;
    else return n * factorial(n-1);
    // post-condition: returns n!
}
```

Proof by induction:
(I) Solution works for $\mathrm{n}=0$
(2) If it works for n -I, it works for n
(3) I. and 2. imply, it works for $n=1$
(4) 2. and 3 . imply it works for $\mathrm{n}=2$ and in fact any larger n

Handling Errors

- What if n is $<\mathrm{I}$ in the factorial program?
- factorial(-I) will call factorial (-2), which will call factorial(-3), etc.
- Recursion will never reach the base case
- Document pre-conditions and post-conditions

```
Use assert or
error checks
    to indicate
something that
is assumed or
expected to
    be True
```

```
public static int factorial(int n) {
```

public static int factorial(int n) {
assert(n >= 0); // pre-condition
assert(n >= 0); // pre-condition
if (n == 0) return 1;
if (n == 0) return 1;
else return n * factorial(n-1);
else return n * factorial(n-1);
// post-condition: returns n!
// post-condition: returns n!
}

```
}
```


Tower of Hanoi

- Initial state: n disks in decreasing order of size on one peg
- Constraint: a disk can never be on top of a smaller disk
- Goal: move all the disks to the 2 nd peg.
- Move one disk at a time

Divide-and-Conquer Strategy

- If n is I , the solution is trivial. Just move the disk to the desired peg
- For $n>$ I, let's assume we know how to solve the problem for n -I disks.
- Can we use that to construct a solution for n disks?

Solution Strategy

- Base case: if n is I , the solution is trivial. Just move the disk
- Otherwise:
- Move (n-I) disks from peg A to peg C using Hanoi for n-I disks
- Move the left-over disk from page A to peg B
- Move (n-I) disks from peg C to peg B using Hanoi for (n-I) disks

Java Code

```
public static void move(Object pegA, Object pegB) {
    System.out.println( "move disk from " + pegA + " to " + pegB);
}
public static void hanoi(int n, Object pegA, Object pegB, Object pegC) {
    //precondition: n >= 1. disks are on pegA
    assert(n >= 1);
        if (n == 1) {
            move(pegA, pegB);
    } else {
            hanoi(n-1, pegA, pegC, pegB);
            move(pegA, pegB);
            hanoi(n-1, pegC, pegB, pegA);
    }
    // post-condition: top n disks moved from pegA to pegB
}
    hanoi(3, "peg 1", "peg 2", "peg 3");
Show a run in Eclipse
```


Tower of Hanoi Analysis

```
>>> recursion.hanoi(2, 'peg 1', 'peg 2', 'peg 3')
move disk from peg 1 to peg 3
move disk from peg 1 to peg 2
move disk from peg 3 to peg 2
>>
>>> recursion.hanoi(2, 'peg 1', 'peg 3', 'peg 2')
move disk from peg l to peg 2
move disk from peg 1 to peg 3
move disk from peg 2 to peg 3
\(\ggg\) recursion. hanoi (2, 'peg 3', 'peg 2', 'peg 1')
move disk from peg 3 to peg 1
move disk from peg 3 to peg 2
move disk from peg 1 to peg 2
```


Tower of Hanoi is pretty slow for larger values of n. Q : How many disk moves (approximately) for a given n ?

OPTIONAL

Performance

> Tower of Hanoi really slows down for large n

Factorial's time is roughly linear with n.
We say that the time for
factorial is $\mathrm{O}(\mathrm{n})$, called Big-
Oh(n), or linear in n

Big-Oh

- A way to measure how execution time or memory use will grow with input size
- Formally, $f(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ iff for sufficiently large values of $n, f(n)$ is within constant times of $g(n)$. That is,
- $f(n)<c . g(n)$ for all $n>N$ and some constant c .

Big-Oh examples

- $3 n+2$ is $O(n)$ because $3 n+1<4 n$ for large n
- $1000 \mathrm{n}+100000$ is also $\mathrm{O}(\mathrm{n})$
- $10 n^{2}+3$ is $O\left(n^{2}\right)$
- $2^{n}+n^{3}$ is $O\left(2^{n}\right)$

Basic Points

- Ignore the small stuff
- $\mathrm{n}+10$: ignore the 10
- $\mathrm{n}^{2}+\mathrm{n}$: ignore the n
- Simplify
- Replace 10 by I. Both are O(I)
- $2 n$ can be replaced by n. Both are $O(n)$

Factorial Time Analysis

- Factorial of 0 : constant time.
- $\mathrm{T}(0)=\mathrm{I} \quad$ (treat constants as I)
- Time required to compute factorial of n :

$$
\begin{aligned}
& \text { - } T(n)=T(n-I)+I \quad \text { (treat constants as } I \text {) } \\
& T(4)=T(3)+I \\
& \quad=T(2)+I+I \\
& =T(I)+I+I+I \\
& \quad=T(0)+I+I+I+I=5
\end{aligned}
$$

In general, $\mathrm{T}(\mathrm{n})$ is $\mathrm{n}+\mathrm{I}$ or $\mathrm{O}(\mathrm{n})$

Hanoi: Number of Moves

- Let $T(n)=$ number of disk moves for n disks
- $T(I)=I$
- $\mathrm{T}(2)=2 * \mathrm{~T}(\mathrm{I})+\mathrm{I}=3$
- $\mathrm{T}(3)=2 * \mathrm{~T}(2)+\mathrm{I}=7$
- $\mathrm{T}(4)=2 * \mathrm{~T}(3)+\mathrm{I}=\mathrm{I} 5$
- See a pattern?
- $T(n)=2^{n}-1$ or $O\left(2^{n}\right)$
- Hanoi for 64 disks would take a very, very long time!
- This is an example of an exponential-time program.

Advantage of Big-Oh Analysis

- Big-Oh gives you trends versus problem size
- Big-Oh analysis holds even if computers become 10 times faster

Common Growth

Rates

- O(I): constant time. For example, array lookup, given an index
- $O(n)$: linear time. For example, scan an array of length n for a value
- $O(\log n)$: Between constant and linear time.
- $O\left(2^{n}\right)$: Exponential time.Very bad

We will see lots of examples later

Fractals

- Fractals are recursive drawings. They occur a lot in nature and there is a field called fractal geometry. Can use recursion to draw them

But, how to do drawings in Java?

Drawing in Java

- Java has several graphics packages: awt, swing, etc.
- We will use ACM Graphics package for Java, as it is designed for educational use
- Download acm.jar and*.java from CTools in II-lecture-code folder
- Documentation:
- http://jtf.acm.org/tutorial/Introduction.html

Using acm.jar

Command line (use semi-colons on Windows): javac -cp .:/path/to/acm.jar *.java java -cp .:/path/to/acm.jar MainClass

- In Eclipse, go to Project -> Properties -> Java Build Path
- Add acm.jar to the build path

ACM Graphics Package

- Create shapes, e.g., GLabel, GLine, GTurtle, etc. in a GraphicsProgram
- Add them to the canvas using the add() routine
- getWidth() and getHeight() return the height of a canvas.
- Coordinate system:Top-left corner is $(0,0)$.

Mini-exercise

- Compile and run one of the Hello programs that use the ACM jar file. Submit a screen snapshot
- Generate the stack of squares and submit a screen snapshot

Turtle Programming: Drawing a Square

```
public static void drawSquare(GTurtle t, double len) {
    t.penDown();
    for (int i = 0; i < 4; i++) {
        t.forward(len);
        t.left(90);
    }
}
    public void run() {
    // Place turtle in the center of the canvas
    GTurtle turtle = new GTurtle(getWidth()/2.0, getHeight()/2.0);
    add(turtle);
    drawSquare(turtle, 100.0);
    }
```


Hello World Program

```
public class HelloGraphics extends GraphicsProgram {
    public void run() {
        GLabel label = new GLabel("hello, world");
        label.setFont("SansSerif-100");
        double x = (getWidth() - label.getWidth()) / 2;
        double y = (getHeight() + label.getAscent()) / 2;
        add(label, x, y);
    }
/* Standard Java entry point. Call MainClass.start(args)
    to get graphics program going */
    public static void main(String[] args) {
        new HelloGraphics().start(args);
    }
}
```


Stack of Squares using Recursion

```
public void drawStack(GTurtle t, double len, int squarecount) {
    // precondition: turtle at "origin"
    if (squarecount == 0) return;
    drawSquare(t, len); // draw big square, ending at the start location.
    t.left(90); t.forward(len); t.right(90); // go to the top-left
    drawStack(t, len/2.0, squarecount-1);
    t.right(90); t.forward(len); t.left(90); // return to origin
    // post-condition: draw the stack and return to origin
}
```

public void run() \{
GTurtle turtle = new GTurtle(getWidth()/2.0, getHeight()/2.0);
add(turtle);
drawStack(turtle, 100.0, 3);
\}

Another Way

- Use shape drawing functions rather than turtles. Basic primitive
- draw a shape of a given size at (x, y)
- Shapes include lines, squares, circles, rectangles, etc.
- Shapes can have attributes, such as line thickness, color, fill, etc.

Drawing a square

```
// File: SquareStackWithShapes.java
// draws a square at (x, y) of length len. Origin top-left corner.
public void drawSquare(double x, double y, double len) {
    GRect r = new GRect(x, y, len, len);
    add(r);
}
public void run() {
    drawSquare(getWidth()/2, getHeight()/2, 100.0);
}
```


Drawing a Stack

```
// draw a stack squarecount deep at (x, y), with squares becoming
// half the size as you go up the stack.
public void drawStack(double x, double y, double len, int squarecount) {
    if (squarecount == 0) return;
    drawSquare(x, y, len); // draw big square, ending at the start location.
    drawStack(x, y-len/2.0, len/2.0, squarecount-1);
}
```

Draw the big square. Note: origin top-left corner. Draw the remaining stack with origin I/2 length up.
public void drawTreeOfSquares(double x, double y, double len, int squarecount) \{ if (squarecount ==0) return;
drawSquare(x, y, len);
drawTreeOfSquares(x-len*0.25, y-len*0.5, len*0.5, squarecount-1); drawTreeOfSquares(x+len*0.75, y-len*0.5, len*0.5, squarecount-1);
\}

Hierarchical Data (trees)

Example: child-dad/mom relationship

Count nodes in a Tree

If tree empty, return 0
Else, return
one

+ count of left subtree
+ count of right subtree

Summary

- Divide and Conquer is a common problem solving strategy
- It often maps to recursive algorithms
- Big-Oh notation a way to estimate how time required to solve a problem will grow as the problem size increases

