
Efficient Object Serialization in Java

Lukasz Opyrchal and Atul Prakash
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109-2122, USA

E-mail: {lukasz, aprakash}@eecs.umich.edu

Abstract*

Object serialization is the ability of an object to write a
complete state of itself and of any objects that it
references to an output stream, so that it can be recreated
from the serialized representation at a later time.
Pickling, the process of creating a serialized
representation of objects, has been investigated for many
years in the context of many different distributed systems.
Sun Microsystems introduced a simple and extendible API
for object serialization in version 1.1 of the Java
Development Kit. Application developers can use this
standard serialization in their applications, or they can
develop custom versions for different user-defined classes.
Many distributed applications that use standard
serialization to communicate between distributed nodes,
experience significant degradation in performance due to
large sizes of serialized objects. We present a number of
improvements to the serialization mechanism aimed at
decreasing pickle sizes without visible degradation in
serialization performance. Through performance results,
we show that it produces pickles up to 50% smaller
without degrading serialization performance.

1. Introduction

Many of today’s distributed systems use objects as the
means of communication between nodes. A method for
transferring Abstract Data Types is presented in [8] and
later extended in [4]. Java’s pickling system, described
by Riggs in [19], is a direct derivative of those systems.
The idea is to be able to capture the state of a Java object
in serialized form for transmission or storage. Pickling
defines the serialized form to include enough additional
information to be able to identify the types of objects and
the relationships between objects within a stream [19].
This additional information is necessary in the process of
recreating objects from their serialized representation.

Java provides a generic pickling mechanism, which is
able to serialize and deserialize any object that
implements the java.io.Serializable interface. Java

* This work is supported in part by the National Science Foundation
under cooperative agreement IRI-9216848 and under grant
ATM-9873025

serialization is extensible and customizable [11]. There
are many problems that have not been addressed by
current implementation (jdk 1.1.6). One of them has to do
with performance and specifically with the size of pickles
produced by the system. When serialization is used to
transfer objects in a distributed application, large pickles
adversely affect the performance because of greater
network latencies for large messages [2]. The standard
algorithm includes some optimization techniques (such as
the referencing mechanism described in Section 3), but
further improvements can be made.

This paper describes improvements to the standard
Java serialization algorithm aimed at decreasing pickle
sizes. The improvements do not change either the
serialization semantics or the API, so the new mechanism
can transparently replace the old one (without any
changes necessary to applications using serialization).
Current implementation cannot read objects serialized by
the old algorithm, but it can be easily extended to
recognize which algorithm was used during serialization
and to call the appropriate read function. The algorithms
presented here specifically improve the Java serialization
mechanism, but this work can easily be generalized to
other systems requiring object serialization.

We also discovered that a large set of applications that
use message-based protocols do not take advantage of the
optimizing features described in this paper as well as the
optimizations included in the standard algorithm. An
entirely new scheme is needed to improve serialization
performance in this class of applications. This is the
subject of our current work.

This paper is organized as follows. Section 2 describes
related work. Section 3 briefly describes the design of the
standard Java serialization scheme as well as some of the
inefficiencies found in that algorithm. Section 4 describes
the design of the new serialization scheme, and Section 5
describes its implementation. Experiment results and
their analysis are presented in Sections 6 and 7. Section 8
presents our conclusions and directions for future work.

2. Related Work

The problem of transferring abstract data types (ADTs)
has existed since the first distributed systems were
developed. The first detailed treatment of this problem

appears in [8]. The authors define a canonical form for
transferring of all primitive data types. ADTs are
transferred as collections of those primitive data types.
The “Network Objects” paper [4] extends this work to
include fingerprints, references for repeating objects and
special functions for arrays and strings. Attempts have
been made to standardize the method for transferring
ADTs [16]. The proposed NDR standard defines a
standard network format for ADTs and a network
representation for all primitive data types. Many of the
current object based distributed systems include an API
for communicating objects or for persistent storage of
objects. An example is the CORBA system and its
Externalization Service [15].

The serialization API appeared in the Java language in
version 1.1 of the JDK. Java serialization is described in
[19] and [11]. It adds a simple versioning mechanism and
user customization to the system described in [4].

Work in data compression is very relevant to this
research. We are still investigating feasibility of using
text/data compression algorithms to compress certain
parts of pickles. A very good description of standard
compression algorithms, including LZW, can be found in
[5]. Another related area of research is the work on
TCP/IP header compression. A very good overview can
be found in [10].

3. JavaSoft Implementation

The main advantage of the standard serialization
mechanism is its simplicity. It allows serialization of any
type of object by making a simple function call to the
writeObject() method. Deserializing an object is achieved
by a corresponding call to the readObject() function.

During the serialization process, the name of the class
and its fingerprint are written to the stream. This is
followed by a sorted list of non-transient field names and
full names of the superclass and class names of all non-
primitive data members. This process is then repeated
recursively for all referenced classes. This means that for
every non-primitive data member, its full class name is

written to the stream twice. All the values of the different
data members are written to the stream following the
header information. Fingerprints are included in pickles
for class identification, and the sorted list of field names is
used by the version control mechanism [11]. This process
is described in more detail in [17], [19], and [11]. A
sample class and it’s serialized version is presented in
Figure 1 (The text in bold in the above figure indicates the
class/package names which are unnecessarily repeated in
the pickle).

The standard serialization mechanism includes the
referencing mechanism as one method for optimizing the
size of pickles. An object and it’s class description
receive a reference number which is written to the stream
in case of multiple references to the same object or class
description. This mechanism produces sizable savings in
pickle sizes, especially if large numbers of objects or very
complex objects are serialized at a time, but there are still
places for improvement.

We notice a number of inefficiencies. Most class
names are written to the stream twice and package names
are often repeated many more times than that. Because
class description takes up more than 50% of a pickle,
reducing it will have a big impact on the pickle size.

The referencing mechanism was designed for
streaming protocols. It works best in applications where
the serialization stream is open through out the lifetime of
the application. That means that message-based
applications, which serialize a small number of objects
into a buffer and then send it in a message via
TCP/UDP/multicast, do not take advantage of
optimizations built into the serialization algorithm
(namely the referencing mechanism). We are exploring
solutions to this problem (see Future Work).

4. Design of the Improved Algorithm

The design of the new serialization algorithm was
subject to a number of restrictions. First, we decided to
keep the same semantics as the standard Java serialization
mechanism. That means that the old serialization code

....sr. testing.

production.Chat.

TestChat.{?y.7.^

...I..intDataL..

tdt."Ltesting/pr

oduction/Chat/Te

stData;xp....sr.

testing.product

ion.Chat.TestDat

a.g..D.N’...I..i

ntDataxp....

package testing.production.Chat;

public class TestChat implements java.io.Serializable {
 private int intData = 1;
 public TestData td = new TestData();

 public TestChat(){}
}

package testing.production.Chat;

class TestData implements java.io.Serializable {
 private int intData = 1;

 TestData(){}
}

Figure 1: Sample classes and their serialized form

can be replaced with the new implementation without any
changes to the applications on top. Changing the
semantics of serialization is further discussed in Section 8.
Second, we wanted to make sure that the new algorithm
does not degrade performance of the serialization process.
Performance studies of both algorithms are included in
the experiments section below.

The standard Java serialization is already using the
referencing mechanism to avoid repeating class
descriptions multiple times. In many cases, the pickles
are still very large and improvements can be made. We
have decided to take advantage of the package name
hierarchy used in Java software development. For
example, two classes:

distview.experiments.DvDraw.Shps.RectShp

and
distview.experiments.DVDraw.global.Attrs

would be serialized with their fully specified names
written to the stream. We notice that both classes have
common part of their package names and there is no
reason to write that common part to the stream multiple
times for every serialized object that belongs to a package
in this hierarchy. A package name hierarchy is a tree,
where the nodes are parts of package names, see Figure 2.

In the case of the above two classes, when they are
both serialized one after another, the full name of the first
one is written to the stream, but there is no need to write
the full name of the second one. Following the hierarchy
tree, we notice a common part

distview.experiments.DVDraw

which does not need to be written to the stream. A 2-byte
code can be assigned to that common part of the name
when the first class is serialized and can then be written to
the stream, followed by the class specific part of the

name, “global.Attrs”. The second class would be
encoded in the following way:
 “00 FE global.Attrs” , where “00 FE” is the 2-
byte code for

distview.experiments.DVDraw

Whenever a new class is serialized, the package name
hierarchy tree is expanded and all new name parts get a
new 2-byte code. In the case of the first class above, the
following codes could be assigned by the serialization
mechanism (see Figure 3).

Next, when the second class is serialized, the part of
the name

distview.experiments.DVDraw

is found on the tree, and instead of this full name, the
code is written to the stream. Two new codes are also
added to the package name tree:
distview.experiments.DVDraw.global.Attrs 206
distview.experiments.DVDraw.global 207

Figure 4 shows the result of serializing classes from
Figure 1 using the new algorithm. Compare this with the
serialized version from Figure 1, where text fragments in
bold indicated redundant class/package names in the
pickle. Figure 4 shows how those redundant parts were
replaced by the coding scheme (codes are in bold). The
next section describes in more detail the implementation
of this scheme.

5. Implementation

We modified the standard Java serialization classes:
ObjectOuptutStream, ObjectInputStream,
ObjectStreamClass, and ObjectStreamConstants. We also
introduced a new class to the system. Class ClassLookup
handles the coding scheme for package hierarchy.
ClassLookup implements a hash table and an array to map
names to encodings and encodings to names. We have
decided against an explicit tree representation because the

 0: AC ED 00 05 73 72 00 20 74 65 73 74 69 6E 67 2E sr. testing.

10: 70 72 6F 64 75 63 74 69 6F 6E 2E 43 68 61 74 2E production.Chat.

20: 54 65 73 74 43 68 61 74 7F B5 7B 3F 79 9E 37 F6 TestChat..{?y.7.

30: 5E 02 00 02 49 00 07 69 6E 74 44 61 74 61 4C 00 ^...I..intDataL.

40: 02 74 64 7E 00 BA 00 08 54 65 73 74 44 61 74 61 .td~....TestData

50: FE 67 7F 96 44 A3 4E 27 7F 78 70 00 00 00 01 73 .g..D.N’.xp....s

60: 72 7E 00 BD 7F 02 00 01 49 00 07 69 6E 74 44 61 r~......I..intDa

70: 74 61 78 70 00 00 00 01 taxp....

Figure 4: Class from Figure 2 - serialized form – new algorithm

distview.experiments.DvDraw.Shps.RectShp 201
distview.experiments.DvDraw.Shps 202
distview.experiments.DVDraw 203
distview.experiments 204
distview 205

Figure 3: Codes Assi gned after Serializin g RectSh p

distview

experiments server

 Chat DVDraw Corona

Chat Shps global

 Shp RegShp RectShp Attrs

Figure 2: Package nam e hierarchy

package hierarchy is a generic tree, and not a binary tree.
A generic tree implementation using a binary tree would
deteriorate into a linear search if all serialized classes
belonged to the same package. A hash table
implementation uses more memory than a tree
representation would, because it stores full class names
for each class instead of taking advantage of the
hierarchical tree representation. However, it should
perform well because of its constant lookup time.

The class ClassLookup defines a hash table and an
array for looking up class names and their respective
codes. Standard hash table methods are used for lookup.
The pseudo-code algorithm for inserting class names
and/or their codes into a pickle is presented in Figure 5.

A findCodes() method in ClassLookup first checks if a
given class has already been encoded. If yes, a code is
returned and is then written to the stream following a
special byte 7E (this byte indicates that a class code is
next in the stream). Otherwise, a new code is assigned to
the new name and inserted into the lookup tables. Next,
the package name (the one highest in the hierarchy for the
given class) is checked. If it has been encoded before, the
code is returned and written to the stream, followed by the
remaining package/class name which has not been
encoded up to this point (variable rest). If the package
name is also new, it is inserted into the lookup tables and
the next (less specific) part of the package name is
considered. This process is repeated until either an
encoding is found or there are no more parts of package
name to consider. In that case, the full class name is
written to the stream.

6. Experiments

This section describes experiments and tests run to
evaluate the new serialization algorithm. We ran tests
comparing sizes of serialized objects as well as tests
comparing performance of both serialization algorithms.
Analysis of the results is included in Section 7.

We have designed a number of simple classes in a
package hierarchy to be used in the experiments. This
hierarchy is shown in Figure 6. Classes MainChat and

OtherClass contain a small number of object data
members (either standard Java classes or very simple user
defined classes). Below, we describe a few of the
experiments.

6.1 Size Experiments

This experiment compares the sizes of pickles
generated by the standard Java serialization and by the
new algorithm described in this paper. We tested
serialization of simple objects (classes MainChat,
OtherClass and three standard Java classes) and complex
objects (classes from the DistView toolkit [18]). Both
experiments included serializing 1, 2, 3, 4, and 5 different
objects. The DistView experiment involved serializing
different classes from different packages of the
application.

We have decided to compare pickles generated by the
new serialization algorithm to pickles compressed using
gzip compression. Gzip compresses the entire pickle, not
just the header part, so it can be used as a benchmark for
our algorithm. We ran the same experiments as above but
all pickles were compressed as well. We used the
standard Java classes (java.util.zip.GZIPOutputStream
and java.util.zip.GZIPInputStream) to compress serialized
objects. The results of all the size experiments simple and
complex objects are shown in Figures 7 and 8.

The improvement of the new algorithm over the old
one is quite significant in all cases (up to 50% savings).
Compression works best for large objects or a number of
smaller objects. Compression algorithms take advantage
of repeating patterns and work best when many similar
objects or large objects, possibly with similar data

classname – full name of a class (including package name)
rest - holds parts of clasname that have not been encoded
previously

repeat
if (classname already encoded)

 return code for that class
else

 ClassLookup.insert(classname)
 r = StripLastNamePart(classname)
 rest = r + rest

while (classname != NULL)

code = -1
return (code, rest)

Figure 5: Encoding Algorithm

testing

productionUtil.

Chat

Simple package name

class name

Whiteboard

OtherClass MainChat

Figure 6: Classes used in experiments

members and data patterns, are serialized. The
compression ratio is much worse when only a few small
objects are serialized. This experiment also shows that
combining compression with the new algorithm yields the
best results (in terms of pickle size).

The next two sections show why gzip-type
compression is not always a good choice for decreasing
pickle sizes of serialized objects.

6.2 Time Experiments

This experiment measures the performance of object
serialization. We wanted to make sure that the new
algorithm does not introduce delays into the serialization
process. Performance tests were performed on Windows
NT and Solaris operating systems [17]. Both machines
had Sun Microsystems’ Java Development Kit 1.1.6
installed (with and without the modifications described in
this paper). For more details on these tests, see [17].

We repeated the “size” experiments multiple times to
get more accurate performance measurements. Execution
times for simple objects are shown in Figure 9 (for
Windows NT).

The times shown measure the number of milliseconds
to open a serialization stream, call the writeObject()
function to serialize the object, and to close the stream.
As we can see, performance of the new serialization
algorithm is comparable to that of the standard Java
version. The compressed version is three to four times
slower. We obtained similar results for large objects as
well (Figure 10). The experiments indicate that
compression introduces large delays into the serialization
process. Next section discusses the experiments results.

7. Results Analysis

Our experiments indicate that the new serialization
algorithm produces smaller pickles than the original
scheme (up to 50% smaller). Performance tests show that
performance of the new algorithm is comparable to that of
the old algorithm. The experiments also show, that even
though compressed pickles are much smaller, the time
delay introduced by a compression algorithm may be
prohibitive for some applications. We have estimated
latencies (using experimental TCP performance data) for
serializing an object and sending it over the network [2].
The estimates were done for the new and the old
algorithms as well as the gzip compression. The results
confirm the fact that performance of both (old and new)
serialization algorithms is comparable. Those results also
confirm the fact that the large latency introduced by the
compression algorithm dominates the benefits of
producing smaller pickles [17]. Additionally, the
compression algorithm waits for the entire object to be
serialized before it starts compression, which eliminates
the stream feature where receiver can start reading data
before the entire object is serialized. This increases the
latency of a compression-based scheme even more. If
pickle size is of the biggest concern, the combination of
compression and the new algorithm yields the best results.

We have achieved one of our design goals of
producing smaller pickles without degradation in
performance. We, therefore, can conclude that the new
serialization algorithm presented in this paper is a good

0

500

1000

1500

2000

2500

1 2 3 4 5

pi
ck

le
 s

iz
e

(b
yt

es
)

new

old

new + zip

old + zip

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5

pi
ck

le
 s

iz
e

(b
yt

es
)

new

old

new + zip

old + zip

Figure 7: Pickle Sizes for Simple Objects

0

1

2

3

4

5

6

7

8

1 2 3 4 5

m
ili

se
co

nd
s

new

old

new + zip

old + zip

0

50

100

150

200

1 2 3 4 5

m
ili

se
co

nd
s

new

old

new + zip

old + zip

Figure 9: Serialization Performance on
 Windows NT – Simple Objects

Figure 10: Serialization Performance on
 Windows NT – Complex Objects

Figure 8: Pickle Sizes for Complex Objects

replacement for the standard Java serialization scheme.
Standard compression algorithms can greatly reduce
pickle sizes but the delay that they introduce makes them
unsuitable for interactive distributed applications.

Both serialization algorithms were designed for stream
communication. This means that the most efficient
communication scenario would be to open a serialization
stream on top of a socket stream and always communicate
over that stream. Unfortunately, message-based
applications do not take advantage of optimizations built
into serialization algorithms. We intend to explore this
issue of optimizing serialization for message-based
protocols in our future work.

8. Concluding Remarks and Future Work

Object serialization is used in many distributed
systems as the means of communicating data. Our
experiments show that standard Java serialization can
produce large pickles, which in turn can degrade the
performance of such distributed systems. We developed a
new serialization algorithm that decreases the size of
serialized objects while implementing the same semantics
as the old algorithm. Through a number of experiments,
we determined that it produces smaller pickles (up to 50%
smaller) without degrading performance. We claim that
the new mechanism is a good choice for the standard Java
serialization scheme. The new algorithm supports the
same API and semantics as the old one, so it can be used
transparently in place of the old algorithm.

We are currently exploring serialization mechanisms
designed for distributed applications based on message
passing (instead of streaming protocols). Such
applications require a different approach to optimize sizes
of serialized objects.

Another direction for future work is to modify the
semantics of the serialization algorithm to improve
performance. We are exploring the effects of removing
fingerprints and field names from pickles. In addition, we
will evaluate the possibility of changing the API to give
developers a choice of serialization semantics.

9. References

[1] K. Baharat and L. Cardelli, Migratory Applications, DEC
Systems Research Center Technical Report 138, February 1995.

[2] M. D. Bailey, An Exploration of Java-Based Application
Performance, Report Submitted in Fulfillment of EECS
Requirements for Ph.D. Candidacy, 1997.

[3] A. Birrell and B. Nelson, Implementing Remote Procedure
Calls, ACM Transactions on Computer Systems, Vol.2, No. 1,
February 1984.

[4] A. Birrell, G. Nelson, S. Owicki, and E. Wobber, Network
Objects, Digital Equipment Corporation Systems Research
Center Technical Report 115, February 1994.

[5] M. Crochemore and T. Lecroq, Text data compression
algorithms, In Handbook on Algorithms and Theory of
Computation, edited by M. Atallah, CRC Press, Boca Raton,
1997.

[6] D. Hagimont, P.Y. Chevalier, J. Mossiere, and X. Rousset
de Pina: Object Migration in the Guide System, ECOOP’95
Workshop on Mobility and Replication, Aarhus, Denmark,
August 1995.

[7] R. Hall, A. Mathur, F. Jahanian, A. Prakash, and C.
Rassmussen, Corona: A Communication Service for Scalable,
Reliable Group Communication Systems, In Proc. of the ACM
Conference on Computer Supported Cooperative Work (CSCW
96), Boston, MA, Nov. 1996.

[8] M. Herlihy and B. Liskov, A Value Transmission Method
for Abstract Data Types, ACM Transactions on Programming
Languages and Systems, vol. 4, no. 4, October 1982.

[9] P. Homburg and M. van Steen and A.S. Tanenbaum:
Distributed Shared Objects as a Communication Paradigm,
Vrije Universiteit, Second Annual ASCI Conference, Lommel,
Belgium, June 1996, Pages 132-137

[10] V. Jacobson, Compressing TCP/IP Headers for Low-Speed
Serial Links, RFC 1144, February 1990.

[11] JavaSoft, Object Serialization Specification,
http://www.javasoft.com/products/jdk/1.1/docs/guide/serializatio
n/spec/serialTOC.doc.html, 1997.

[12] C. Jeness, Object Serialization, Golden Code Development
Corporation,
http://www.fivepoints.com/ajug/info/tech/serial/serial.html.

[13] J. H. Lee, A. Prakash, T. Jaeger, and G. Wu, Supporting
Multi-Applet Workspaces in CBE, In Proc. of the Sixth ACM
Conference on Computer-Supported Cooperative Work,
November 1996.

[14] M. Mira da Silva and M. Atkinson. Higher-order
Distributed Computation over Autonomous Persistent Stores. In
Proc. of The Seventh International Workshop on Persistent
Object Systems, Cape May, New Jersey, USA, May, 1996.

[15] Object Management Group, Externalization Service
Specification, CORBA Services: Common Object Services
Specification, 1997.

[16] The Open Group, Transfer Syntax NDR, DCE 1.1: Remote
Procedure Call, 1997.

[17] L. Opyrchal, Efficient Object Serialization in Java,
Directed Study Report, http://www.eecs.umich.edu/~lukasz/
Papers/oral.ps, September 1998.

[18] A. Prakash and H. S. Shim, DistView: Support for Building
Efficient Collaborative Applications using Replicated Objects,
In Proc. of the 1994 ACM Conference on Computer-Supported
Cooperative Work, ACM Press, October 1994, pp. 153-164.

[19] R. Riggs, J. Waldo, A. Wollrath, and K. Bharat, Pickling
State in the Java System, In Proc. of the USENIX 2nd

Conference on Object Oriented Technologies and Systems, June
1996.

