
Issues in the Design of a Toolkit for Supporting Multiple Group

Editors �

Michael Knister and Atul Prakash

Software Systems Research Laboratory

Department of EECS

U. of Michigan, Ann Arbor, MI 48109

April 2, 1993

Abstract

A great interest has developed in recent years in building tools that allow people to collab-
orate on work without the need for physical proximity. One such class of tools, group editors,
allows collaborators to view and edit a shared document simultaneously from their worksta-
tions. Building group editors, however, requires solving non-trivial problems such as providing
adequate response time for edit operations and yet ensuring consistency with concurrent up-
dates, and providing adequate per-user undo facilities. We have implemented a toolkit, called
DistEdit, for building new interactive group editors and for converting existing single-user ed-
itors into group editors with minimal changes to their code. The toolkit allows di�erent users
to use their favorite editors (e.g., Xedit, Gnu Emacs) to edit a shared �le and observe each oth-
ers' changes as they occur. The toolkit provides �ne-grain concurrency control, fault-tolerance,
synchronization of views, and support for per-user undo. We describe the detailed design and
implementation of the DistEdit toolkit and report our experiences in converting several editors,
including Gnu Emacs and Xedit, to group editors using the toolkit.

Keywords: groupware, collaboration technology, group editors, distributed systems.

1 Introduction

Computers are now commonplace in work environments and have had great inuence on the way in
which people interact. Examples of computer-supported interaction mechanisms include electronic
mail, newsgroups, and distributed �le systems. These have opened up new ways to interact, but
all support mostly non-interactive styles of communication. There also exist talk programs that

�To appear in Computing Systems, The Journal of the USENIX Association.

1



are more interactive but usually are restricted to two users and only allow exchange of messages in
di�erent windows. In recent years, there has been a growing interest in developing the technology
further to provide support for more closely-coupled interactions [1, 7, 11, 19]. Our focus in this
paper is on one type of collaboration tool, group editors, that allows several people to jointly edit
a shared document in a distributed environment.

One di�culty in building collaboration systems is that they require solutions to non-trivial
problems in distributed concurrency control, fault-tolerance, user-interfaces, psychology, human
factors, and software design [6]. The goal of our project is to remove most of the concerns of
distributed concurrency control and fault tolerance by providing a library of primitives that can be
used to build collaboration tools.

This paper describes the design issues we faced during the development of the DistEdit toolkit.
DistEdit provides a set of primitives that can be used to add collaboration support to existing text
editors with minimal changes to their code as well as ease development of new group editors. The
toolkit takes care of many non-trivial issues, such as concurrency control, consistency of views,
history lists for the purpose of per-user undo [17], and fault-tolerance. The primitives provided by
the toolkit are generic enough to support di�erent text editors in the same group environment. We
have tested our approach by modifying two medium-size editors, MicroEmacs and Xedit (20,000
and 16,000 lines of code), and one large-size editor, Gnu Emacs (75,000 lines of code), to make
use of DistEdit. The resulting group editors allow users to make changes concurrently to the same
document and to observe changes of others as the editing is in progress.

GROVE [4] and ShrEdit [13] are examples of editors that are designed speci�cally to support
group editing. DistEdit, unlike these systems, is not an editor but a toolkit that can be used to
build new group editors and adapt existing single-user editors to the task of group editing. Using
the DistEdit toolkit, it is possible to use di�erent editors in a single group session. For instance,
while jointly editing a single document, DistEdit can allow one user to use Gnu Emacs, another to
use MicroEmacs (on a terminal), and yet another to use Xedit (requiring a workstation running X),
with only minor modi�cations required to the code of each editor. Furthermore, as far as we are
aware, proper undo facilities are lacking in the other group editors; they only allow users to undo
the globally last editing actions, but not just their own actions. DistEdit speci�cally addresses the
problem of per-user undo in group editors, making the facility available to all editors built using
the toolkit.

MACE [15], another group editor, is structured to make it easy to integrate di�erent editors
into a collaborative environment by replacing only a few modules. At present, however, only one
editor interface, based on the Athena text widget, is supported. We believe that the following
design decisions in MACE may make it di�cult to integrate other editors: (a) to integrate a new
editor in MACE requires one to implement a module that provides conversion between keystroke
commands and a canonical form understood by all editors [15] { a task that we believe may prove
di�cult for sophisticated editors such as Emacs with a large number of keystroke commands; and
(b) MACE is based on a di�erent model of user/editor interaction than is found in single-user

2



editors. It requires that a user explicitly lock the region to be updated and allows the undo of an
operation only if the lock was not released since the operation was done.

The design of the DistEdit toolkit provides a very high degree of fault-tolerance. A simple way
to design group editors, and one which is used in several group editors and collaboration tools, is
to use the client-server model with a centralized server. The server is responsible for maintaining
the state of the editor bu�er. Mutual consistency between users' views can then be ensured by
requiring all the editing commands to go through the shared server. This design, although simple,
is vulnerable to a server crash. Furthermore, even if only one person is editing a �le, the updates
still have to go through the server, making the editing slow. In contrast, DistEdit-based editors
maintain a copy of the state of the editor bu�er for each user. The communication protocols and
algorithms used by the toolkit ensure mutual consistency between the bu�ers, even in the presence
of failures.

Di�erent approaches to groupware toolkits can be seen in LIZA [9], GroupKit [18], Rendezvous
[16], and Suite [3]. LIZA provides a high-level collection of tools to support sending messages,
indicating moods of participants, giving slide shows, and monitoring the group. Both Rendezvous
and GroupKit provide generic facilities for doing conference management, sharing of windows,
implementing various oor control policies, and basic access control. The Suite system provides
facilities for implementing both loosely-coupled and closely-coupled synchronization of views in
groupware applications. Some of the facilities in DistEdit, related to session management, use
ideas similar to those provided in these other systems; however, DistEdit is much more focused
on one particular class of group applications, group text editors, and speci�cally addresses issues
related to adequate response time, �ne-grain concurrency control, fault-tolerance, per-user undo,
and multiple-editor support.

A closely related class of collaboration systems are those that support more asynchronous or
non-real time styles of interaction. Examples are editors such as CES [10], Quilt [8], and Prep [14].
These editors allow users to work on the same document but typically on di�erent sections and
at di�erent times. As a result, interactions are over a much longer duration, even up to several
days. Many of the issues of fault tolerance and real time propagation of updates are not important
in such systems. The DistEdit toolkit concentrates on providing more closely coupled \real-time"
interaction.

An earlier version of the DistEdit toolkit is described in [12]. Several major features have
since been added. Unlike the earlier version, the present version allows several users to edit the
same �le simultaneously in a single session, provides support for locking of regions, allows users
to undo the globally last as well as their own last actions, handles transaction-like operations that
require several updates to complete (such as globally replacing a string), and provides a window
to monitor and control the group session. This paper goes into the details of design tradeo�s we
faced in implementing these additional facilities as well as describes the experience we have had
since then in porting existing editors to use the toolkit.

This paper is organized as follows. Section 2 describes the requirements considered in the

3



design of the toolkit. Section 3 gives an example of a group session with two editors built using
the toolkit. Section 4 describes the software architecture of DistEdit-based editors. Section 5
discusses the basic modi�cations needed to adapt an existing editor to group editing using the
toolkit. Section 6 describes the library interface provided by the toolkit to an editor and the issues
in the design of the library interface. Section 7 discusses the implementation and e�ciency issues
in the design of the communication layer that implements the library calls. Section 8 describes our
experiences in adapting several existing editors to group use and using them. Finally, Section 9
presents concluding remarks and some issues for future work.

2 Goals of the DistEdit Toolkit

The goals of the DistEdit toolkit are as follows:

Multiple-user collaboration: editors built using the DistEdit toolkit should allow users to edit
text �les jointly without physical proximity. All users should have a consistent view of the
editor bu�er and should be able to see other users' changes as they occur.

Use of familiar editors: users should not have to change to a di�erent editor in order to col-
laborate. Since people usually have their own favorite editors, this implies that it should be
possible to use di�erent editors in a single group session. It also means that adapting an
editor to use the toolkit should not require removing functionality from the editor.

Reasonable performance: communications protocols used within DistEdit should give a con-
sistent view of �les to all users with reasonably low delay so that group editing is not an
inconvenience.

Fault-tolerance: the group session should continue to run smoothly despite machine crashes and
people joining or leaving the group.

Easy adaptation: adapting an editor to use DistEdit should require minimal e�ort, and no know-
ledge of distributed systems issues should be needed.

Support for multiple paradigms of interaction: group editors which use DistEdit should be
applicable to di�erent types of tasks. For instance, (a) all users could edit, in parallel, di�erent
parts of the document or (b) only one user could edit while others observe the changes. The
facilities provided by the toolkit should allow editors to be built that support a variety of
interaction paradigms.

4



3 Usage of Editors Based on DistEdit

This section describes, from the users' point of view, the operation of editors based on the DistEdit
toolkit. Consider two authors working jointly on a paper who would like to work in parallel on
di�erent aspects of the paper from the workstations in their o�ces. Sometimes, they also might need
to interact very closely with each other to come to an agreement on how to rephrase a paragraph.
Without a group editor, such a task can be di�cult, requiring a great deal of verbal synchronization
to avoid editing the same �le at the same time. Brainstorming over changes to a paragraph in real
time, as one is making changes, is not possible { that has to be done either by getting together or
by sending the paragraph back and forth until an agreement is reached.

Use of group editors based on the toolkit can facilitate such a task. The two authors can edit
at independent times with their favorite DistEdit-based editor. If they happen to be editing the
same �le at the same time, a joint editing session is established. DistEdit ensures that they will
have consistent views of the �le being edited at all times. Each user, however, may edit or view a
di�erent portion of the document and could have a di�erent window size.

Figure 1 shows such a situation. One author is using the Xedit editor to edit a �le, and the
other author is using the Gnu Emacs editor to edit the same �le, where both editors have been
modi�ed to use the facilities of DistEdit. For the convenience of generating the �gure for this paper,
displays of both editors are shown on the same screen, although they could be running on di�erent
workstations. We assume that the authors can communicate via a telephone or additional shared
windows to discuss the joint work.

The operation of each editor changes very little from its normal use without the DistEdit system.
A user invokes his editor on the �le to be edited in exactly the same manner as he would with a
single-user editor. The only visible di�erence is the addition of a DE-session window. In the present
DistEdit design, this window consists of two subwindows: (1) a status window, which shows the
�le being edited, the local user's name, and the names of the users currently participating in the
editing session; and (2) a control window, which allows a user to control the group-speci�c behavior
of his editor.

One noticeable change from single-user editing is the presence of automatic locks. When a user
does any editing, a temporary lock is acquired automatically on the portion of the document to be
modi�ed. Automatic locks are used for concurrency control to prevent two users from simultan-
eously trying to edit at exactly the same place in the document.

DistEdit also provides explicit locks. These locks allow a user to deliberately lock the region
on which work is to be done, assuring that no other users can alter that region until the lock is
released. Explicit locks are invoked either through the control window or through commands which
can optionally be added to the editor.

A user can hold any number of locks at one time and can set time-out periods for both automatic
and explicit locks through the control window. The time-out for automatic locks is usually a few
seconds while the time-out for explicit locks is much longer, minutes or hours.

5



Figure 1: Sample screen display showing DistEdit versions of GNU Emacs and Xedit

6



DistEdit supplies a simple facility for synchronizing the cursors of di�erent users via the lock-
step option (see the control window in Figure 1). This option, when invoked, makes the cursor of
the user's editor e�ectively join the cursor of all other users who have also selected the lock-step
option. In the present design, no one owns the cursor. When any user with the lock-step mode
enabled moves his cursor, all users with the lock-step mode enabled will see their cursors move. If,
however, one user in the lock-step mode acquires a lock on the position of the shared cursor (for
instance, by starting to edit), then the ability to move the shared cursor is disabled for all other
users. If only one user has selected the lock-step mode, the option has no e�ect.

Several interaction paradigms can be supported using the above basic facilities. For instance, if
the group wants to interact in a manner where only one user is allowed to edit while others observe
changes, then all users can select the lock-step mode, and the user who will make changes can
explicitly lock the entire document (so that others are prevented from editing). On the other hand,
if the members of the group want to do concurrent, independent editing, then they could unselect
the lock-step mode and avoid explicitly locking large regions.

Any number of users may participate in an edit session. Users may join and leave a session
at any time without a�ecting other users. A failure on one user's machine simply results in that
user leaving the session. Should a user leave the session or experience a failure, the other users will
observe the change in the status window. The text being edited can be lost only if all users leave
the session and none of them have saved it.

A key point is that when multiple editors are being supported, usual editing commands will
continue to work for each editor. The only changes in a user's view are the appearance of the status
and control windows that speci�cally have to do with controlling a group session.

4 Software Architecture of DistEdit-based Editors

The high-level structure of a typical single-user text editor is shown in Figure 2. A user interface and
control section waits for input; when input is received, it is translated into a set of calls which move
the cursor or update the text. These text update routines modify the data structures which contain
the text. The results are displayed by a screen manager, which reads from the text structures and
displays the appropriate output.

The structure of editors modi�ed to use the DistEdit toolkit is shown in Figure 3. As shown,
DistEdit-based group editors use a fully replicated architecture, with each editor maintaining a copy
of the bu�er state. The bu�er representations do not have to be identical in each editor; however
modi�cations to the bu�er have to be done using a few standardized update primitives provide by
DistEdit. Each editor's text update routines are mapped to calls on the DistEdit primitives for
text update. Those DistEdit primitives �rst check for possible region overlap with updates of other
users. If no region overlap exists, the primitives do the operation locally �rst and then distribute
them over the network, using the ISIS communication package[2], to all the editors. DistEdit-

7



Control/

User Interface

Screen

Manager

Text Data

StructuresRoutines

Text Update

Figure 2: Typical structure of a single-user editor.

provided internal routines then map the received DistEdit primitives back to calls on the standard
access primitives, which are provided by each editor to update and access the editor's bu�er state.
The DistEdit primitives and the access primitives are discussed in Section 6.

Using a replicated architecture with di�erent bu�er representations is crucial for several reasons.
First, DistEdit is designed to support multiple, di�erent editors. Di�erent editors typically use
di�erent data structures to represent the editor bu�er; forcing a common bu�er representation on
all the bu�ers (as in a centralized scheme) would have required us to rewrite in all the editors the
substantial code that directly accesses the bu�er for display and navigation. Second, we wanted
to ensure a fast local response time to all operations done by a user. Using a centralized server
to maintain the bu�er state would have required going over the network for all updates or display
operations. Finally, a centralized architecture would not have been fault-tolerant, a key goal in our
design.

The DistEdit system is designed as a modular toolkit which can easily be applied to various
visual editors. The only desirable feature in an editor being adapted is that the editor have a small
number of subroutines which directly modify the text bu�er. If this is not the case, the editor will
require extensive modi�cations; this is probably an indication of poor editor design. The editor
need not localize the routines which read from the text bu�er.

5 Modi�cations Required in an Editor

The following are the basic modi�cations needed to convert a single-user text editor to into a group
editor using DistEdit:

� The editor code which directly modi�es the text bu�er must be mapped to calls on the
DistEdit text update primitives to achieve the same change. The editor routines which

8



Renamed Local

Editor

Text Update Routines

Control/

User Interface

ISIS

Screen

Manager

Text Data

Structures

Renamed Local

Editor

Text Update Routines

Control/

User Interface

ISIS

Screen

Manager

Text Data

Structures

Originating Editor Receiving Editor

Unchanged Editor Module

General DistEdit Module

Editor-Specific DistEdit Module

Other Editor

Other Editor

(Mapping to (Mapping to

DistEdit Primitives) DistEdit Primitives)

DistEdit

Editor-provided

Access primitives

Editor-provided

Access primitives

Primitives

DistEdit

Primitives

DistEdit-internal DistEdit-internal

Receive routines Receive routines

Text Update Routines Text Update routines

Figure 3: Structure of an Editor built using the DistEdit toolkit

9



indirectly modify the text bu�er by calling other routines normally do not require changes
(see Section 7.3 for one case which does require changes). Ideally, to reduce the work in
writing code for these mappings, all of the editor's text update operations (all routines which
directly update the text bu�er) should be contained within a small set of routines, perhaps
one to ten functions.

� Each editor must provide a common set of access routines. The access routines map the
DistEdit text update primitives back to the editor's original bu�er-modifying routines. As
we will see in Section 6, DistEdit uses very few text update primitives. Little work is therefore
required here.

� Each editor also must provide a common set of access routines for DistEdit to retrieve text
from the editor bu�er, to move and query the cursor, and to control when the screen is
updated. Any calls which perform screen updates must be removed from the editor's text-
update routines.

� The editor's input handling routines must be modi�ed to call DistEdit code when commu-
nication packets arrive from other editors.

� The editor optionally may provide user-interface code to support DistEdit capabilities such as
di�erent kinds of undo in a group environment, explicit locking of regions, and noti�cations
of users leaving or joining a group session. This code may be shared by di�erent editors,
as exempli�ed by the use of similar DE-session windows by both Xedit and Gnu Emacs in
Figure 1.

� Undo code must be disabled in the editor. Instead, the editor's undo routine should call the
DistEdit group undo primitives.

� The editor must call DistEdit primitives for the toolkit initialization and for opening �les.

All aspects of the system that deal with concurrency control, group undo, locking, and fault
tolerance are hidden within the DistEdit toolkit. All the above changes are such that they can be
carried out without knowing anything about distributed programming.

In our implementation, the editor's actual text update routines are renamed, typically by pre-
�xing a string such as \real "; they become the bottom layer in Figure 3 and remain the only
routines which actually modify the text. No modi�cations are required to these routines except
renaming.

Replacing the renamed update routines are a set of stub update routines. These stubs map the
update routines which the editor uses to calls to the DistEdit text update primitives.

The layering, as shown in Figure 3, was chosen to isolate the general-purpose DistEdit layers
from the editor-dependent layers. This allows an editor to be adapted to use DistEdit by supplying

10



only editor-dependent code; the DistEdit code need not change. Updates to the DistEdit code also
are simpli�ed, as the general DistEdit code is not intermixed with editor code and can be replaced
separately.

6 Editor/DistEdit Interface

This section describes the interface between an editor and DistEdit. This interface consists of
DistEdit primitives provided by the DistEdit library and of access primitives supplied by each
editor to allow DistEdit to retrieve and update the editor's state. The two types of primitives are
listed in Tables 1 and 2.

A DistEdit primitive is an operation provided by DistEdit that can be invoked from the code in
an editor. A single call to a DistEdit primitive can result in messages being sent across the network
and code being invoked in numerous other editors. In this sense, a DistEdit primitive is somewhat
like a remote procedure call, except that it could result in numerous remote executions, all hidden
from the caller of the primitive.

An access primitive is an operation that is callable from DistEdit to retrieve or update the state
of an editor. The routines implementing the access primitives are created separately for each editor
which is to use DistEdit. Most of the e�ort required to adapt an editor to use DistEdit is spent
creating these access routines. Very little original editor code must be modi�ed.

The selection of DistEdit primitives was a critical design decision in DistEdit. The types
of primitives include: editing primitives, locking primitives, noti�cation primitives, and control
primitives. Most important among these are the editing primitives, those that make changes to the
document. The issues in the selection of these primitives are elaborated next.

6.1 Editing Primitives

Editing primitives are those that modify the document state. In single-user editors, whether to
treat an operation as a primitive or as a sequence of other more primitive operations is dictated
primarily by e�ciency concerns. For instance, in a single-user editor, an IndentParagraph operation
may be treated as a primitive operation rather than composed as a sequence of InsertChar and
DeleteChar operations if it is simpler and more e�cient to indent a paragraph by directly accessing
the document bu�er than by calling InsertChar and DeleteChar operations on the bu�er. In a
group editor, on the other hand, there are many other factors that need to be considered:

Heterogeneity Issues: Every editor built using the toolkit has to be prepared to support all the
primitive operations. Thus, if it is expected that the toolkit will be used in an environment
with di�erent users using di�erent editors in the same group session, all the editors need to
have routines mapping the same set of primitives to updates on the bu�er. Thus, if Indent-
Paragraph were made a primitive and one wanted to support both Xedit and Emacs using

11



Table 1: DistEdit Library Primitives

de init() Initialize the toolkit

de open(�lename) Join a group editing session, or create a new one
de close() Leave a group editing session

de insert(position,text,length) Basic operations to modify bu�ers through DistEdit,
including automatic locking and concurrency control

de delete(position, length)

de lock region(region,
timeout)

Explicitly lock a region; optional to use.

de unlock region(lock id) Explicitly unlock a region; optional to use.
de lock info(position,
lock info)

Supplies information on lock id, its range, and
ownership

de local undo() Executes the per-user history undo function
de global undo() Executes the global history undo function
de reset undo() Switches out of history undo mode

de setting set(setting-name,
value)

Set/retrieve settings such as lock timeouts, user
name, debugging ag.

de setting get(setting-name)

de run() Allow DistEdit to carry out its processing

de fds() Event-loop blocking utilities to know when de run
should be called

de select()

de notify set(join/leave/lock
change/cursor change)

Requests that DistEdit inform the editor of changes
in group status, locks, and cursor positions by calling
loc notify

12



Table 2: Editor-provided Access Primitives

loc insert(position,text,length) Basic operations which allow DistEdit to modify a
bu�er; must provide a mapping into editor's internal
bu�er-modifying operations.

loc delete(position, length)

loc cursor set(position) Allows DistEdit to move the cursor

loc cursor get(position) Supplies DistEdit with current cursor position

loc display update() Allows DistEdit to control when the display is
updated

loc text get start(position,
length)

Prepares to return portion of editor's bu�er data in
chunks

loc text get next() Returns next chunk

loc notify(status report) Noti�es the editor of changes in group status, if
desired

DistEdit, both editors would need to be able to understand the IndentParagraph command.
Clearly, the amount of work required in modifying the editors can be large if the number of
primitives is large and heterogeneity is to be supported.

Communication and Processing Requirements: Communication and processing requirements
will usually go down if a complex operation is made a primitive operation, rather than mapped
to a sequence of more basic primitives. For instance, it probably would be cheaper to trans-
mit an IndentParagraph command, rather than the sequence of InsertChar and DeleteChar
commands to which it might map.

Support for Undo: Undo implementation is much more complex in a group editor [17] than in a
single-user editor. In particular, the ability to reverse and resequence operations is needed for
all the primitive operations. It is much easier to provide this capability if the set of primitive
operations is small. Thus, to simplify the implementation of undo, it is better to implement
the IndentParagraph operation as a sequence of more basic primitives.

Reordering of Operations: Even if undo is not supported in a group editor, there may be reas-
ons to keep the primitives restricted to a small set. For instance, if a scheme such as that in
[5] is used to ensure consistency, functions to resequence operations are required (Top matrix
in [5]). De�ning such functions is much easier if the set of primitives is small.

In DistEdit, we chose to support a very simple and general model of text editing. A text bu�er
(document) is considered to be a single string of characters with a cursor pointing somewhere in

13



that string. Characters in the text are referenced by their o�set from the beginning of the text,
and line breaks are treated as `newline' characters. This simple model is compatible with almost
any visual text editor, allowing DistEdit to work with many di�erent editors.

There are two basic DistEdit editing primitives which modify the bu�er: de insert(position,
string, length) and de delete(position, no. of characters). A group editor using DistEdit must use
these two primitives to carry out all editing operations. All other editing operations which an editor
provides must be mapped into one or more de insert and de delete calls.

For each editor, corresponding access primitives loc insert and loc delete must be provided to
allow DistEdit to change the editor's bu�er. These routines are called when editing operations are
received from other editors (see Figure 3).

These two text update primitives were chosen for their generality, simplicity, and conciseness.
They are general enough to perform any desired editing operation, given that line breaks are handled
properly. They are quite simple to understand and implement in any editor. Finally, they are quite
concise; only two are required. This reduces the e�ort required to implement the primitives when
modifying an editor to use DistEdit; supporting more primitives is simply more work.

In DistEdit, only the text bu�er and cursor position are shared. Cut bu�ers, bookmarks, and
many other features found in some editors are outside the scope of DistEdit; they remain strictly
local to each user. These features appeared to be of questionable value for sharing and are not even
provided by all editors. Thus, we chose to keep them local to each editor, rather than to add them
to DistEdit at this time.

6.2 Locking Primitives

DistEdit-based group editors use an automatic locking scheme to manage concurrent access to
the document. Before any de insert or de delete is carried out, DistEdit acquires the smallest
possible lock for the a�ected region, ensuring that multiple users do not modify the same area
simultaneously. This form of locking is hidden from the editor; the toolkit takes care of everything.
Locks automatically time out after a chosen delay. Implementation of the locking strategy is
described in further detail in Section 7.2.

One implication of locking is that a de insert or de delete may fail due to an inability to lock the
appropriate part of the document. This can cause problems for an editor which internally assumes
that all text-modifying routines will succeed. If this is the case, the transaction feature described
in Section 7.3 can be used to avoid failures from becoming visible to the editor.

DistEdit also supports explicit locking, where a user deliberately selects and locks a region of
the document. The primitives de lock region and de unlock region can be called for this purpose.
Use of these primitives is optional; an editor can choose to use only automatic locking.

Each lock is associated with a contiguous region of text covering at least one character; a user
can change a region only if he owns a lock covering the entire region. Inserting a string requires
obtaining a lock on the character which precedes the point of insert. Deleting a string requires a

14



lock covering the characters of the string. To permit inserts at the beginning of a bu�er, the bu�er
is considered by DistEdit to have an imaginary, undeletable character marking the beginning of
the bu�er.

As insertions or deletions are performed within the region, the associated lock expands or shrinks
accordingly. A lock is deleted automatically if it shrinks to size zero.

Regions covered by locks do not overlap. When a user requests a lock for a region that already
contains locks belonging to him, all those locks are merged into a new lock. The new lock covers
the smallest contiguous region that contains the previous locks and the requested lock.

At the toolkit level, time-outs can be independently set for each lock. At the user level, our
DE-session window currently allows two time-out values to be set by each user, one for all automatic
locks and one for all explicit locks.

6.3 Noti�cation Primitives

DistEdit allows an editor to take action based on events occurring in other editors. An editor
can use the de notify set primitive to request that DistEdit inform it of any changes in the cursor
positions, group status, and locks held by group members. Based on this information, the editor
could highlight locked regions or supply other features. Using these primitives is optional.

To provide cursor noti�cation to other users, DistEdit calls the editor access primitive loc cursor get
to determine the current cursor location. The other types of noti�cations are supported by monit-
oring calls to primitives such as de insert, de delete, de open, and de close.

6.4 Control Primitives

DistEdit supplies control primitives to manage group membership, DistEdit settings, and to control
when DistEdit runs. It also requires that access routines be supplied by each editor to control the
editor's cursor and display updates, and to retrieve the contents of the text bu�er.

The de open primitive searches for an existing group session for a particular �le. If it �nds one,
it transfers the text bu�er from that group to the new user, automatically bypassing the �le on
disk. If no session exists, it loads the �le and creates a group session with a single member. The
de close primitive is used to leave a group editing session. See Section 7.5 for details of �le access.

DistEdit maintains a number of settings which can be accessed with the de setting set and
de setting get primitives. Settings include the name of the user and lock timeout periods for both
automatic and explicit locks.

To allow DistEdit to process activity from other users, the editor's event loop must be modi�ed
to let DistEdit run when the editor is not busy. The de run primitive is then called from the editor's
main event loop; this primitive causes DistEdit to process all network packets and update the
editor's bu�er with any recent changes. The input blocking of the editor's normal keyboard/window

15



system can be supplemented with the de select and de fds primitives to determine when DistEdit
needs to run.

7 Implementation of DistEdit Primitives

This section describes the implementation of key DistEdit primitives listed in Table 1. When a
DistEdit primitive is invoked, locks must be acquired if necessary, and messages have to be sent
out to other editors to update their state. Because users can edit concurrently, and updates are
performed locally �rst, editors potentially could process updates in di�erent orders. Care must be
taken to ensure that resulting state is identical in all editors and matches the expectations of the
users. The following subsections address this issue and other implementation issues.

7.1 Underlying Communication Software

ISIS [2], a toolkit for programming distributed applications, was chosen as our communications
package because of its elegant broadcast facilities, its error handling, and its lightweight process
system.

The broadcast facilities of ISIS remove any need for DistEdit to deal with low level communica-
tions; no messages are lost and all broadcasts are guaranteed to arrive. A globally ordered broadcast
is available which guarantees that messages arrive in the same order to all the participants in the
group.

Users may enter a group session any time. Whenever a user enters a session, the editor state
is transferred from one of the current users to the new user's editor. ISIS provides mechanisms for
noti�cation of new users and fault-tolerant communication protocols to facilitate state transfer.

Machine crashes may occur at any time, and users can leave the group at any time, as long
as there is at least one remaining user. We have designed the toolkit under the assumption that
each editor in the session will be maintaining its own state. The ISIS system ensures that either all
the active participants receive a broadcast, or none of them do, when the sending site fails in the
middle of the broadcast. Therefore, machine crashes or users leaving the session still leave other
users in a mutually consistent state.

The lightweight process system in ISIS allows broadcasts to be received while waiting for key-
board input; also, events, such as a group member failing, can be handled by triggering a lightweight
process.

7.2 Dealing with Concurrent Updates

Unlike the earlier version of DistEdit described in [12], the current version of the DistEdit toolkit
provides support for concurrent updates. To keep response time low, any update is performed
locally �rst and then broadcast to other sites. It is well known that concurrent updates can

16



Table 3: DistEdit Protocol Messages

LOCK(previous lock id, o�set,
length, last lock id)

attempts to acquire a lock; globally ordered

UNLOCK(lock id) owner of a lock releases the lock; globally ordered

INSERT(lock id, o�set, string,
undo info)

owner of given lock inserts text within locked region

DELETE(lock id, o�set,
length, undo info)

owner of given lock deletes text within locked region

CURSOR(lock id, o�set) noti�es of a user's cursor position

JOIN(member id) ISIS informs of a new group member

LEAVE(member id) ISIS informs of a group member leaving

STATE TRANSFER(bu�er
contents, lock table)

transfers state of the current bu�er and state of
the locks to the new UNLOCKed (JOINing) group
member

INFO(member info) member informs group of user name and host name

lead to inconsistencies in the bu�er state at various sites [5]. We use an e�cient locking-based
solution which requires locks to be acquired only at the start of an insert/delete but not during
an insert/delete. For instance, if a user starts to insert a sequence of characters, there is a slight
network delay in acquiring a lock prior to the insert of the �rst character, but after that inserts
proceed at the speed of the local editor. Another reasonable alternative would have been to use
the somewhat more complex scheme suggested in [5], which does not require locks but does require
messages to contain version vectors and requires messages to be processed against a command log.

Table 3 shows the messages in the protocol which DistEdit uses to maintain consistency among
editors.

7.2.1 Insert/Delete Primitive Processing

All changes to a text bu�er begin with a call to the DistEdit de insert or de delete primitive.
DistEdit consults a lock table to determine whether the user has a lock covering the a�ected region.
If DistEdit �nds a lock, it immediately updates the local editor's bu�er (for a quick response time),
and broadcasts an INSERT or DELETE message to the group.

If the lock table indicates that the user does not have a lock covering the a�ected region, DistEdit
�rst attempts to acquire a lock, as described in Section 7.2.3. This process requires several network
messages and can cause some delay. If the lock attempt succeeds, the INSERT or DELETE message
proceeds. If the lock fails, the primitive fails, and the transaction mechanism of Section 7.3 may

17



be used to recover.

7.2.2 Lock-relative Messages

INSERT and DELETE messages do not contain the absolute positions where the operations are to
occur, since these positions may be di�erent for other users depending on messages in transit. For
example, suppose users A and B are working on a document. User A is working at the top, and
has the �rst 50 characters locked; user B has the following 50 characters locked. Suppose, at the
same time, both users insert a character at the beginning of their locked regions, user A at position
1, user B at position 51. Both immediately update their local bu�ers and send out an INSERT
message. A, upon receiving B's message, must perform performs B's operation at position 52, not
51, because A inserted a character earlier in the document that B did not know about when the
message was sent.

To avoid this address shifting problem, INSERT and DELETE messages contain character
positions relative to the beginning of the locked region to be changed. In the above example, B's
INSERT message would indicate that the operation is to occur at o�set 0 from the starting position
of the lock held by B. All locks are given globally unique identi�ers so that they can be referenced
in such messages.

Because only the owner of a lock can make changes within a locked region, the owner imme-
diately can perform any change within the region, and INSERT/DELETE messages sent to other
editors need only be ordered relative to the sender. This type of message can be sent directly to
the recipients, with no need for a central point for routing. INSERT and DELETE messages are
therefore very fast.

7.2.3 Lock Acquisition

For locking to ensure consistency between the bu�ers of di�erent editors, the editors must have
strictly consistent views of the locks. DistEdit maintains a table for each group member which
contains every existing lock. Thus, the lock table, like the bu�er text, is replicated for every group
member.

The LOCK and UNLOCK messages use the ISIS globally ordered broadcast mechanism to
achieve consistency in the lock tables. When a lock is requested for a given region, DistEdit
broadcasts a LOCK message containing the request to the entire group. ISIS guarantees that all
LOCK/UNLOCK messages are received in the identical order by every member. If the region in
an incoming LOCK message is not already locked, the lock request is granted and a new entry
is created in the lock table. If the region overlaps an existing entry in the lock table, the lock is
refused unless the lock is owned by the same user. After sending a LOCK message, the sender
waits to receive the message back (globally ordered) to determine whether the request succeeded
or failed. Because every group member receives the same messages in the same order, from the

18



same starting state, the lock tables are always identical. Each editor independently uses the order
of arrival to assign the lock a globally consistent, unique identi�er.

Only the owner of a lock can release a lock using the UNLOCK message. This ensures that
the owner is not planning to send any further INSERT or DELETE messages based on that lock.
DistEdit automatically sends an UNLOCK message when a lock has not been used within a user-
de�ned period. If the owner crashes or exits without releasing his locks, other editors receive
noti�cations through ISIS about a member failure, and they release all the locks belonging to that
owner (such noti�cations are hidden from the editor code { the toolkit code handles the noti�cations
and releasing of locks). ISIS guarantees that all members of the group have a consistent view of
member failures.

Locks, like INSERT and DELETE messages, use a lock-relative addressing scheme. DistEdit
converts the starting absolute address of a lock request to an o�set from the end of the nearest
prior lock in the table. Using absolute o�sets in a lock acquisition request would have presented
problems in the following scenario: suppose user A requested a lock at position 50 and, at the same
time, user B inserted one character at position 1. Furthermore, assume that the insert operation
is received at other editors before the LOCK message. In such a case, the lock really should be
granted at position 51, not 50. By making the lock request contain the o�set from the end of the
previous lock, we avoid the need for such adjustments in positions.

Using a reference to the prior lock in a new LOCK message, however, can present two problems.
First, the referenced lock could have been deleted by the time the new LOCK message is received.
Second, another LOCK message with the same reference from a di�erent user, and perhaps even the
subsequent UNLOCK message, could be received, invalidating the relative address. Both problems
are fairly rare { we had to try editing operations several times to create the right timing. The
solution therefore adopted in DistEdit is to have the lock request fail when such situations are
detected. Detecting them is accomplished easily by including the identity of the last received lock
in the LOCK message. Another possible solution would have been to log LOCK and UNLOCK
messages and use that log to adjust the LOCK messages based on the state when they were sent.

A single LOCK message can contain any number of lock requests. The entire set of locks in
the message is granted or rejected as a group. Thus, if an operation requires a large number of
changes throughout a document, all necessary locks can be acquired at once to assure that the
operation will succeed as a single transaction. This facility is used by the transaction mechanism
that is described next.

7.3 Transactions

Since DistEdit only provides two basic editing operations, de insert and de delete, any other editing
operations to be provided by an editor must be mapped to a sequence of these operations. An
important issue then is whether to treat that sequence of lower-level operations as a single atomic
(indivisible) action or as a sequence of independent operations.

19



In single-user editors, treating a group of simple operations as one larger, user-level operation is
important primarily for implementing undo; a user, upon doing an undo operation, usually expects
all the changes associated with the last single user-level action to be undone, rather than just some
of them.

In a group editor, the issue becomes important because of two assumptions that are embedded
in the code of most existing editors. First, editors assume that operations like insert and delete
always succeed; with DistEdit, operations can fail if they cannot acquire the needed locks. Second,
they assume that nothing will change the bu�er in the middle of a user-level operation.

We faced the above issue in handling the replace-string command in Gnu Emacs. The replace-
string command is implemented as a Lisp function that searches for the speci�ed string, stores its
position, replaces the string at that position with a new string, and then continues the search from
the stored position added to the length of the replacement string. The function assumes that after
the replace, the cursor has moved to the end of the replaced string. If the replace fails, as it could
due to locks, or if intervening updates are received, the algorithm could replace the wrong string
or start the next search from the wrong location.

Our goal was to deal with the above two problems but not to require changes to the substantial
code that implements multi-operation actions in existing editors. We accomplish this goal by using
a delayed lock acquisition strategy for providing atomicity. The beginning and end of a transaction
are determined using the de run primitive. The editor calls this primitive each time it waits for
input. This is considered to mark the beginning or end of a transaction. All activity in between
calls to de run is considered a transaction. For example, say a user initiates an IndentParagraph
function from the event loop. This function will generate a lengthy sequence of de insert and
de delete operations before returning to the user for the next command. The entire sequence
between calls for user input is considered to be one transaction.

During a transaction, DistEdit records each de insert and de delete, and executes each one on
the local bu�er. Because every command is executed, the primitives never fail, and any non-failure
assumptions built into the editor are satis�ed. During the transaction, no changes are displayed on
the editor screen. When the transaction ends, DistEdit uses a single LOCK message to attempt
to acquire all locks required for the transaction that are not already held. If the lock request is
granted, the transaction succeeds; the local display is updated and the changes are broadcast to
other users. If the lock request fails, the transaction fails, and the DistEdit undo mechanism is
used to roll back all the changes. In this case, the user or the editors never see that the changes
actually occurred.

The above strategy of relying on calls to de run to determine transaction boundaries does not
quite work for interactive commands such as a query-replace in Emacs, which asks the user whether
to make each individual replacement. In that case, de run will get called whenever user is asked
for input and each set of changes between prompts will be considered to be a separate transaction,
which we �nd acceptable. The problem is that if a replace operation fails due to the inability to
acquire a lock, any non-failure assumptions built into the query-replace routine will not be satis�ed.

20



Such high-level routines that interact with the user simply have to be rewritten to make failure
assumptions. Fortunately, most editors have only few such routines.

Transactions using delayed lock acquisition incur a negligible penalty for basic editing operations
and actually enhance the performance of complex operations. No additional messages are ever
required; however the operations may have to be undone locally if the transaction fails { a rare
occurrence in practice. For complex operations, transactions e�ectively batch the lock request
messages into a single message, reducing overhead.

The transaction mechanism can be enabled or disabled through the de setting set primitive.
For editors which make non-failure assumptions, such as Gnu Emacs, we recommend always using
the transaction facility, since the overhead is low.

7.4 Undo

Implementation of undo is more complex in group editors because a per-user undo facility is needed
that undoes a user's last action rather than the last action seen by the editor. In [17], we proposed a
general framework for undoing actions in collaborative systems. The framework takes into account
the possibility of conicts between di�erent users' actions that may prevent a normal undo. The
framework also allows selection of actions to undo based on who performed them, where they
occurred, or any other appropriate criterion. DistEdit provides a per-user undo facility using those
ideas that allows users to undo just their own changes. It also provides a global undo facility that
allows users to undo globally last actions irrespective of who executed them.

To implement per-user undo, each editor maintains a history list which contains all prior in-
sert/delete operations. Each operation is tagged with the identity of the user who performed it.
When the de local undo primitive is invoked, DistEdit looks through the history list and �nds the
last operation that was done by the user. DistEdit then attempts to undo the operation by shifting
the operation to the end of the history list using a sequence of transpose operations [17]. If the
operation is shifted successfully (i.e., no conicts with later changes of other users), the operation
is undone by executing its inverse operation. To update the state of other editors, the inverse
operation is broadcast to other editors. For more details of this strategy, see [17].

7.5 File Management

Several problems arise from sharing document �les. First, when a user requests a �le be opened for
editing, DistEdit must determine whether anyone else is editing that �le and, if so, load from the
active group session rather than from the �le. Second, a user should not be allowed greater editing
access rights using DistEdit than the �le system would allow. Third, care must be taken should
several users attempt to save a shared �le at the same time.

In determining whether several users wish to edit the same particular �le, it is not possible
simply to examine the path names of the �les; because of network �le systems, a �le can be

21



potentially referenced by di�erent paths.
When the de open primitive is called to open a �le, DistEdit searches in the directory containing

the �le for an auxiliary �le of the same name without the path pre�x, but pre�xed by `.de.'. For
example, when opening the �le /u/aprakash/docs/test�le, DistEdit will search for the auxiliary �le
/u/aprakash/docs/.de.test�le. This auxiliary �le contains a unique identi�er to be used as the ISIS
group name for the particular �le. If no such �le exists, DistEdit creates it so other users will
be able to join the session. If a �le is a soft link, the link is resolved before applying the above
procedure.

If a �le has multiple hard links to it, the above procedure may fail; one could deal with that
by using an alternative, more complex, approach of looking up machine name, device name, and
i-node number of the �le being edited, and using their combination as the unique id.

After obtaining the unique identi�er, DistEdit instructs ISIS to join or create a group session. If
no session exists (as indicated by ISIS), DistEdit loads the editor's bu�er from the �le. Otherwise,
DistEdit employs the ISIS state transfer mechanism to obtain the current state of the bu�er and
the lock table from a member of the group.

DistEdit provides read-only/update editing rights based on a user's access rights to a �le. A
user who has only read-only permission to a �le is not allowed to make changes using a DistEdit
group editor. In such a case, the de open primitive sets an internal read-only ag. When this
read-only ag is set, the de insert and de delete primitives always fail, just as if a lock could not be
acquired, thus preventing the user from making changes through the group editing session. Such a
user, however, may still observe the changes of others and use all other DistEdit facilities.

We have found that the normal �le save routines of editors work quite well with DistEdit. There
is, however, a potential problem. If several group members were to save di�erent versions (due to
network message latency) at approximately the same time, the resulting �le could be di�erent than
any user's version of the �le. One approach that could be used to solve this problem would be for
DistEdit to provide a locking mechanism for �le saves. The editor requesting the save would have
to acquire this lock before the save and release it afterward.

8 Experience in Using DistEdit

8.1 Adaptation E�ort

The amount of e�ort required to adapt editors we have used is fairly low. Table 4 shows the total
size of three editors, the lines of code added to support DistEdit, and the number of lines in the
body of the editor code which had to be changed.

To give an idea of time required, the editor most recently adapted, Xedit, required about
four hours for the conversion. GNU Emacs, which was adapted gradually as DistEdit developed,
required much more e�ort because of its complex, multi-platform input code, and because we were

22



Table 4: Changes Required to Adapt Editors for DistEdit

Editor Total Editor LOC LOC Added LOC Changed

GNU Emacs 75,000 450 5

MicroEmacs 20,000 60 6

Xedit 16,000 250 30

solving problems related to concurrent updates, transactions, and group undo while working on the
GNU Emacs conversion.

We considered adapting the vi editor to use DistEdit but concluded it would be too di�cult.
The vi bu�er modi�cation routines were spread across the entire system, and much of the code was
designed originally for ex command-line interaction, a style which is not amenable to group editing.
We have examined Elvis, a functional clone of vi and believe it can be adapted to use DistEdit.

8.2 Usage Experience with the Editors

We have used the editors developed using the toolkit internally within our group as they have been
evolving. Our experience indicates that people are more likely to use a group editor consistently if
they do not lose functionality in switching from the corresponding single-user editor. The earlier
versions of DistEdit-based Gnu Emacs, our favorite editor, did not behave as expected as they did
not provide per-user undo. Furthermore, they did not deal properly with multi-operation actions.
The current version of DistEdit-based Gnu Emacs addresses these problems using the techniques
outlined in this paper and has been found to be much more satisfactory. For results of usage studies
with group editors in general, see [6].

Work still needs to be done for support of shared editing of multiple bu�ers { at present,
editing multiple �les in a shared manner requires opening one editor per �le, as the DistEdit
library primitives allow only one �le to be edited in the shared mode.

Performance of the editors built using the toolkit has been very satisfactory. We have used
them primarily in local area environments. Local updates are done with no noticeable delay. The
updates on other editors usually appear immediately. However, if the network is congested, updates
messages are sometimes batched (by ISIS) and after a small delay, several updates are seen in rapid
succession.

9 Conclusions

The DistEdit toolkit has allowed the creation of editors which provide a seamless transition between
individual and group editing. These editors, which include Gnu Emacs and Xedit, provide a familiar

23



and powerful work environment in a group setting, simplifying parallel work as well as facilitating
close coordination. Adapting editors to group use with the toolkit has required surprisingly little
e�ort. The toolkit provides support for all necessary distributed systems protocols, concurrency
control, fault-tolerance, and synchronization. It also supplies powerful additional features, such as
undo, to all editors which use it.

The original motivation behind the use of simple, standard primitives for communications in
DistEdit was to facilitate migration of existing editors to group use. It has, however, turned out that
the design is also appropriate for group editors where only a single editor interface is supported.
Choosing more complex primitives simply would mean more work in implementing transactions
and the group undo facilities.

The current version of the toolkit only provides global and per-user history undo. In [17], we
suggested that other undo methods, such as region-undo and time-based undo, also might be useful
in group environments. We plan to enhance the toolkit to provide support for these other types of
undo facilities.

We also plan to work on building toolkits similar to DistEdit for other types of documents such
as rich text and graphics. Supporting such document types will require de�ning the semantics
of their primitive operations so that services such as group undo and concurrency control can be
supported.

10 Acknowledgements

The authors would like to thank the referees for their valuable comments. This work reported here
has been supported by the National Science Foundation under the grant number IRI-9216848 and
by a fellowship from AT&T Bell Laboratories.

References

[1] H. M. Abdel-Wahab, S. Guan, and J. Nievergelt. Shared workspaces for group collaboration:
An experiment using Internet and Unix inter-process communication. IEEE Communications
Magazine, pages 10{16, Nov. 1988.

[2] K. Birman et al. The ISIS System Manual, Version 2.0, April 1990.

[3] P. Dewan and R. Choudhary. A exible and high-level framework for implementing multi-user
user interfaces. ACM Transactions on Information Systems, 10(4):345{380, October 1992.

[4] C. Ellis, S.J. Gibbs, and G. Rein. Design and use of a group editor. In G. Cockton, ed-
itor, Engineering for Human-Computer Interaction, pages 13{25. North-Holland, Amsterdam,
September 1988.

24



[5] C. Ellis, S.J. Gibbs, and G. Rein. Concurrency control in groupware systems. In Proceedings
of the ACM SIGMOD '89 Conference on Management of Data, pages 399{407. ACM Press,
1989.

[6] C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware: Some issues and experiences. Communic-
ations of the ACM, pages 38{51, January 1991.

[7] M. Elwart-Keys, D. Halonen, M. Horton, R. Kass, and P. Scott. User interface requirements
for face to face groupware. Technical Report CMI-89-020, Center for Machine Intelligence,
Ann Arbor, MI, December 1989.

[8] R. Fish, R. Kraut, M. Leland, and M. Cohen. Quilt: A collaborative tool for cooperative
writing. In Proceedings of ACM SIGOIS Conference, pages 30{37, 1988.

[9] S.J. Gibbs. LIZA: An extensible groupware toolkit. In Proc. of the ACM CHI'89 Conference
on Human Factors in Computing Systems, pages 29{35, April 1989.

[10] I. Grief, R. Seliger, and W. Weihl. Atomic data abstractions in a distributed collaborative edit-
ing system. In Proc. of the 13th Annual Symposium on Principles of Programming Languages,
pages 160{172, 1976.

[11] D. Halonen, M. Horton, R. Kass, and P. Scott. Shared hardware: A novel technology for
computer support of face to face meetings. Technical Report CMI-89-015, Center for Machine
Intelligence, Ann Arbor, MI, November 1989.

[12] M. Knister and A. Prakash. DistEdit: A distributed toolkit for supporting multiple group
editors. In Proceedings of the Third Conference on Computer-Supported Cooperative Work,
pages 343{355, Los Angeles, California, October 1990.

[13] L. McGu�n and G. M. Olson. ShrEdit: A shared electronic workspace. Technical Report
CSMIL Technical Report No. 45, The University of Michigan, Ann Arbor, 1992.

[14] C.M. Neuwirth, D.S. Kaufer, R. Chandhok, and J.H. Morris. Issues in the design of com-
puter support for co-authoring and commenting. In Proceedings of the Third Conference on
Computer-Supported Cooperative Work, pages 183{195, Los Angeles, California, October 1990.

[15] R.E. Newman-Wolfe and H. K. Pelimuhandiram. MACE: A �ne-grained concurrent editor. In
Proceedings of the ACM/IEEE Conference on Organizational Computing Systems (COCS 91),
pages 240{254, Atlanta, Georgia, November 1991.

[16] J.F. Patterson, R.D. Hill, S.L. Rohall, and W.S. Meeks. Rendezvous: An architecture for
synchronous multi-user applications. In Proceedings of the Third Conference on Computer-
Supported Cooperative Work, pages 317{328, Los Angeles, California, October 1990.

25



[17] A. Prakash and M. Knister. Undoing actions in collaborative work. In Proceedings of the Fourth
Conference on Computer-Supported Cooperative Work, pages 273{280, Toronto, Canada, Oc-
tober 1992.

[18] M. Roseman and S. Greenberg. GroupKit: A groupware toolkit for building real-time conferen-
cing appliations. In Proceedings of the Fourth Conference on Computer-Supported Cooperative
Work, pages 43{50, Toronto, Canada, October 1992.

[19] M. Ste�k, G. Foster, D.G. Bobrow, K. Kahn, S. Lanning, and L. Suchman. Beyond the Chalk-
board: Computer support for collaboration and problem solving in meetings. Communications
of the ACM, 30(1):32{47, Jan. 1987.

26


