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ABSTRACT 
As network security is a growing concern, system administrators 
lock down their networks by closing inbound ports and only 
allowing outbound communication over selected protocols such 
as HTTP. Hackers, in turn, are forced to find ways to 
communicate with compromised workstations by tunneling 
through web requests. While several tools attempt to analyze 
inbound traffic for denial-of-service and other attacks on web 
servers, Web Tap’s focus is on detecting attempts to send 
significant amounts of information out via HTTP tunnels to rogue 
Web servers from within an otherwise firewalled network. A 
related goal of Web Tap is to help detect spyware programs, 
which often send out personal data to servers using HTTP 
transactions and may open up security holes in the network. 
Based on the analysis of HTTP traffic over a training period, we 
designed filters to help detect anomalies in outbound HTTP traffic 
using metrics such as request regularity, bandwidth usage, inter-
request delay time, and transaction size. Subsequently, Web Tap 
was evaluated on several available HTTP covert tunneling 
programs as well as a test backdoor program, which creates a 
remote shell from outside the network to a protected machine 
using only outbound HTTP transactions. Web Tap’s filters 
detected all the tunneling programs tested after modest use. Web 
Tap also analyzed the activity of approximately thirty faculty and 
students who agreed to use it as a proxy server over a 40 day 
period. It successfully detected a significant number of spyware 
and adware programs. This paper presents the design of Web Tap, 
results from its evaluation, as well as potential limits to Web 
Tap’s capabilities.  

Categories and Subject Descriptors 
K.6.5 [Security and Protection]: Invasive Software – backdoors, 
spyware; C.2.3 [Network Operations]: Network monitoring 

General Terms 
Security, Measurement, Design, Algorithms 

Keywords 
Covert channels, intrusion detection, anomaly detection, HTTP 
tunnels, spyware detection. 

1. INTRODUCTION 
Network security has been an increasing concern for network 

administrators and executives alike. Consequently, Firewalls and 
proxy servers have become prevalent among high-security 
networks (and even private homes). Many networks require all 
traffic to the internet to go through an HTTP proxy server or mail 
server, allowing no direct access to the internal network. This 
makes the job of a hacker much more difficult than before, where 
direct access to network machines was available. 

When a hacker attacks a network with no direct access to the 
internet, the first step is getting a user to access a malicious file or 
web site. This can be done effectively by e-mailing a Trojan horse 
program or a link to a page which exploits the browser [7]. Once 
the machine is compromised, the next step is to establish a path of 
communication. Traditionally, this would be done by installing a 
backdoor program such as BackOrifice [6]. The problem with 
using such programs on firewalled networks is that they listen for 
an incoming connection on a specific port. All incoming traffic, 
however, is blocked. This means that the only way to 
communicate with a compromised machine is to have it make a 
callback (outbound connection). Often, the only two ways out of 
the network are through a mail server or through a proxy server. 
Since e-mail is often more closely logged and filtered, the hacker 
may find outbound HTTP transactions to be the best avenue for 
communication with a compromised workstation.  

Spyware is also a huge problem for both system 
administrators and users alike [4]. Besides annoying users by 
popping up advertisements, spyware can leak information about a 
user’s behavior or even send data on the machine to outside 
servers. Spyware programs can also degrade system performance 
and take valuable time and effort to remove. In addition to these 
lesser threats, Security holes have been found in Gator and eZula 
(two popular spyware programs) that would allow a hacker to 
execute arbitrary code on a target machine [13, 30].  

Web Tap is a network-level anomaly detection system that 
takes advantage of legitimate web request patterns to detect covert 
communication, backdoors, and spyware activity that is tunneled 
through outbound HTTP connections. We note that, unlike the 
previous work on securing web servers (e.g., [22]), Web Tap’s 
focus is on analyzing outbound HTTP traffic from protected 
network machines to outside web servers, rather than guarding 
web servers against hostile attacks.  The goal is to make it more 
difficult for hackers or malicious users to run Trojan and HTTP 
tunnel programs within an organization that leak information to 
the outside. Web Tap is designed for deployment at an 
organization’s HTTP proxy server (either passively or actively) to 
help detect anomalies in outbound traffic.  

To evaluate Web Tap, we used it to look at web traffic from 
30 clients over a 40-day period as well as traffic from known 
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HTTP tunneling programs. We were successful at detecting 
different types of spyware and adware as well as many data 
mining and advertisement servers. During the 40 days of 
observation, Web Tap generated alerts for adware clients such as 
Weatherbug, Kazaa, Lycos search bar, Google search bar, and 
Gator. It also was able to find programs which may be unwanted 
in a workplace environment such as iTunes, BitTorrent, and AIM 
Express. In addition to non-browser clients, Web Tap detected 
data mining and advertisement sites such as coremetrics.com, 
ru4.com abetterinternet.com, and doubleclick.net. Two of the 
three known HTTP tunneling programs tested, Wsh [12] and 
Firepass [11], immediately caused Web Tap to raise an alert. The 
third HTTP tunnel, Hopster [18], was detected an hour and twenty 
minutes after it began running. A custom HTTP tunnel that we 
designed, which does a better job of mimicking legitimate 
browser requests, was detected within seven hours. When the 
backdoor was actively used to transfer files, it was detected 
almost immediately. 

The rest of the paper is presented as follows. Section 2 
discusses related work. Section 3 gives a threat model. Section 4 
presents the design of filtering methods, based on measurements 
during the one week training phase. Section 5 provides an 
evaluation of Web Tap for an extended period after the evaluation 
phase. Section 6 talks about vulnerabilities in Web Tap filters. 
Section 7 outlines future work and Section 8 concludes. 

2. RELATED WORK 
Signature analysis is a commonly used technique to look for 

Trojan programs and to do intrusion detection. For example, Snort 
[31] is configured with over 2500 signature rules to detect scans 
and attacks. Several commercial programs detect and remove 
spyware from computers by using the same principle and looking 
for spyware program signatures [1, 32, 33]. One limitation of 
signature analysis techniques is that new attacks are developed 
frequently that existing signatures may fail to detect. For that 
reason, signature analysis techniques should be complemented 
with anomaly detection techniques. Web Tap is able to detect new 
spyware and HTTP tunneling programs because it relies on 
anomaly detection, rather than signature analysis. Additionally, 
Web Tap runs at the network level, not the host level, and thus is 
more easily deployed for an organization that uses an HTTP 
proxy server for all its outbound web traffic.  

Tracking sequences of events using Markov chains or other 
models has been used for host and network intrusion detection [9, 
15, 16, 23, 36]. This approach is very effective for many 
situations such as analysis of system call traces [15] to detect 
tampering of applications on a system after. Anomaly detection 
has also been used to detect network attacks [32, 36] and attacks 
on web servers [22]. 

In [22], the focus is on detecting malicious incoming traffic to 
a server by building a probabilistic profile of web application 
parameters exported by the web server. The methods employed in 
Web Tap differ from previous work by targeting outbound rather 
than inbound communications, with the primary focus being on 
detection of HTTP tunnels. The fundamental barrier in analyzing 
outbound traffic is that, because of multitude of web services that 
can exist outside the system, it is difficult to collect enough data 
to do probabilistic analysis for every web application to build 
reasonable profiles; users go to new web sites very often when 
browsing the web. For inbound HTTP requests to a web server, 
on the other hand, a profile can be built of appropriate requests, 

sizes of parameters, and typical sequences of web pages accessed 
over time, since all incoming requests are for the same web server 
[22]. 

Zhang and Paxson describe a method for detecting backdoors 
[37]. They look at the timing of packet arrivals and packet sizes in 
order to characterize an interactive shell. For delay times, they 
exploited the observation that keystroke inter-arrival periods 
follow a Pareto distribution with a high variance [27]. For packet 
sizes, they excluded connections that did not contain a large 
enough percentage of small requests. The Pareto model is difficult 
to extend to Web Tap. The interactive shell component of a 
backdoor program controlled by a remote hacker will not send 
requests when the hacker types them; the backdoor server has to 
wait for a callback from the client before sending any data. 
Instead of following a Pareto distribution, the delay times will 
follow a distribution according to whatever algorithm the 
backdoor client uses to schedule callback times. Packet size 
filtering does not apply as well to web tap either because 
commands can easily be hidden in larger HTML pages. 

Significant research exists on human browsing patterns for 
proxy cache and web server performance optimizations [3, 10, 
20]. Web Tap measures some of the same browsing patterns such 
as inter-request delay time, request size, and bandwidth usage. 
Web Tap, however, uses this information to determine if the 
traffic is coming from a legitimate user, while previous research 
only looked at human browsing patterns for performance reasons. 

A substantial body of work exists on covert channel analysis, 
including detection of covert channels between processes or users 
on the same machine [24, 26]. A report by McHugh [24] defines a 
covert channel as “A mechanism that can be used to transfer 
information from one user of a system to another using means not 
intended for this purpose by the system developers.”  Examples 
include manipulating CPU usage or disk utilization to 
communicate information. In contrast to previous work, Web Tap 
does not deal with covert channels per se. The communications 
that Web Tap detects may be covert, but the channel is not. There 
is nothing inherently secret about HTTP transactions; they are 
designed to allow the exchange of information. Backdoors, 
however, hide data within the noise of legitimate web traffic in 
order to talk to their owners. These lines of communication are 
covert even though the channel is not. For this reason the data 
paths used by backdoors to secretly send information in legitimate 
web traffic will be referred to as tunnels. Furthermore, Web Tap 
does not claim to entirely eliminate tunnels. The main emphasis is 
on detection of covert tunnels, with a secondary objective of 
slowing them down, all without disrupting normal web browsing 
activity. 

It is also possible to prevent some HTTP tunnel activity by 
deploying a content-filter at the proxy server [25, 35]. Such a 
filter can be used to prevent people from accessing any website 
not on an approved list. Besides being a very restrictive policy for 
many organizations, this will not stop the operation of all 
backdoors. A well-designed tunnel could still take advantage of 
web e-mail via an approved site to communicate to its host. A 
hacker could also compromise a web server on the list of 
approved sites and use it for communication. If the hacker is able 
to place a CGI script on one of these servers, the tunnel can 
communicate with the script to leak information. We do not 
consider content filters further in this paper, though they can 
nicely complement Web Tap’s capabilities. 



3. THREAT MODEL 

3.1 HTTP Tunnels 
In general, if a protocol is available for communication, 

people have found ways to tunnel other protocols through it, 
bypassing any firewall restrictions based on protocols or 
communication ports. HTTP is no exception. Several programs 
provide HTTP tunneling to allow users within an organization to 
access non-HTTP services via HTTP proxies. One such program, 
Wsh [12], communicates over HTTP and provides file transfer 
capability as well as a remote shell from machines inside a 
protected network to remote servers.  The program can also 
encrypt data if desired. Another one, Firepass [11], creates a 
tunnel between a client process and a remote service running on 
an arbitrary machine and port.   

3.2 Backdoor Programs 
While HTTP tunnel programs can be convenient at times for 

allowing legitimate users to bypass firewalls and get access to 
remote services, they can also present a serious security threat. 
The scenario presented in this section is a modest extension of 
such a program that would allow a remote user to acquire a shell 
on a machine behind the firewall. For the purposes of this paper, 
we assume that use of such programs is considered to be a 
security risk and their detection is a legitimate goal of Web Tap. 

To get a better of idea how a backdoor could work, here is a 
model of an intrusion using such a program: 

1) The hacker sends a Trojan horse program to the user, or the 
user to views a malicious site which exploits the browser 
[7]. (Much like how spyware programs can be installed.) 

2) The payload of the hacker’s program contains a backdoor 
that executes on the remote machine. 

Once the backdoor program is running on the remote 
machine, the hacker needs some way of communicating with it. In 
this model, the network either has firewall rules in place to block 
all incoming traffic, or uses a proxy server. If the network uses a 
firewall, then it also blocks all outgoing packets except HTTP 
(TCP port 80) and DNS (UDP port 53). In our implementation, 
Web Tap addresses the HTTP proxy server scenario. 

After the backdoor has been installed, it calls back to a web 
server controlled by the hacker (or a server hosting a script 
written by the hacker) using HTTP requests. Callbacks can be 
scheduled according to a fixed-wait timer, a random-wait timer, 
or times of actual browsing activity. Due to the nature of HTTP 
protocol, all transactions must be initiated by the client computer.  

The threat model assumes that the hacker may make an effort 
to disguise messages as legitimate HTTP transactions. The 
communication protocol for the backdoor can hide outbound 
information in any header field (including the URL), or in data 
trailing the header for a POST request. The backdoor then 
receives commands from the hacker hidden within what appears 
to be a normal web page. Web Tap does not attempt to filter out 
covert transactions based on the content of web pages returned by 
the server. There are many clever ways of hiding data [29], and it 
would be fruitless to try to detect them all. 

3.3 Spyware 
For spyware, the threat model is exactly the same except the 

initial mode of compromise is different. Spyware programs often 
install themselves by piggybacking on legitimate software, 

exploiting browser vulnerabilities, or tricking a user into 
downloading them voluntarily [4, 30]. Once they are installed, 
they can use the same method of communication as the backdoor 
program described above. 

 

4. WEB TAP FILTER DESIGN 
The first phase of Web Tap’s design was to monitor and 

record a number of web browsing statistics. Web Tap was set up 
as an extended proxy server written in Python. Python was chosen 
because it is easy to code, type-safe, and platform-independent. 
The original proxy code was taken from a post to a python 
discussion group [17]. We extended the proxy server to pass 
requests to a Web Tap measurement module before sending them 
to their final destination. The module did not block or modify any 
of the requests. The proxy server was run on a department 
computer within the University network. Web Tap can also be set 
up so that the statistics module is inactive and all the requests are 
logged. For each request, the complete request line and text of the 
headers with their values need to be logged. Also, the source IP 
address and the timestamp of the request need to be stored along 
with the request. If it is a POST request, then the proxy must log 
the number of bytes sent following the headers to make sure it 
matches the content-length header value. Once the logging is 
complete, Web Tap can later run offline and perform analysis on 
the log files. 

Users consisted of students, faculty, friends, and family 
members who voluntarily configured the browsers on their 
computers to use the Web Tap proxy server. Thirty users 
participated in the study for a period of 40 days. The first week of 
data collection was designated as a training period and used to 
help design the filter thresholds. During that time, no filters were 
active. Web Tap passively monitored a number of statistics to 
detect trends in human web surfing behavior. The following 
measurement results and filter thresholds are based on the trends 
observed during the one-week training period. We will examine 
Web Tap’s performance on traffic recorded after the training 
period later on in section five. 

Note that bandwidth and request size measurements do not 
reflect the actual number of bytes sent from the workstation to the 
web server. Only bytes that can be modified without setting off a 
header alert are counted. (A header alert is raised when an HTTP 
request is sent that is formatted differently from a browser 
request. An example would be adding a field at the end of an 
HTTP request “webtap-data: a7Hc...” The field would contain 
additional data, but would be detected first by the header filter.) 
This includes bytes in the URL following the hostname, any 
information after the headers in a post request, one bit for the 
presence or absence of each optional header field, and variable 
header values. An additional two bytes are added to help mitigate 
the effects timing and other covert channels. The two bytes help 
by increasing the significance of very small requests, which 
makes it harder for a hacker to send many one or two-byte 
messages and leak out more than one or two bytes of information 
through auxiliary channels. Some header fields, such as cookie, 
can only have a constrained set of values. A backdoor, however, 
could forge cookies and include information not sent by the 
server. Right now, Web Tap calculates the number of bytes in the 
request assuming that all the headers have legitimate values. In 
the future, we plan to keep additional state in Web Tap to verify 
header integrity. 



Web Tap is only configured to measure a limited set of 
browsing statistics. Other possible measurements not performed 
by web tap include: request type (Image, HTML, CGI, etc.), 
request content, inbound bandwidth, and inbound content. 
Request type frequencies varied greatly from host to host and thus 
were too not useful for inferring anomalies. Some sites only 
served CGI, while others only served images or HTML 
documents. Web Tap did not attempt to perform content analysis 
on the transactions because there are too many data hiding 
techniques such as steganography [29] which are very difficult to 
detect. Web Tap also does not attempt to monitor inbound 
bandwidth usage. Generally speaking, web server replies are 
much larger than client requests. Even the simplest web page, 
www.google.com, contains approximately 3000 bytes. The 
aggregate inbound bandwidth usage would be so large that it 
would be hard to detect any additional hidden data in replies. 
Instead, Web Tap focuses on outbound requests because they tend 
to contain far less data and are more useful for detecting covert 
traffic. 

4.1 Header Formatting 
Every internet browser has a unique header signature and 

utilizes a certain set of header fields. Web Tap parses each header 
and generates an alert when it sees a header that is indicative of a 
non-browser request. Web Tap also monitors the version of 
browser and operating system from which requests are being 
made. If a backdoor sends out Internet Explorer with Windows 
XP headers when all the computers are running Windows 98, it 
can be easily detected by the header format filter. Header 
formatting detection proved to be a useful tool for detecting non-
browser web requests. In addition to the standard browsers, (IE 
and Netscape/Mozilla) it was able to recognize requests from 
seven different clients in only 24 hours: Windows Update, iTunes, 
Gator, AIM Express, Windows Media Player, McAfee Web 
Update, and BitTorrent. 

The header format filter does a good job of detecting 
unwanted clients, as well as many HTTP covert tunnels in their 
default settings. It can also be used to enforce policies that 

prevent employees from using clients such as iTunes and AIM 
Express, and detect some adware programs like Gator. 
Incidentally, one of the clients detected during the training period, 
Unicast (unicast.com), set off the header format alarm because it 
spelled the word “referrer” correctly in the HTTP request. 
According to the HTTP specification [14] it should be spelled 
incorrectly as “referer.” This is good example of how easy it can 
be for a hacker to make a mistake when designing a tunneling 
program. 

 

4.2 Delay Times 
Web Tap measures the inter-request arrival time for a specific 

web server from a specific client so programs that make periodic 
outbound requests, operating on timers, can be detected. Delay 
times were measured on a per-site basis for each user and stored 
both in individual vectors and in an aggregate format for all users. 
The aggregate vector was used to observe the general distribution 
of inter-request delays. Figure 1a shows the probabilistic 
distribution of all delay times between site accesses. You can 
notice jumps in the cumulative distribution curve at 30 seconds, 4 
minutes, and 5 minutes. There are also less-pronounced jumps at 
15 minutes, 30 minutes, and one hour. These jumps indicate the 
presence of sites that refresh using a timer.  

The jumps can be observed more clearly if we take the 
derivative with respect to the y-axis of the distribution. This can 
be seen in Figure 1b. The derivative is plotted along with its 
running average multiplied by 0.8. The average helps to illustrate 
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Figure 2. Equations for the derivative and average of the 
delay times seen in Figure 1. 

      (a)                   (b) 
Figure 1. (a) Aggregate delay time cumulative distribution with jumps at t = 30 seconds, 4 minutes, and 5 minutes.  

(b) Derivative of cumulative distribution and running average used to detect anomalies. 



places where the derivative drops below the amount of a normal 
fluctuation. The dips in the derivative that drop below the dotted 
line correspond to jumps in the distribution at times 30 seconds, 
60 seconds, 90 seconds, 4 minutes, 5 minutes, 15 minutes, 30 
minutes, 60 minutes respectively. Equations for the derivative and 
the average can be found in Figure 2. V is a vector of delay times 
taken from every nth element in the full delay vector for a site. 
We chose the maximum of the square root of the full vector size 
or five for n. The value a represents the number of values used in 
the running average. We picked the maximum of the square root 
of the size of V or 3 for a.  

4.3 Individual Request Size 
We found that requests to most sites contain very little 

information. A hacker would need to send out large amounts of 
data in order to transfer files and view big directory listings on the 
remote host. Web Tap monitors request sizes to help detect use of 
such techniques. Figure 3 illustrates the distribution of maximum 
request sizes for all users and sites. Out of approximately 1600 
unique web servers which received requests, only eleven saw 
requests of over 3 KB, and only four had requests in excess of 10 
KB. Most of these large requests were indicative of file uploads. 
A good number of them, however, were attributed to ASP scripts 
with large forms. Some ASP POST requests got as large as 6 KB. 

After examining the maximum request size distribution, the 
most effective filter threshold for single requests appears to be 
about 3 KB. This setting allows Web Tap to detect almost any file 
upload using HTTP POST requests. It is also high enough to keep 
the false alarm rate low. Preventing large post requests will force 
a hacker to break up transactions and increase the chance of 
getting caught by one of the other filters.  

4.4 Outbound Bandwidth Usage 
Since most HTTP requests are small, normal web browsing 

activity rarely utilizes much outbound bandwidth. When a hacker 
is using HTTP requests for covert communication, outbound 
bandwidth usage is expected to be higher than the norm. The 
reason for this is that the hacker usually only sends short requests 
and small tools (executables) inbound to the computer. Outbound 
bandwidth, however, is needed to download sensitive documents 

and directory listings. From a secrecy point of view, a system 
administrator should be more worried about outbound than 
inbound traffic.  

During the training period, Web Tap measured outbound 
bandwidth on both an aggregate and per-site basis for each user. 
Total bandwidth consumption was found to contain no useful 
information that could not be found in the per site measurements, 
and thus is omitted here. Per user bandwidth was measured 
mainly to determine what times of day the user is active, not to 
filter out large bandwidth consumers.  

Much like single request sizes, per site bandwidth numbers 
are pretty low. Figure 4 shows the cumulative distribution of total 
daily bandwidth usage for thirty users on a per destination-site 
basis during the training period. For a majority of the sites 
(>99%), users did not consume more than 20 KB of request 
bandwidth in a single day. Based on the data, 20 KB appears to be 
a good lower bound for a daily bandwidth filter threshold. During 
the one-week training period, 48 of the daily byte-counts 
exceeded 20 KB. This could be a large amount for a system 
administrator to sift through, especially considering that these 
would also contain a significant number of false positives. It may 
be a good threshold, however, for a high-security network. If the 
filter was set any lower than 20 KB, then there would be too 
many false positives. 

Of the sites measured, less than 0.1% used over 60 KB of 
request bandwidth in a single day. All of these were true positives 
generated by non-browser clients and data mining advertisements. 
Thus, based on the data, we concluded that the daily bandwidth 
threshold should be set no higher than 60 KB. 

4.5 Request Regularity 
Since most hackers need a lot of outbound bandwidth, but 

have little available to them (without being detected), they are 
made to spread their requests out over a long period of time. 
Legitimate web traffic, on the other hand, typically occurs in short 
bursts. These opposing traffic patterns can be measured by 
request regularity. The resulting filter is able to detect a backdoor 
that makes frequent callbacks, even if the requests are interlaced 
with legitimate traffic to avoid delay time detection.  

Figure 3. Cumulative distribution of maximum request 
sizes for ~1600 different sites   

Figure 4. Cumulative distribution of bandwidth usage 
per site per day for 30 users over a one week period. 



We used two different methods to measure request regularity. 
The first is to count the number of time periods where a particular 
site is accessed by the user being observed. Web Tap counts the 
number of 5-minute intervals that have non-zero bandwidth usage 
over 8-hour and 48-hour time periods. If requests appear too 
often, then the site is classified as being accessed by an automated 
process. Figure 5a shows a plot of bandwidth counts over an 8-
hour time period for approximately 400 sites accessed by a single 
user. Using a threshold of 16% activity, seven sites were filtered 
out with no false positives. Five of these were in blatant violation 
of the threshold; they were active consistently throughout the 
whole eight hours. The two other sites detected served 
advertisements that refresh frequently and are persistent 
throughout browsing sessions. There were also five sites close to 
the detection threshold (between 10% and 16%), only two of 
which were false positives, both from livejournal.com. The 16% 
threshold was chosen conservatively to avoid false alarms and 
could be lowered even further for a low-traffic network. 

The second method used is the coefficient of variation 
technique. To determine the regularity, the standard deviation of 
bandwidth usage is calculated and divided by the mean bandwidth 
usage. Conceptually, this number represents a normalized 
deviation of bandwidth usage. If a site is accessed in short bursts, 
which is characteristic of normal human activity, then the 
coefficient of variation will be high. Low variation in bandwidth 
usage is indicative of abnormal or non-human activity. The plot of 
the coefficient of variation measurements for an 8-hour time 
period can been seen in Figure 5b. We found thresholds of 3.3 for 
8 hours and 4.5 for 48 hours to be effective. At those settings, the 
coefficient of variation method detected nine sites in violation of 
the threshold both over an 8-hour and a 48-hour period, none of 
which were false positives. Much like the sites close to the 
threshold for the counting method, three of the five sites just 
above 3.3 were false positives, all associated with 
livejournal.com. For a smaller network, the threshold for this 
filter could be effectively raised to around 4.0 for an 8-hour 
period without producing many false positives. All of the seven 

sites filtered by the counting method were also filtered by the 
coefficient of variation method.  

Web Tap uses both of these measurements, even though they 
would have resulted in identical filtering during the training 
period. The primary reason is our assumption that more filters 
will not hurt, unless they are generating additional false alarms.  
For example, if an adversary had to only evade the coefficient of 
variation filter and wanted to make callbacks every 10 minutes, 
then he or she would just have to make a single large request 
(~2500 bytes) every 48 hours, and a smaller big request (~200 
bytes) every 8 hours. The hacker’s solution would, however, fail 
if both filters are deployed. 

 

 

4.6 Request Time of Day 
Web Tap recorded the time of day when users typically 

browse the web on a per-user basis. People tend to follow a 
schedule and do their browsing at set times. This is illustrated in 
Figure 6 by the browsing activity seen for a randomly selected 
user during the first six days of observation. The activity times 
stay fairly consistent from day to day. If requests are seen during 
a time when the user is usually inactive, then an intrusion alert 
can be raised. This approach would be even more effective when 
applied in a workplace instead of a home environment, where 
users tend to have more rigid schedules. As an  
extension of this, day of week and holidays could be monitored in 
a work environment where schedules are predetermined. 

Hour:       | 1                     24 
Mar 26(Fri) | ---------------XXXXXXXXX 
Mar 27(Sat) | --X--------------------- 
Mar 28(Sun) | ------------------------ 
Mar 29(Mon) | ---------------XX--XXX-X 
Mar 30(Tue) | X--XX----------XXXXXXXXX 
Mar 31(Wed) | ---------------XXXXXXXX- 

Figure 6. Activity by time of day for one randomly chosen 
user. 12 AM to 1 AM is on the left, and 11 PM to 12 AM is 

on the right. 

         (a)                    (b) 
Figure 5. (a) Seven sites were detected by usage counts for ~400 sites over 8 hours with a detection threshold 
of 16% (b) Nine Sites were detected using the deviation over mean during an 8 hour period with a detection 

threshold of 3.3 



Table 1. Number of alerts and the false alarm rate for each filter.  
The aggregate row shows results from running all the filters in parallel. 

Filter Name Number of Alerts 
Over 40 Days 

Average Alerts 
Per Day

False Alarm Rate 
(Approximate)

False Alarm Requests 

Header Format 240 6.00 0% (Exact) Legitimate browser 
Delay Time 118 2.95 5% Not running on a timer 
Individual Request Size 38 0.95 34% Not upload or spyware 

8-Hour 132 3.30 11% Request 
Regularity 48-hour 65 1.63 7% 

Not spyware/adware, 
ad server, or a timer. 

20 KB 106 2.65 32% 
30 KB 59 1.48 17% 
40 KB 39 0.98 15% 
50 KB 26 0.65 12% 
60 KB 18 0.45 0% 
70 KB 14 0.35 0% 

Daily  
Bandwidth  

80 KB 12 0.30 0% 

Not spyware/adware, 
not an ad server, not a 
file upload, not running 
on a timer,  and not a 
non-browser client 

Time of Day 68 
2.62 (Not 
Including         28% 

Anything when the user 
is present and active 

Aggregate 767 19.2 12% (2.3 per day)  
 

In a home environment, unlike a place of work, users’ 
schedules are more subject to change. This is especially true for 
college students who have part time jobs and subsequently have 
schedules that vary from day to day. Even though most of the test 
subjects were college students, they still showed striking patterns 
in usage times. 

5. EVALUATION 
After the one-week learning period, the filters were put to the 

test against several HTTP tunneling programs, as well as 40 days 
of web traffic from 30 users. During the evaluation, all the filters 
were active for every site and user. The purpose was to determine 
how difficult it would be for a hacker to avoid detection by Web 
Tap, how much bandwidth would be available to the hacker, and 
the false alarm rate for the filters and thresholds used by Web 
Tap. No special filter rules or settings were used to reduce the 
number of false positives. We plan to add support for 
customization of Web Tap filters in the future. 

5.1 Filter Performance over Full Observation 
Period 

After the first week of measurements designated as the 
training period, Web Tap was run with its new filters on traffic 
from the same clients over 40 days. The following section 
describes the results from the alert logs over the full observation 
period for approximately 30 clients. From the 40 days worth of 
data collected, 428,608 requests were made to 6441 different 
websites, and the proxy log file was 300 Megabytes in size.  

Following collection, the information was analyzed by web 
Tap in offline mode. An overview of the analysis results from the 
40-day period can be found in Table 1. The set of requests that 
were considered false positives varied depending on the filter 
under consideration. For this experiment, we evaluated false 
positives by hand. The type of requests that are false positives can 
be seen in Table 1 in the right-hand column. (An ad server is a 
web server that hosts refreshing advertisements, such as 

doubleclick.net.) In addition to the short description given for 
false positives, any alert generated by a Trojan or HTTP tunnel 
was considered a true positive, though none were observed during 
the evaluation period.  

Including those mentioned in section 4.1, Web tap detected 17 
different non-browser clients and one non-standard browser using 
the header format filter. Six of the clients detected were unwanted 
spyware programs. The other eleven clients included those 
mentioned earlier such as Windows Update, McAfee Web 
Update, and iTunes. 

We also found that 5 out of the 30 observed unique clients 
had some form of adware on their computer just 
based on the header filter results. In addition to the spyware 
clients, others were detected that may not be desirable in a work 
environment. These included Kazaa, iTunes, AIM Express, and 
BitTorrent. Once detected, Web Tap (or the proxy server) could 
be set to block, allow but log, or completely allow certain clients 
according to network policy. 

The large number of header alerts can be attributed to the fact 
that Web Tap raises an alarm when it sees a bad header once for 
each web server per user. This means that if iTunes were to access 
10 different sites, each would generate an alarm. We plan to 
reduce the repetition of positives in the future by only raising an 
alarm once per client type per user and also filtering out alerts 
from allowed clients. 

For the delay time measurements, we logged website access 
times using one-second granularity. The reason we did not use 
more precision is that none of the timers observed had periods of 
less than 30 seconds. In order to detect shorter-period timers, 
additional precision would be required to differentiate a timer 
from repeated short delay times. 

Although the false positive rate for the delay time filter was 
low (average of one false alarm every 6 days for our test group), 
several legitimate websites that refresh using a timer set off 
alarms. News and sports sites, such as espn.com and nytimes.com, 
tended to be the primary culprits. One way of filtering out 



legitimate sites with timers, which we plan to explore, is creating 
a list of trusted sites that are allowed to have fixed-interval 
callbacks. One must be careful, however, since callbacks to 
trusted sites can be used to leak information. 

For the individual request size filter, approximately 35% of 
the alarms were associated with file uploads. Almost all the other 
true positives came from data-mining spyware programs. The 
false positives observed were largely ASP and shopping cart 
scripts from sites such as www.americanexpress.com and 
www.sprintpcs.com. Some websites contained forms with very 
large amounts of data that would be sent in single post requests. A 
possible method for dealing with this problem, similar to the 
solution proposed for delay time false positives, and with similar 
risks, would be to create a database of trusted servers. The 
database could include popular websites that have very large 
forms, but do not allow a user to leak data outside of the network 
through file uploads, public message posting, or other means. 

As seen in Table 1, the daily bandwidth filter generates more 
alerts as well as more false positives as its threshold decreases. 
The reason that we took multiple measurements is so that a 
security administrator can decide between increased security and 
false alarms. For the lowest number of false positives, a threshold 
of 60 KB appears to be reasonable for small group sizes. The 
threshold can, however, be set lower. For the 20 KB limit, the 
false alarm rate is just under one per day. Depending on the level 
of security desired, a moderate threshold between 30 and 50 KB 
will keep the false positives at a manageable level, and make sure 
that most of the real positives are caught. The false positives seen 
for the daily bandwidth filter, much like the request size filter, 
consisted mainly of sites with large ASP or shopping cart scripts 
such as www.tvguide.com and www.sephora.com. The 
performance of the daily bandwidth filter could be enhanced by 
giving a higher threshold to popular sites from a list that tend to 
generate false positives. If the number of false positives is 
reduced, then a system administrator can lower the detection 
threshold and find more malicious traffic. Also, true positives 
could be consolidated by communication between the different 
filters. Many of the sites detected by the bandwidth filter, such as 
Gator and doubleclick.net, were found by other filters as well. 

The regularity filter results seen in Table 1 consisted of both 
count and coefficient of variation measurements. We considered 
the number of false positives generated by this filter to be 
acceptable (approximately one false alarm every three days). The 
sites that caused false alarms were only the very popular ones 
such as ebay.com and livejournal.com. Many of the sites flagged 
by the regularity filter were found by the delay time filter as well. 
The regularity filter did, however, find an additional type of 
adware that the delay filter was unable to detect: browser search 
bars. This particular breed of advertising program imbeds itself 
into the person’s browser and calls back to its host every time the 
browser opens up as well as throughout browsing sessions. These 
are different from other adware programs because their callbacks 
are triggered by human activity and thus cannot easily be 
differentiated from a person based on inter-request delay times. 
Web Tap successfully detected sites that used frequent requests 
with this filter, even if they coincided with human usage. 

The time of day filter was initially configured so that the first 
week of the 40-day period was used for training. After seeing 
preliminary results, we lengthened the training time to the first 
two weeks of the 40-day period in order to increase the 
effectiveness of the filter. During the first two weeks, no alerts 

were generated because all requests were representative of normal 
activity. It is important to note, however, that for the training 
period, spyware and adware programs were active. We did not 
attempt to remove fixed-length timer or other non-human activity 
from the training data. The effectiveness of training could be 
improved to generate more true positives by removing traffic for 
sites which set off the delay time or regularity alarms. 
Nevertheless, we were still able to detect programs such as Gator 
and Wildtangent even though they had been active during the 
training period.  

5.2 Filter Performance for HTTP Tunnels 
and a Web Backdoor Program 

For the purposes of this experiment, we used several available 
programs that help tunnel TCP traffic over HTTP. These included 
Wsh [12], Hopster[18] , and Firepass [11]. The programs we 
tested are primarily designed to help people inside a network 
bypass firewall restrictions, for example, to get a shell from a 
firewalled machine to a remote machine outside the network. We 
also included a backdoor program that we designed, Tunl which 
allows a user (hacker) outside the network to get a shell on a 
machine inside the firewalled network. We present the results 
from running these four programs in the following sections. 
5.2.1 Third Party HTTP Tunnels 

We installed the three tunneling programs on a workstation 
using the Web Tap proxy and attempted to send out information 
using each. Web Tap was immediately able to detect both Wsh 
and Firepass since they used custom header fields in their 
requests. After the initial connection, we were unable to 
successfully transfer any data using Firepass. Wsh did work 
properly, and it was detected by Web Tap’s single request size 
filter upon transferring a small file (approximately 5 KB). Wsh, 
however, had to be initiated by the client and so did not call back 
or set off any other alarms. 

We used Hopster to tunnel traffic from AOL Instant 
Messenger in our experiments. It began running at 10:30 PM and 
no messages were sent during the night. The next day, 10 KB of 
data was sent out around Noon. Hopster was not detected 
immediately like Firepass and Wsh because it used browser-like 
request headers. Unlike the other two programs, Hopster did make 
frequent callbacks to the server that were detected by Web Tap’s 
regularity filter after 80 minutes, delay time filter after two hours, 
and 20 KB daily bandwidth filter after three hours. 
5.2.2 Tunl Design 

To further evaluate our system, we also designed a prototype 
remote shell backdoor called Tunl. It is made to simulate the 
situation described in Section 3.2, which allows a user (hacker) 
outside the network to get a shell on a machine inside the 
firewalled network. Tunl is written for Windows, a popular target 
for hackers. It consists of two executables, TunlCli.exe (to run on 
the compromised host) and TunlServ.exe (to run on hacker’s 
machine), which together provide a remote command shell on the 
compromised Windows machine. It is designed to tunnel through 
an HTTP proxy server, but can be set to go through a non-proxy 
web connection as well.  

The first thing TunlCli does when it starts up is launch a 
hidden command shell with redefined standard input, output, and 
error handles. It then listens indefinitely to the standard output 
from the shell, and sends any information back to TunlServ. In 
addition to sending data from the standard output, it makes 



periodic callbacks to check for server commands. Any data 
received from the server is then piped to the standard input of the 
command shell for processing. Custom get and put commands, 
which are not piped to the shell, are included in Tunl for easy file 
transfers. To avoid sending too many small requests, data is 
buffered and sent out every 100 milliseconds. Because only 
outbound requests from the compromised machine via the proxy 
are allowed, when the hacker enters a command on his computer, 
the shell has to wait for the client to make an HTTP request 
before sending the command in the body of an HTTP reply. The 
response to the server’s command is sent back in a subsequent 
HTTP POST request. All messaged exchanged are designed to 
emulate Internet Explorer on Windows XP accessing an Apache 
web server.  

Though Tunl did not provide compression or encryption, we 
tested it with transferring compressed content. Though some 
tunneling programs support encryption (e.g., Wsh), encryption 
was largely immaterial to Web Tap since it does not examine data 
content. Tunl uses a one hour timer to schedule its callbacks and 
retries twice at 30 second intervals in the case of a failed 
connection. Note that since Tunl’s communication protocol was 
modeled after Internet Explorer requests and Apache replies, it 
did not set off any of the header alerts in any test cases. 
5.2.3 Tunl with Callback Only Workload 

To evaluate the performance of Web Tap, we installed the 
Tunl program on one of the machines. The first workload we 
tested only contained callbacks to the Tunl server. This represents 
the time when a machine is first compromised and the backdoor 
begins making callbacks, but the hacker has not yet started using 
the shell to execute commands on the compromised machine. 

The results for the Tunl client only making callbacks using a 
timer were very promising. Even though no data was being 
transferred, the traffic from this trace was caught by the request 
regularity, the delay time, and the time of day filters. The 8-hour 
coefficient of variation bandwidth filter detected the web tunnel 6 
hours and 40 minutes after the first callback. The 8-hour activity 
count filter was unable to detect the backdoor. The program did, 
however, break the threshold for the 48-hour count filter after 
about 26 hours. Since the backdoor was running on a timer, the 
delay time filter was able to detect it in 2 hours and 10 minutes. 
As far as the time of day filter, the delay until detection varies 
depending on the individual user’s habits as well as the time of 
initial callback. The time of day filter was triggered by the 
backdoor very shortly after a time of usual inactivity began. 
5.2.4 Minimal Workload 

The second test case consists of a hacker using the Tunl shell 
to go to the local documents directory (containing approximately 
180 documents), listing all the files, and downloading a single 
500-word uncompressed document with minimal formatting 
(approximately 25 KB). This is a minimal activity scenario where 
the hacker only lists one directory and downloads a single small 
file. We assumed that any hacker who compromises a machine is 
almost sure to do at least this much. 

The minimal workload immediately violated the threshold for 
the maximum request size filter. It also exceeded the total daily 
bandwidth threshold of 40 KB. Even though the file was only 25 
KB, the uncompressed directory listing for around 180 different 
files was larger than 15 KB. It also went on to trip the delay time 
and request regularity filters. The presence of more concentrated 
activity, however, made the backdoor harder to detect using the 

coefficient of variation regularity measurement. Instead of 
detecting Tunl in around 7 hours, the coefficient of variation 
measurement did not pass the threshold until after the file transfer 
activity was beyond the 8-hour measurement window.  
5.2.5 Moderate Workload 

The third test case we used represented a moderately intense 
hacker session. It consisted of listing all local documents and 
desktop directories for one user on the machine. Following the 
directory list requests, a variety of files including two income tax 
returns (PDF format), one JPG image, three small Word 
documents, and a text file containing a 1000-address mailing list 
were all compressed and downloaded. Using a common 
compression utility, all these files together amounted to a 300 KB 
zip file. 300 KB it is actually a moderate, if not small, amount of 
data to download from a compromised machine; it represents less 
than 1/100,000 the disk space available on a common 40 GB hard 
drive. 

The alert logs for the moderate workload were almost the 
same as those or the minimal workload. The only difference 
between alerts is that the moderate workload surpassed the 
highest daily bandwidth usage threshold of 80 KB instead of the 
just the 40 KB seen during the minimal workload. The moderate 
workload did take longer than the minimal workload to complete. 
The difference, however, was from two minutes to ten minutes. 
Since Web Tap records bandwidth in 5-minute intervals, this did 
not really change results from other filters. 

6. WEB TAP FILTER VULNERABILITIES 
A serious question that comes to mind when evaluating Web 

Tap is whether an HTTP tunneling or backdoor program could be 
designed to evade Web Tap. This section describes vulnerabilities 
that could be exploited to avoid detection by each of the Web 
Tap’s filters.  
• Single Request Size Filter: Large data transfers can be broken 

up into multiple smaller requests (though that risks violating 
other filters if the requests are not scheduled carefully). 

• Delay Time Filter: The delays could be randomized so as to 
bypass thresholds (though this can still trip day-of-time filter, 
if the user is not usually active at that time.) 

• Time-of-day Filter: The hacker can schedule requests when a 
user is normally active (though that increases the risk of 
detection by the user.) Of course, if the user is an insider who 
wishes to leak data via a tunnel, avoiding this filter is 
straightforward. 

• Request Regularity Filter: If the hacker knows the thresholds 
used, he can attempt to stay below them by keeping a running 
count of activity. If the hacker does not know the thresholds 
used, then this filter could be avoided by emulating the 
regularity of a common site. 

• Bandwidth Limit Filter: A tunneling program can keep a 
running count of the bytes that have been sent over the past 
day. If the count is going to exceed the detection threshold, it 
can stop sending data. This requires knowledge of the 
thresholds. 
In general, it is hard for Web Tap to detect a tunneling 

program that closely mimics the browsing patterns of a legitimate 
site. This can be accomplished by logging all outbound web 
requests and seeing which site is visited the most by the user (this 
may be done by compromising the OS or the web browser). The 
backdoor can then issue requests of similar size at similar time 



intervals to make sure that its traffic does not exceed the 
regularity measurement for a legitimate site. 

Even though Web Tap can be evaded by copying the 
browsing patterns of a legitimate site, the hacker would have to be 
careful that the site being mimicked does not generate a false 
positive. If the site generates a false positive, and it is copied by a 
backdoor, then the backdoor will generate a real positive. This is 
one reason why it is very important to set thresholds low enough 
so that some false positives still occur. Doing so makes it much 
more difficult for hackers to copy the request patterns of other 
sites and avoid detection. 

It is important to note that if an HTTP tunnel is calling back 
to multiple computers, then the amount of bandwidth available is 
going to increase. If a system administrator is worried about this, 
then it would be possible to set a per user aggregate bandwidth 
threshold. Web Tap was unable to measure a good number for 
this, since many of the host names actually translated to multiple 
computers (at least six in one case) behind one NAT device. This 
may, however, be something to examine in the future. 

Another possible enhancement to Web Tap would be 
allocating different bandwidth quotas for different groups of sites. 
Trusted sites that are known to be frequently used can be given 
higher bandwidth limits than others. This could help mitigate 
attacks by tunnels that mimic access patterns of high-usage 
legitimate sites. Such a strategy would allow for the tightening of 
thresholds for the remaining sites (or groups of them), thus 
limiting the bandwidth available for covert communication. 

7. FUTURE WORK 
We note that in our study, aggregating over all the filters for 

30 users and using the most aggressive bandwidth filter in our 
setup of 20 KB/day, 92 false alarms were raised over a 40-day 
period (average of 2.3 false alarms per day). The number goes 
down to 57 false alarms over a 40-day period (average of 
approximately 1.5 false alarms per day) if the bandwidth filter is 
set at 60 KB/day. The false positive rate should be manageable 
for smaller groups. For larger groups, however, it could become a 
concern. There are several techniques to decrease false positive 
rate, some of which were pointed to in the previous section. One 
simply way of reducing false positives for all filters is to create a 
database that keeps track of hosts that tend to set off alarms. If a 
system administrator wishes to allow users to access AIM express 
and Weatherbug, for example, then these sites may be added to an 
ignore list for header, delay time, and request regularity alerts. As 
noted in the previous section, however, this increases the risk of 
leakage of data via permitted sites, and this is a tradeoff that 
system administrators will have to make. 

Another intriguing possibility for the reduction of requests 
and bandwidth usage for hosts is proxy caching (with the proxy 
cache placed before Web Tap). If proxy caching is enabled, then 
all the hits do not need to be recorded by Web Tap. Removing 
cache hits would help isolate web tunnel activity because all of 
the tunnel requests would miss. The number of legitimate requests 
going through Web Tap would decrease, while the number of 
anomalous requests would remain the same thus making them 
potentially easier to detect. 

Another way of reducing false positives for bandwidth filters 
could be to compress all large transactions. This would 
dramatically reduce the size of large requests that would normally 
generate false positives. Just to give an example of the effects of 
compression, a 3.87 KB POST request that triggered an alarm was 

compressed to 2.07 KB, nearly half of its original size. 
Compression could help isolate malicious traffic in similar 
scenarios. Good hackers are also likely to compress and encrypt 
data before sending it over the network, which prevents it from 
being compressed any further. Legitimate requests would be 
significantly reduced in size, while tunnel requests would not, 
thus increasing the chances of the bandwidth filter catching true 
positives. 

8. CONCLUSION 
In contrast to prior work that analyzes attacks on web servers, 

Web Tap focused on traffic from internal hosts to the outside 
network in order to detect covert HTTP tunnels and spyware. We 
presented the design of Web Tap, an anomaly detection system 
that can augment an HTTP proxy server to aid in the detection of 
spyware and outbound covert HTTP traffic on an otherwise 
secure network. Web Tap consists of several anomaly detection 
filters. The filters were configured using data from approximately 
30 users over a one-week training period. During a 40-day 
evaluation period with the same users, Web Tap detected many 
spyware programs that used outbound HTTP requests from 
compromised clients to send out information. Web Tap was also 
successful at detecting several HTTP tunneling programs, 
including a test backdoor program.  

Different types of tunneling programs set off different alarms. 
Data-mining software that sends out personal information tended 
to set off bandwidth usage alarms. Browser search bars that made 
frequent requests, but operated at times of user activity, were 
caught by the request regularity filter. Once detected, spyware can 
be blocked or removed to increase system performance and 
security. Web Tap can also help detect attempts by hackers to 
communicate with backdoors on compromised machines during 
normal inactivity times through usage profiling. In addition, Web 
Tap detected frequent callbacks from HTTP tunneling programs, 
even during times of normal usage.  

We also considered the question of what vulnerabilities exist 
in Web Tap's filters. In general, evasion of Web Tap’s filters 
requires the adversary to know several details, such as Web Tap's 
thresholds, a user's normal activity schedule, as well as the typical 
browser and platform used on the workstations. Then, the 
backdoor must be designed to stay below those thresholds. 
Another way that Web Tap can be evaded by the adversary is to 
monitor and analyze a user’s outbound traffic then mimic the 
access patterns of a legitimate site. Even in that case, the amount 
of bandwidth available will be still limited by Web Tap’s 
bandwidth filters and the attacker cannot guarantee that he is not 
detected since the legitimate site could trigger a false positive. We 
also discussed ways to extend Web Tap to further limit the 
bandwidth available to a hacker using such a strategy. 

While intrusion detection is a never-ending battle between 
hackers and security professionals, Web Tap places significant 
barriers in front of hackers and spyware designers who target 
computers behind proxy servers or restrictive firewalls. Web Tap 
produced manageable number of false positives per day for our 
30-user group.  We also discussed how to manage larger groups 
by suggesting additional mechanisms that can help reduce false 
positives (such as creating a list of trusted sites that are ignored by 
Web Tap). Overall, Web Tap proved to be very effective at 
reducing both inadvertent and deliberate information leakage via 
outbound HTTP requests. 
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