ACM Conference on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), October 2006

Efficient Software Model Checking of Data Structure Properties

Paul T. Darga

Chandrasekhar Boyapati

Electrical Engineering and Computer Science Department
University of Michigan, Ann Arbor, MI 48109

{pdarga,bchandra}®@eecs.umich.edu

Abstract

This paper presents novel language and analysis techniques
that significantly speed up software model checking of data
structure properties. Consider checking a red-black tree im-
plementation. Traditional software model checkers system-
atically generate all red-black tree states (within some given
bounds) and check every red-black tree operation (such as
insert, delete, or lookup) on every red-black tree state. Our
key idea is as follows. As our checker checks a red-black
tree operation o on a red-black tree state s, it uses program
analysis techniques to identify other red-black tree states s/,
8%, ..., s}, on which the operation o behaves similarly. Our
analyses guarantee that if o executes correctly on s, then
o will execute correctly on every s;. Our checker therefore
does not need to check o on any s once it checks o on s.
It thus safely prunes those state transitions from its search
space, while still achieving complete test coverage within the
bounded domain. Our preliminary results show orders of
magnitude improvement over previous approaches. We be-
lieve our techniques can make model checking significantly
faster, and thus enable checking of much larger programs
and complex program properties than currently possible.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Program Verification
D.2.5 [Software Engineering]: Testing and Debugging
F.3.1 [Logics]: Specifying and Verifying Programs

General Terms
Verification, Reliability, Languages

Keywords
Software Model Checking, Program Analysis

1.

This paper presents novel language and analysis techniques
that significantly speed up software model checking [1, 2, 4,
6, 7, 12, 15, 48, 21, 39] of data structure properties. Model
checking is a formal verification technique that exhaustively

Introduction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’06 October 22-26, 2006, Portland, Oregon, USA.

Copyright (C) 2006 ACM 1-59593-348-4/06/0010 ..$5.00

363

tests a circuit/program on all possible inputs (sometimes
up to a given size) to handle input nondeterminism and on
all possible nondeterministic schedules to handle scheduling
nondeterminism. For hardware, model checkers have been
successfully used to verify fairly complex finite state control
circuits with up to a few hundred bits of state information;
but not circuits in general that have large data paths or
memories. Similarly, for software, model checkers have been
primarily used to verify event sequences with respect to tem-
poral properties; but not much work has been done to verify
programs that manipulate rich complex data with respect to
properties that depend on the data. This paper deals with
such data oriented programs. In particular, it focuses on
verifying properties of data structures.

Consider checking that a red-black tree [8] implementation
maintains the red-black tree invariants. Previous model
checking approaches such as JPF [48, 28], CMC [39, 38],
Korat [2], or Alloy [26, 27] systematically generate all red-
black trees (up to a given size n) and check every red-black
tree operation (such as insert or delete) on every red-black
tree. Since the number of red-black trees with at most n
nodes is exponential in n, these systems take time exponen-
tial in n for checking a red-black tree implementation. Our
key idea is as follows. Our checker detects that any red-black
tree operation such as insert or delete touches only one path
in the tree from the root to a leaf (and perhaps some nearby
nodes). Our checker then determines that it is sufficient to
check every operation on every unique tree path (and some
nearby nodes), rather than on every unique tree. Since the
number of unique red-black tree paths is polynomial in n,
our checker takes time polynomial in n. This leads to orders
of magnitude speedups over previous approaches.

In general, our system works as follows. Consider checking
a file system implementation, as another example. As our
checker checks a file system operation o (such as reading,
writing, creating, or deleting a file or a directory) on a file
system state s, it uses program analyses to identify other
file system states s, sh, ..., s, on which the operation o
behaves similarly. Our analyses guarantee that if o executes
correctly on s, then o will also execute correctly on every
s;. Our checker therefore does not need to check o on any
s; once it checks o on s. It thus safely prunes all those
state transitions from its search space, while still achieving
complete test coverage within the bounded domain.

We call this the glass box approach to model checking of data
oriented programs because our checker analyzes the behavior

Figure 1. Three red-black trees before and after an insert

operation. The tree path touched by the operation is
highlighted in each case. Once our glass box checker
checks the insert operation on tree t1, it determines that
it is redundant to check the same operation on t2 and t3.

of an operation to prune large portions of the search space.
While there is much research on state space reduction tech-
niques for model checkers such as partial order reduction [13,
15, 16] and tools based on predicate abstraction [19] such as
Slam [1], Blast [21], or Magic [4], none of these techniques
seem to be effective in reducing the state space of data ori-
ented programs. For example, predicate abstraction relies
on alias analysis that is often too imprecise. Thus, our ap-
proach is in contrast to the traditional black boxr approach
to model checking of data oriented programs that checks
every operation on every state, treating the operation as a
black box. Depending on the strength of the analyses, a
glass box checker can be significantly more efficient than a
black box checker in exploring the same search space. In-
deed, our preliminary results show orders of magnitude im-
provement over previous approaches. We therefore believe
that our techniques can make model checking significantly
faster, and thus enable checking of much larger programs and
broader class of program properties than currently possible.

The rest of this paper is organized as follows. Section 2 illus-
trates our approach with examples. Section 3 describes our
glass box model checker. Section 4 presents experimental re-
sults. Section 5 discusses related work. Section 6 concludes.

2. Examples

This section illustrates our key idea with examples.

2.1 Red-Black Tree Example

Consider the red-black tree example from Section 1. That
is, consider checking that a red-black tree implementation
maintains the red-black tree invariants. As we discussed
in Section 1, a black box checker (such as JPF [48, 28],
CMC [39, 38], Korat [2], or Alloy [26, 27]) systematically
generates all red-black trees (up to a given size n) and checks
every red-black tree operation (such as insert or delete) on
every red-black tree. Since the number of red-black trees
with at most n nodes is exponential in n, a black box checker
takes time exponential in n for the checking.

Our glass box checker works as follows. Consider checking
the insert operation on tree t1 in Figure 1. The tree t1’

364

class Queue {
private Stack front
private Stack back

new Stack();
new Stack();

return (back != null) && back.repOk() && (back != front)

1

2

3

4

5 public boolean repOk() {
6

7 && (front != null) && front.repOk();
8

}
9
10 //
11 // dequeue <--- front | | back <--- enqueue
12 //
13
14 public void enqueue(Object o) {
15 back.push(o) ;
16
17 public Object dequeue() throws EmptyQueueException {
18 if (front.isEmpty()) moveBackToFront();
19 if (front.isEmpty()) throw new EmptyQueueException();
20 return front.pop();
21 }
22 private void moveBackToFront() {
23 while (!back.isEmpty()) front.push(back.pop());
24 }
25 }

Figure 2. Queue implemented using two Stacks.

depicts the state of the tree after the operation. (For sim-
plicity, the figure only shows the tree structures and does
not show the color of the nodes, or the keys or values stored
in the nodes.) As our checker checks the insert operation
on t1, it detects that the operation touches only one path
in the tree from the root to a leaf. This path is highlighted
in the figure. That means, assuming deterministic execu-
tion, the insert operation will behave similarly on all trees,
such as t2 or t3, where the highlighted path remains the
same. Our checker determines that it is redundant to check
the same insert operation on trees such as t2 or t3 once it
checks the insert operation on tree t1. Our checker safely
prunes those state transitions from its search space, while
still achieving complete test coverage within the bounded
domain. Our checker thus ends up checking every red-black
tree operation on every unique tree path (and some nearby
nodes), rather than on every unique tree. Since the num-
ber of unique red-black tree paths (in trees with at most n
nodes) is polynomial in n, our checker takes time polynomial
in n to check a red-black tree implementation. This leads to
orders of magnitude speedups over the black box approach.

2.2 Queue Example

This section illustrates our approach with a more detailed ex-
ample. Figure 2 presents a Queue that is implemented using
two Stack objects front and back. The enqueue method in-
serts an item at the back of a Queue by pushing it onto back.
The dequeue method removes and returns the item at the
front of a Queue by popping and returning the top item of
front. If front is empty, dequeue first moves all the items
from back to front. If front is still empty, dequeue throws
an EmptyQueueException. (One possible implementation of
Stack is shown in Figure 7.)

Queue’s class invariant is described by its rep0k method, as
good programming practice suggests [32]. The class invari-
ant of an object must hold before and after every public
method of the object. That is, the class invariant is both
a precondition and a postcondition of every public method.

Figure 3. State space of Queue with at most n = 4 items.
State (f,b) has f items in front Stack and b in back. A
black box checker checks 2(n?) state transitions.

Figure 4. A glass box checker generates only O(n) states
and checks only O(n) transitions, yet achieves complete
coverage within the bounded domain.

The rep0k method returns true iff the current state (or rep-
resentation) of an object satisfies its class invariant. The
class invariant of Queue holds iff its subobjects front and
back are different and not null, and their invariants hold.

Consider checking that every public method of Queue pre-
serves its class invariant. That is, consider checking that
if the class invariant holds before a method, then the class
invariant holds after the method, and the method either re-
turns normally or by throwing one of its declared excep-
tions. We assume all Queue methods execute determinis-
tically. (Otherwise, one must expose the nondeterminism
points to the model checker to check every possibility.)

A black box checker such as JPF [48] or CMC [39, 38]
starts from an empty Queue state and recursively invokes
and checks every Queue operation on every successive Queue
state (within a bounded domain). A stateful checker stores
all the checked states in a hashtable to avoid redundantly
checking the same operation on the same state more than
once. Suppose there is exactly one concrete state represent-

365

class ReachabilityDemo {
private boolean x, y, z;

public boolean repOk() { return 'z || x && y; }
void setX() { x = true; }
public void setY() { y = true; }

public

1

2

3

4

5 public
6

7 void setZ() { if (x && y) z = true; }
8

Figure 5. A class with three boolean variables x, y, z.

'S

Figure 6. State space of code in Figure 5 (excluding self
loops). (b1,b2,b3) implies x = b1, y = b2, z = b3. The figures
on the left and right show the state transitions executed
by a black box and glass box checker respectively.

ing a Stack of size n. Then there are n + 1 concrete states
representing a Queue of size n. Figure 3 shows the state
space of Queue with at most n = 4 items. State (f,b) has f
items in front and b in back. Edges represent enqueue and
dequeue operations. E.g., the edge from (1,1) to (1,2) rep-
resents an enqueue. The edges from (1,2) to (0,2) and (0,2)
to (1,0) represent dequeue operations. A black box checker
executes (n?) state transitions to explore this space.

Our glass box checker works as follows. Consider the tran-
sition from (0,0) to (0,1) using the enqueue method. This
operation terminates normally and the class invariant holds
after the method. As our checker checks this operation, its
dynamic analysis detects that the enqueue method does not
read the front Stack. That means, if the state of the front
Stack were different, the enqueue method would still exe-
cute similarly. Our checker then determines that if enqueue
executes successfully on (0,0), then it will execute success-
fully on (¢,0) for any i. Our checker therefore safely prunes
all those state transitions from its search space. In partic-
ular, if Queue has at most n = 4 items, our checker prunes
the enqueue edges from (0,0), (1,0), (2,0), (3,0), and (4,0)
once it successfully checks enqueue on (0,0).

Similarly, checking enqueue on (0,1), (0,2) and (0,3) results
in pruning enqueue operations on all (4,1), (4,2) and (z,3).
Checking dequeue on (1,0), (2,0), and (3,0) results in prun-
ing dequeue operations on all (1,:), (2,i), and (3,7). Figure 4
presents the same state space as Figure 3 except that it
only shows the transitions that our checker executes. Our
glass box checker executes only O(n) state transitions to
explore the state space, while still achieving complete test
coverage within the bounded domain. Moreover, our checker
never generates states from which all transitions have been
pruned. For example, our checker never generates any state
(4,j) where ¢ # 0 and j # 0. Thus, our checker generates only

1 public class Stack {

2 private static class Node {

3 Node next;

4 Object value;

5 Node(Node n, Object v) { next = n; value = v; }
6 }

7

8 private Node head;

9
10 public boolean repOk() {
11 Set visited = new java.util.HashSet();
12 for (Node n = head; n != null; n = n.next) {
13 if (!visited.add(n)) return false;

14 T

15 return true;

16 ¥

17

18 public void push(Object value) {

19 head = new Node(head,value);
20 X
21 public Object pop() {
22 if (head == null) return null;
23 Object v = head.value; head = head.next; return v;
24 b
25 %}

Figure 7. Stack implemented using a linked list.

O(n) states and checks only O(n) transitions, compared to
O(n?) states and O(n?) transitions in a black box approach.
This results in significant speedups.

Note that for simplicity, we implicitly assumed that there is
only one possible argument to enqueue, so there is only one
enqueue transition from each state. But suppose there are n
different items that can be passed as arguments to enqueue,
so there are n enqueue transitions from each state. Then,
for checking a Queue of size n, a black box checker actually
executes an exponential number of transitions. Our glass
box checker still executes O(n) transitions.

3. Glass Box Model Checking

This section presents our glass box model checker. While
the basic idea illustrated in the previous section is simple,
one has to overcome several technical challenges to make it
work well in practice. This section describes our approach.
Section 3.1 describes the search space of a glass box model
checker, Section 3.2 describes the search space representa-
tion, and Section 3.3 describes the search process.

3.1

This section describes the search space of a glass box checker.

Search Space

3.1.1 Search Space Organization

Consider the Stack example from Figure 7. The Stack is
implemented using a linked list. Its class invariant (rep0Ok)
checks that the list is acyclic. Consider checking that the
Stack implementation preserves the Stack invariant.

One way to systematically test the Stack implementation is
to start from the initial empty Stack state, and recursively
invoke and check every Stack operation on every succes-
sive Stack state (within a bounded domain). Some black
box checkers such as JPF [48] or CMC [39] use this ap-
proach. The stateful black box checkers store (a hash of) ev-

366

1 public class Stack {

2 private static class Node {

3 tree Node next;

4 Object value;

5 Node(Node n, Object v) { next = n; value = v; }
6 }

7

8 private tree Node head;

9

10 public boolean repOk() { return true; }

11

12 public void push(Object value) {

13 head = new Node(head,value);

14 T

15 public Object pop() {

16 if (head == null) return null;

17 Object v = head.value; head = head.next; return v;
18 }

19 }

Figure 8. Stack in Figure 7 with its invariant rewritten
using the tree annotation (Line 3). The rep0k (Line 10)
then has no additional constraints to specify.

ery checked state in a hashtable to avoid redundantly check-
ing the same operation on the same state more than once.

The above technique, however, is not a suitable way for a
glass box checker to organize its search space. The example
in Figure 5 illustrates why. Figure 6 shows the correspond-
ing state space (excluding self loops). A black box checker
using the above technique starts from the initial state and
reaches all five states by recursively invoking methods on
successive states. However, as a glass box checker checks
the setX method on state (F,F,F), its analyses detect that
setX behaves similarly on state (F,T,F). Therefore, the glass
box checker prunes that edge from its state space. Similarly,
as a glass box checker checks setY on (F,F,F), it prunes setY
from (T,F,F). But this disconnects the state space graph. A
glass box checker thus cannot depend on reachability of the
state space to reach the state (T, T,F).

Instead, our glass box checker uses a different approach.
Our system requires programmers to specify the class in-
variants of data structures. For example, in Figure 7, the
repOk method describes the class invariant of the Stack. The
search space of a glass box checker checking a data structure
is defined to consist of all type-correct states (within some
finite bounds) that satisfy its class invariant. Note that this
is different from the search space of a black box checker,
which is defined to consist of all states (within some finite
bounds) that are reachable from the initial state by perform-
ing a sequence of data structure operations. Sections 3.1.2
and 3.1.3 discuss the implications of this difference.

A glass box checker exhaustively checks every operation on
every state within the search space, but does so efficiently
by detecting redundancies in the search space and pruning
away large portions of the search space without explicitly
checking them. Each time our checker checks an operation,
it verifies that (i) the operation either terminates normally
or throws one of its declared exception, (ii) the invariant
holds after the operation, and (iii) any additional properties
specified by programmers (e.g., as assert statements) hold.

1 public class RedBlackTree {

2 private static class Node {

3 tree Node left;

4 tree Node right;

5 Node parent

6 boolean color;

7

8 public boolean repOkLocal() {

9 assert((left == null) || (left.parent == this));
10 assert ((right == null) || (right.parent == this));
11
12 if (color == RED) {

13 assert((left == null) || (left.color == BLACK));
14 assert ((right == null) || (right.color == BLACK));
15 }

16

17 return true;

18 }

19 ¥

20

21 private tree Node root;

22

23 public boolean repOk() {

24 // Return true iff the number of black nodes in every
25 // path from the root to a leaf is the same.

26 }

27

28 }

Figure 9. Partial implementation of RedBlackTree, ex-
cluding keys and values from Nodes.

3.1.2 Programming Overhead

One of the main advantages of the black box model checking
approach is that it requires minimal programmer assistance.
For checking application independent properties (such as
null pointer dereferences or memory leaks), it requires no
programmer assistance. For checking application dependent
properties, it only requires a specification of the properties
to be checked in an executable form (e.g., using asserts).

Compared to black box checking, glass box checking some-
times involves extra programming effort because program-
mers have to additionally specify class invariants of data
structures as described above. However, because glass box
checking is orders of magnitude faster than black box check-
ing, writing the class invariants is often worth the effort.
Note that the effort required to write class invariants is pro-
portional to the size and complexity of the data declarations,
not the size of the code. For example, java.util.TreeMap
(a red black tree implementation) has 1670 lines of code,
whereas its invariant takes less than 1% as many lines. Also,
if the goal includes checking that a data structure implemen-
tation preserves its invariants, then programmers have to
specify the invariants for both black box and glass box check-
ing, in which case there is no additional overhead involved
in glass box checking. In addition, if programmers make a
mistake in writing the invariants, our system provides con-
crete counterexamples to help them correct the invariants,
as we describe in the next section.

Glass box model checking thus involves slightly more pro-
gramming overhead compared to black box model check-
ing, but significantly less overhead compared to other for-
mal verification techniques using theorem provers (that re-
quire extensive programmer assistance—either as invariants
for loops and recursive functions, or as guidance to interac-

367

1 public class RedBlackTree {

2 private static class Node {

3 tree Node left;

4 tree Node right;

5 Node parent

6 boolean color;

7 ghost int blackHeight;

8

9 public boolean repOkLocal() {

10 assert((left == null) || (left.parent == this));
11 assert ((right == null) || (right.parent == this));
12

13 if (color == RED) {

14 assert((left == null) || (left.color == BLACK));
15 assert ((right == null) || (right.color == BLACK));
16 }

17

18 int x = blackHeight - ((color == BLACK) ? 1 : 0);

19 assert (blackHeight >= 0);

20 assert((left == null) || (left.blackHeight == x));
21 assert ((right == null) || (right.blackHeight == x));
22 if (x > 0) assert((left != null) && (right != null));
23

24 return true;

25 ¥

26 ¥

27

28 private tree Node root;

29
30 public boolean repOk() { return true; }
31 .
32 }

Figure 10. RedBlackTree in Figure 9 with its invariant
rewritten using a ghost field (Line 7) and thus converting
global constraints (Lines 24-25 in Figure 9) into local
constraints (Lines 18-22 in this figure).

tive theorem provers). On the other hand, glass box checking
is significantly faster than black box checking but could be
slower than techniques using theorem provers, if the theorem
provers are provided sufficient manual assistance. Glass box
model checking thus presents an interesting trade-off in the
design space of software verification techniques.

3.1.3 Handling Errors in Invariants

Programmers can make two kinds of errors in writing the
class invariant of a data structure. Let Sgr be the set of
states (within some finite bounds) that are reachable from
the initial state by performing a sequence of operations. Let
St be the set of states (within the same finite bounds) that
satisfy the invariant. We say an invariant is unsound if there
is a state in Sg that is not in S7, and incomplete if there is
a state in S7 that is not in Skg.

If an invariant is unsound, then (assuming the initial state
is in S7) there must exist a transition from states s1 to sa,
where both s; and sz are in Sg, but only s; is in S; and
s2 is not. Our glass box checker will eventually check such
a transition (or a transition similar to it) and detect that
the transition does not preserve the invariant. It will then
present the transition as a concrete counterexample to the
user. The user can either fix the invariant, or alternately, if
the bug is in the code, the user can fix the code.

If an invariant is incomplete, then either (i) the checker de-
tects a false positive, that is, a state s that is in S; but
not Sr on which some operation fails to check—in which

1 public Finitization checkStack(int h, int nObjects) {
2 Finitization f = new Finitization("Stack");

3 f.setOperations("push", "pop");

4 f.setMaxTreeHeight (h) ;

5

6 Set objects = f.createObjects("Object", nObjects);
7 objects.add(null);

8 f.setFieldDomain("Node.value", objects);

9 f.setArgumentDomain("push", "value", objects);
10
11 return f;
12}

Figure 11. Finitization description for code in Figure 8.

[Field [Domain |

operation {push, pop}

head {NO, null}

NO.next {N1, null}

N1i.next {N2, null}

N2.next {nul1l}

NO.value {00, 01, 02, null}
N1i.value {00, 01, 02, null}
N2.value {00, 01, 02, null}
push.value | {00, 01, 02, null}

Figure 12. Search space for checkStack(3,3).

case the user can strengthen the invariant by examining the
concrete counterexample s, or (ii) the checker successfully
checks the program—in which case the checker would have
verified the program not only on all reachable states but on
some unreachable states as well.

Thus, even though our glass box checker depends on invari-
ants to cover all states, it is sound in that it does not miss
any errors in the program that a black box checker would
detect, even if programmers make a mistake in specifying
the invariants.

3.1.4 Specifying Invariants

One way programmers can specify a class invariant is by
writing a repOk method [32]. The repOk method returns
true iff the current state (or representation) of an object
satisfies its class invariant. E.g., the repOk method of Stack
in Figure 7 checks that there are no cycles in the linked list.

Our system also allows programmers to specify invariants (as
well as other properties to be checked) using a declarative
language, such as a subset of JML [30], as long as the declar-
ative specifications can be automatically translated into ex-
ecutable code. For example, a large subset of JML can be
automatically translated to Java using the JML tool set [30].

In addition to the above, our system provides a stylized
way for specifying certain kinds of invariants that makes
it both convenient for programmers to write the invariants,
and faster for a glass box checker to check programs using
the invariants. Our approach is premised on the observation
that most data structures are tree-based. The next three
subsections describe this approach.

8.1.4.1 Specifying a Tree Backbone

Given a tree-based data structure, our system allows pro-
grammers to specify the tree backbone of the data structure

368

1 public Finitization checkRedBlackTree(int h) {

2 Finitization f = new Finitization("RedBlackTree");
3 f.setOperations(...);

4 f.setMaxTreeHeight (h) ;

5 return f;

6 }

Figure 13. Finitization description for code in Figure 10.

[Field | Domain]
operation {...
root {NO, null}
NO.left {N1, nuil}
NO.right {N2, null}
Ni.left {N3, null}
Ni.right {N4, null}
N2.left {N5, null}
N2.right {N6, null}
N3.left, N3.right, N4.left, N4.right, {nu11}
N6.left, N6.right, N6.left, N6.right
NO.color, Ni.color, N2.color, N3.color, {RED, BLACK}
N4.color, N5.color, N6.color
NO.parent, N1.parent, N2.parent, N3.parent, {NO, N1, N2, N3,
N4 .parent, N56.parent, N6.parent N4, N5, N6, null}

Figure 14. Search space for checkRedBlackTree(3).

using the keyword tree as a field modifier [36]. For example,
in Figure 8, the keyword tree on Line 3 specifies that the
linked list has no cycles along the next fields. Note how this
is far more convenient to write than the executable spec-
ification in Lines 11-15 of Figure 7. In general, if object
z has a tree field fd that contains a pointer to object y,
we say that there is a tree edge fd from = to y. x is the
tree-parent of y and y is a tree-child of . The meaning of
the tree specification is that (before and after every public
method) the graph induced by the set of all tree edges in the
heap is a forest of trees (that is, it has no directed or undi-
rected cycles). Programmers can use the tree keyword to
specify the tree backbone of any tree-based data structure.
This includes singly linked lists, doubly linked lists, trees
with parent pointers, threaded trees, balanced search trees,
etc. Note that these data structures can have other non-tree
pointers that can contain cycles, as long as their tree point-
ers do not contain cycles. The partial implementation of a
RedBlackTree in Figure 9 provides another example. The
tree keyword on Lines 3-4 specify that the left and right
fields form the tree backbone of the data structure.

8.1.4.2 Specifying Local Invariants

Consider the RedBlackTree in Figure 9. One of its invari-
ants is that for every node N, (N.left#null) = (N.left-
.parent=N). We say that such invariants, that involve only
(the fields of) an object and (the fields of) its tree-children,
are local invariants. Another example of a local invariant
in RedBlackTree is (IN.color=RED A N.left#null) —
(N.left.color#RED) for all nodes N.

Our system allows programmers to specify local invariants
using the repOkLocal method. Lines 8-19 in Figure 9 pro-
vide an example. To check the local invariant on a particular
instance of a data structure, our system traverses the tree

NO N1 N2
next vaue next vaue next vaue operation push.value

o] (][]] (o] o]] el e

Figure 15.
ure 12 representing the pop operation on a Stack with two
items 01 an 02.

A valid element of the search space in Fig-

NO N1
root left right parent color left right parent color

Figure 16. (A portion of) an invalid element of the search
space in Figure 14, with the root and its left child both
being red.

backbone of the data structure and checks that repOkLocal
returns true on every tree node. The advantage of specifying
local invariants this way (as opposed to specifying them as
global invariants using the rep0k method) is that program-
mers do not have to write code to perform the tree traversal.
Another advantage is that it makes glass box model checking
faster, as we explain later in the paper.

8.1.4.83 Specifying Non-Local Invariants

In addition to specifying local invariants using repOkLocal,
programmers can specify other non-local invariants using the
repOk method. The repOk method in Figure 9 provides an
example. It checks that the number of black nodes in every
path from the root to a leaf is the same.

It is often possible to convert non-local invariants into local
ones by adding extra fields [35]. For example, the above
non-local invariant can be converted into a local invariant by
adding a field blackHeight to every node (which stores the
number of black nodes in any path from that node to a leaf).
This is illustrated in Lines 18-22 of Figure 10. Note that in
Line 7 of the figure, blackHeight is declared to be a ghost
field [14]. A ghost field exists only during model checking,
but otherwise does not exist when the data structure is used
in a program. A ghost field is thus part of the specification
(and not implementation) of a data structure and it does
not slow down the performance of the data structure.

3.1.5 Specifying Bounds on Search Space

In any model checker that checks data structure properties,
programmers must specify finite bounds on the search space.
In our glass box checker, programmers must specify the fol-
lowing: (i) for the tree back-bone (of a tree-based data struc-
ture), the maximum height of the tree backbone; (ii) for
objects not on the tree backbone, the maximum number
of objects of each class; (iii) the domain of every method
argument and non-tree field. Our checker then checks the
program on every possible state in this finite space.

Figure 11 presents an example finitization description that
is automatically generated by our system from the type dec-
larations in Figure 7. The setOperations method speci-
fies that the checker must check the two public methods
push and pop. The setMaxTreeHeight sets the maximum

369

void search(Finitization f) {
F Set of all elements in f
I Set of all elements in F that satisfy the invariant
S I
le (S is not empty) {
= Any transition in §
heck t
Set of all transitions similar to t (including t)
=S -T

S
[/J'—](')d‘l-’ oo

O ®©WONOO R WN
-«

[
w

Figure 17. Pseudo-code for the search algorithm.

height of the tree backbone. The createObjects method
specifies that a state can contain at most nObjects number
of Objects. The setFieldDomain and setArgumentDomain
methods specify that the field value and the argument to
push can either contain null or an Object.

Once our system generates a finitization, programmers can
specialize it; e.g., they can make checkStack take a single
argument n and set both h and nObjects to n. We provide
several helper functions for easy domain construction.

Figure 13 presents another example finitization description
for the code in Figure 9. If the domain of a non-tree field
of type T is not explicitly set by the finitization, then our
system sets the domain to be the set of all values of type T
For example, for Figure 13, our system sets the domain of
color to true and false (representing BLACK and RED).

3.1.6 Search Space

Suppose our checker is invoked using checkStack(3,3) in
Figure 11. Our system then constructs the search space in
Figure 12. Our system first allocates the specified number of
objects: one Stack, three Nodes, and three Objects. It then
sets the domain of each object field and method argument
as described in the finitization. Finally, it includes the two
public methods of Stack in the operations to be checked.

The search space consists of all possible assignments to the
above fields, where each field gets a value from its corre-
sponding domain. Every element of this search space is
a state transition consisting of a concrete Stack state, a
method to invoke on the state, and the method arguments.
For example, Figure 15 corresponds to invoking pop on a
Stack with two items 00 and 01. In Figure 12, there are
four fields with four elements in their domains and four with
two, so the size of this search space in 4* * 2%, In general,
when our checker is invoked with checkStack(n,n), the size
of the search space is (2n 4+ 2)"T*. Note that some elements
of a search space may be invalid because the corresponding
structure does not satisfy the class invariant. For example,
the element in Figure 16 (for the search space in Figure 14)
is invalid because the root and its left child are both red.

3.1.7 Search Algorithm

Figure 17 presents the glass box search algorithm. Given a
class to check and a finitization, our system first initializes
the search space S to the set I of all elements that satisfy
the invariant of the class. It then systematically explores the
space S by repeatedly selecting a transition t from S, check-

Figure 18. BDD representing the set of all RedBlackTrees
of maximum height 2 that satisfy the invariant in Fig-
ure 10.

ing t, running its analyses to identify the set T of transitions
similar to t (including t), and pruning T from S. Sections 3.2
and 3.3 describe how to perform the above search efficiently.

3.2 Search Space Representation

Consider checking the RedBlackTree (Figure 10) with check-
RedBlackTree(h). Say, n = 2". Our checker generates
O(n?) states and checks O(n?) transitions to cover this search
space (as we show in Section 4). But the size of the search
space is exponential in n. Also, the size of the set I in Fig-
ure 17 is exponential in n. If we are not careful, then search
space management itself could take exponential time, thus
defeating most of the advantage gained by glass box check-
ing. To avoid this, we compactly represent the search space
using reduced ordered binary decision diagrams [3], or BDDs.

Figure 18 presents an example, where the BDD represents
the set I (in Figure 17) of all RedBlackTrees of maximum
height 2 that satisfy the invariant in Figure 10. Each node in
the BDD represents one bit. A solid line from the node repre-
sents the bit being 1 and a dotted line 0. For the fields root,
left, and right, 1 represents that the field is non-null and 0
null; for color, 1 represents BLACK and 0 RED. (We use more
than one bit for fields whose domain contains more than two
elements.) Any path in the BDD from the initial node to the
node 1 represents (one or more) elements of the set I, that
is, data structures that satisfy the invariant. For example,
the following are elements of I: {root=null}, {root##null,
root.color=BLACK, root.left=null, root.right=null}.
Figure 19 presents another example, with a BDD represent-
ing the same set as in Figure 18, but with the order of the
fields in the BDD reversed. Figure 20 presents a BDD repre-
senting all RedBlackTrees of maximum height 3 that satisfy
the invariant in Figure 10.

370

Figure 19. BDD representing the same set as in Fig-
ure 18, with the order of the fields in the BDD reversed.

Note that in Figures 18, 19, and 20, we do not include the
field parent in the BDD. This is because our analyses detect
that parent is a derived field. That is, given any reachable
node in a tree, there is exactly one possible value of parent
that satisfies the invariant. It is therefore unnecessary to
store the values of the parent fields in the set S in Fig-
ure 17, because given any element of S, one can reconstruct
the values of all the parent fields. Similarly, we do not in-
clude the ghost field blackHeight (Line 7 in Figure 10) in
the BDDs, because it is a derived field.

A good field ordering is the key to keeping the BDD size
small. In Figures 19 and 20, we order the fields in the BDDs
based on a post-order traversal of the tree backbone of the
data structure. In general, this is ordering of fields we use in
our system. For objects not on the tree backbone, we include
them in the order in which we encounter them as we build
the set I (as we describe in Section 3.3.3). The above field
ordering keeps the fields connected by invariants together
in the BDD, which seems to naturally induce a good field
ordering and thus compact BDDs.

The above field ordering also makes the search efficient. The
reason is as follows. In the BDD package we use (and in the
BDD packages we know of), all the BDDs are immutable. A
BDD node once created cannot be modified. But different
BDDs can share nodes. To make a change to a BDD, the
implementation constructs a new BDD by copying all the
BDD nodes above the place where the change happens. That
means, making a change to the bottom of a BDD is more
expensive because there is more copying involved, whereas
making a change to the top of a BDD is cheaper. It is
therefore better to keep fields that change frequently at the

Figure 20. BDD representing the set of all RedBlackTrees in the search space in Figure 14 (with maximum height 3)
that satisfy the invariant in Figure 10.

[Max. Height [Set Size [BDD Size

1 2 0
2 7 12
3 34 58
4 597 226
5 238526 744
6 42715248230 2367
7 1123387228727905854061 7359

Figure 21. For a given maximum height, Column 2 above
presents the number of RedBlackTrees that satisfy the class
invariant in Figure 10, and Column 3 presents the size of
the BDD representing the set of all such RedBlackTrees.

top of the BDD. In the context of checking a tree-based
data structure, such as the RedBlackTree in Figure 10, the
value of the root field is non-null for all valid RedBlackTrees
except one. Hence the value of the root field does not change
much as the search progresses. Therefore it is best to keep
root at the bottom of the BDD. Similarly it is best to keep
fields that are near the root of the tree towards the bottom
of the BDD. We therefore use the post-order tree traversal
ordering for fields as in Figures 19 and 20.

Figure 21 presents the sizes of BDDs representing the set
I (in Figure 17) for RedBlackTrees with different maxi-
mum heights. The numbers indicate that as the height h
increases, assuming n = 2", the size of the BDD grows as
O(nlogn). The number of elements in I however grows ex-
ponentially in n, because there are exponentially (w.r.t. n)
many RedBlackTrees of a given maximum height h. This
illustrates how a BDD can provide a compact representation
for a very large set of related data structures.

In general, if all the invariants of a tree-based data struc-
ture are local (that is, the invariants are specified using only
repOkLocal and without using rep0Ok), then it is easy to see
that the size of the BDD representing the set I in Figure 17
is always O(nlogn) (where n is the maximum size of the
data structure), even though the number of elements in I
could be exponential in n. This is part of the reason why it
is advantageous to use local invariants as much as possible
for glass box model checking.

3.3 Search

Figure 17 presented the search algorithm. This section de-
scribes how to perform each step of the algorithm efficiently.

3.3.1 Manipulating the Search Space

This section describes how to execute Lines 5, 6, and 9 in
Figure 17 efficiently. We described in Section 3.2 how we
use BDDs to represent our search space. Given that, Line 5,
checking if a set is empty, is a constant time BDD operation.
Line 9, computing the difference of two sets, is usually an
efficient BDD operation. In particular, even if the two sets
contain exponentially many elements, operations on the sets
can be performed efficiently using their compact BDD rep-
resentations. Line 6, choosing an element from a non-empty
set, takes time linear in the number of fields in the BDD. If
the set has more than one element, our system chooses the
lexicographically least element of the set. That ensures that
the search space remains contiguous and structured as much

372

as possible, which in turn leads to smaller BDD representa-
tions of the search space as the search progresses.

3.3.2 Pruning the Search Space

This section describes how to execute Lines 7 and 8 in Fig-
ure 17 efficiently. The key to making glass box model check-
ing efficient is to identify as large a set T as possible in Fig-
ure 17, that is, given a transition t, to identify as many
transitions similar to t as possible, so that they can be
pruned away without explicitly checking them. This section
describes how we monitor the program as we check a transi-
tion t (Line 7) and how we use the results of the monitoring
to construct the set T of transitions similar to t (Line 8).
3.8.2.1 Tracking Fields Read

Consider the Stack example in Figure 8. Consider checking
that the transition in Figure 15 preserves the Stack invari-
ant. As our checker runs the pop method, it monitors the
set of fields that pop reads. In this case, pop reads head,
NO.value, and NO.next. That means, regardless of the val-
ues of the remaining fields, pop will still behave similarly.
Our system then determines (as we explain below) that re-
gardless of the values of the remaining fields, if the invariant
holds before pop, then the invariant holds after pop. Our sys-
tem therefore prunes all elements of the search space where
head=NO, NO.value=00, NO.next=N1, and operation=pop.

The above technique, in effect, detects don’t care fields in a
transition t, and suggests that all transitions t’ that differ
from t only at the don’t care fields be pruned from the search
space. However, we need additional mechanisms to ensure
that the system is sound. To see why the above technique
alone is unsound, consider the following example:

1 class SoundnessDemo {

2 private boolean x, y;

3 public boolean repOk() { return !x || y; }
4 public void f1ipX O { x = !x; ¥
5 }

The invariant repOk returns true iff x implies y. Suppose
we invoke flipX on x=false and y=true. The invariant
holds before and after the transition. flipX reads only x;
y is a don’t care. The above technique suggests that £1ipX
will perhaps verify on all states where x=false (and there-
fore those elements be pruned from the search space). But
the suggestion is incorrect because flipX does not verify
on x=false and y=false. The invariant holds before the
transition, but not after. The above technique fails on this
example because a field that is read (x) is related by the
invariant to a field that is a don’t care (y).

3.8.2.2 Identifying Don’t Care Fields

To correctly identify the don’t care fields of a transition t
and to soundly prune the search space, our system works
as follows. Let F; and F; be the set of fields read by t and
modified by t respectively. After executing t, our system
checks if the class invariant is preserved. If t has a postcon-
dition in addition to the class invariant, our system checks
the postcondition as well. Let Fp be the set of fields read by
the additional postcondition, if any.

If a data structure invariant only specifies that the tree back-
bone of the data structure must remain a tree (that is, repOk
and repOkLocal always return true), then our system com-
putes the set of relevant fields Fr as Fy U Fp. All the fields
not in Fr are don’t cares. In particular, if Fp is an empty set,
then Fg reduces to F¢. Thus, for checking that the Stack in
Figure 8 preserves its invariant, the technique described in
Section 3.3.2.1 is actually sound.

If a data structure invariant specifies a local invariant in ad-
dition to the tree backbone (that is, repOk always return true
but repOkLocal does not), then our system works as follows.
Recall from Section 3.1.4.2 that to check the local invariant,
our system traverses the tree backbone of the data structure
and checks that repOkLocal returns true on every tree node
N;. Also recall that repOkLocal is restricted to read only the
fields of a node and the fields of its tree children—our system
enforces this restriction using dynamic checking. Let Fy, be
the set of fields read when our system invokes repOkLocal
on a tree node N;, after the execution of t. Let Fr be the
smallest set such that: (i) if £ € Fy then £ € Fr, and (ii) if
f1 € F{ and f1,f2 € N; for any 4 then f2 € F.. Our system
computes the set of relevant fields Fg as F, UFp. Finally, all
the fields not in Fg are don’t cares.

If a data structure invariant specifies a global invariant as
well (that is, repOk does not always return true), then our
system conservatively treats all the fields read by repOk as
relevant fields. (This is another reason, besides the one at
the end of Section 3.2, why using local invariants as much
as possible is advantageous.) Let F¢ be the set of fields read
by repOk, after the execution of t. Then our system com-
putes the set of relevant fields Fr as FL UFg UFp, where Fy is
computed as above. All the fields not in Fr are don’t cares.

3.3.2.8 Tracking Information Flow to Improve Precision

This section describes an optimization to more precisely
compute the above sets Fy, Fy,;, Fg, and Fp. The above al-
gorithm computes the sets by tracking the fields read by
the corresponding methods. But sometimes, even though
a method reads a field, it does not depend on it. That is,
the method’s return value and its side effects do not depend
on the field. The Point class below provides an example.
Suppose the method returns false on Line 5 because x==y.
The above analysis assumes that because the method read
all three fields _x, _y, -z, the return value depends on all the
fields—even though it depends only on x and _y.

1 class Point {

2 private int _x, _y, _z;

3 public boolean isSkewed() {
4 int x=_x, y=_y, z=_z;

5 if (x y) return false;
6

7

8

9

if (y z) return false;
if (z == x) return false;
return true;

13

To make our analysis more precise, we use dynamic infor-
mation flow tracking. Consider Stack in Figure 12. There
are nine fields. For every value v the program computes, our
system also computes a nine-bit shadow value v’ that tracks
the input fields from which there is information flow to v.

373

Given an execution trace of the postcondition of a method
(such as repOkLocal, repOk, or any additional asserts) we
say that the postcondition only depends on the set of fields
from which there is information flow to the value returned
by postcondition. Given an execution trace of a method m
being checked, we say that m only depends on the set of fields
from which there is information flow to the value returned
by the postcondition that is run after m’s execution.

One thing we must be careful about is that information flow
analysis [10, 40] is different from dynamic slicing [29, 53], as
the following example shows.

1 class InfoFlowDemo {

2 private boolean b;

3 public boolean m() {
4 boolean x = false;
5 if (b) x = true;

6 return x;

7

3}

There is information flow from b to x above. But if b is
false, then x is not control or data dependent on b because
the branch on Line 5 is not taken. If we use dynamic slicing,
then on running the method with b=false we would incor-
rectly conclude that the method does not depend on b and
that the method always returns false.

To avoid such incorrect conclusions and the consequent in-
correct pruning, our analysis conservatively assumes that
after any join point in the control flow graph, all variables
that appear on the left hand side of an assignment on ei-
ther side of the branch depend on the corresponding branch
conditional. Thus the return value x above depends on b.

3.8.2.4 Pruning Isomorphic Structures

Compare the Stack in Figure 15 with a Stack where head=No0,
NO.next=N1, NO.value=02, N1.next=null, and N1.value=01. The
two are isomorphic. Clearly, once we check pop on the first
Stack, it is redundant to check pop on the second Stack.
Our checker avoids checking isomorphic structures as follows.
After checking the transition in Figure 15, the analyses in
the previous sections conclude that the pop operation on
all Stacks with head=NO, NO.next=N1, and NO.value=00 can
be pruned. Our isomorphism analysis then determines that
pop can also be pruned from all structures that satisfy the
following formula: (head=NO A NO.next=N1 A NO.value7#null).

In general, to construct the formula, our system traverses all
the relevant fields of a transition t in the order in which they
were read by t. Each time it encounters a fresh object o that
a field points to, it includes (in the formula) all other tran-
sitions t’ where the fields read by the traversal so far have
the same values except that instead of o in t there is another
fresh object o’ in t’. Our system then prunes all transitions
denoted by the formula using efficient BDD operations. The
above technique is sound if t is deterministic.

Note that some black box checkers also prune isomorphs us-
ing heap canonicalization [24, 37]. The difference is, in heap
canonicalization, once a checker visits a state, it canonical-
izes the state and checks if the state has been previously vis-
ited. In our isomorphism pruning, once our checker checks a

|[Transitions || BDD Nodes Created i Time (seconds) |
[Benchmark [Max Size “ “ Total [Initialization [Checking [Max BDD Size “ Total [Initialization [Checking]
1 4 9 4 5 2 0.016 0.014 0.002
2 5 14 6 8 3 0.016 0.014 0.002
3 5 16 8 8 3 0.017 0.015 0.002
4 5 18 10 8 3 0.017 0.015 0.002
5 5 20 12 8 3 0.017 0.015 0.002
6 5 22 14 8 3 0.017 0.015 0.002
Stack 7 5 24 16 8 3 0.017 0.014 0.002
8 5 26 18 8 3 0.017 0.015 0.002
16 5 42 34 8 3 0.018 0.016 0.002
32 5 74 66 8 3 0.018 0.015 0.002
64 5 140 130 10 3 0.020 0.017 0.003
128 5 268 258 10 3 0.023 0.020 0.003
1 5 17 6 11 4 0.019 0.017 0.002
2 7 36 10 26 8 0.020 0.017 0.002
3 8 46 14 32 10 0.020 0.018 0.002
4 9 61 18 43 10 0.020 0.017 0.003
5 10 68 22 46 10 0.021 0.017 0.004
6 11 75 26 49 10 0.021 0.017 0.003
Queue 7 12 101 30 71 10 0.021 0.017 0.004
8 13 114 34 80 10 0.022 0.018 0.004
16 21 272 66 206 18 0.028 0.018 0.010
32 37 834 130 704 34 0.050 0.019 0.030
64 69 2873 258 2615 66 0.086 0.021 0.064
128 133 12292 514 11778 130 0.118 0.028 0.090
1 4 9 4 5 2 0.016 0.015 0.001
2 7 58 16 42 10 0.016 0.014 0.002
3 11 245 72 173 40 0.018 0.015 0.002
4 17 565 76 489 71 0.019 0.015 0.004
5 24 2053 350 1703 226 0.022 0.015 0.006
6 34 4398 597 3801 470 0.029 0.016 0.013
HeapArray 7 45 9032 959 8073 960 0.035 0.016 0.018
8 57 16621 672 15949 2467 0.045 0.016 0.029
9 70 55382 3092 52290 6274 0.080 0.018 0.062
10 86 81364 3963 77401 9105 0.114 0.018 0.096
11 103 145832 5387 140445 13656 0.198 0.019 0.179
12 122 254985 7299 247686 19472 0.318 0.020 0.298
13 142 556949 10407 546542 37432 0.647 0.022 0.625
14 165 1344220 17506 1326714 107759 2.098 0.026 2.072
Max Height
1 6 28 12 16 5 0.022 0.019 0.003
2 28 493 139 354 25 0.028 0.020 0.007
3 108 3860 403 3457 88 0.066 0.021 0.045
RedBlackTree 4 366 24400 1645 22755 340 0.134 0.022 0.112
5 1094 128314 3906 124408 1311 0.340 0.027 0.313
6 2968 781369 9352 772017 4868 1.543 0.035 1.508
7 7524 || 6263228 23095 6240133 17434 10.340 0.055 10.285
Max Height / Max Degree
2 2 62 784 58 726 21 0.035 0.019 0.015
3 2 135 1764 42 1722 14 0.057 0.019 0.038
4 2 240 3728 131 3597 41 0.075 0.019 0.056
5 2 380 6531 162 6369 40 0.096 0.020 0.076
6 2 558 9984 218 9766 56 0.109 0.020 0.089
7 2 T 13467 87 13380 18 0.125 0.020 0.105
8 2 1040 21755 350 21405 86 0.147 0.021 0.126
9 2 1350 31031 392 30639 79 0.167 0.020 0.146
10 2 1710 40954 509 40445 105 0.203 0.020 0.183
2 3 102 1132 152 980 31 0.051 0.020 0.031
3 3 270 2754 108 2646 20 0.076 0.020 0.055
FileSystem 4 3 560 6707 1035 5672 93 0.115 0.021 0.093
5 3 1005 12115 1587 10528 95 0.158 0.022 0.135
6 3 1638 20789 3650 17139 170 0.234 0.025 0.209
7 3 2492 21131 496 20635 27 0.266 0.029 0.237
8 3 3600 44059 12226 31833 348 0.583 0.037 0.546
2 4 182 1903 442 1461 49 0.065 0.020 0.045
3 4 675 5446 273 5173 21 0.114 0.021 0.093
4 4 1840 24672 12443 12229 289 0.324 0.034 0.289
5 4 4130 55614 27500 28114 349 0.935 0.053 0.882
2 5 342 3818 1420 2398 83 0.089 0.022 0.067
5 1890 13109 765 12344 26 0.243 0.032 0.211
Figure 23. Experimental results for glass box model checking.

374

I=F
// Enforce local constraints

for (all nodes N in post-order traversal of tree backbone) {
I’ =1
I = Empty set
(I’ is not empty) {
Any transition in I’
repOkLocal holds for t on node N
Set of all transitions with same repOkLocal behavior
I°’=1I"-T
if (r) I =

0N O WN -

I+T
14 }
15}

// Enforce global constraints

I’ =1
I = Empty set
while (I’ is not empty) {

t = Any transition in I’
23 r = repOk holds for t
24 T = Set of all transitions with same repOk behavior
I°’=1I"-T
if (r) I =

I+T

Figure 22. Pseudo-code for initializing the search space.
This is the expanded version of Line 3 in Figure 17.

transition t, it computes a formula F denoting (often an ex-
ponentially large number of) transitions isomorphic to t, and
prunes F from the search space (often with a small number
of BDD operations). Our checker never visits F’s transitions.

In addition to heap symmetries, our checker also handles
other symmetries. In particular, if the actual values of in-
tegers in a program do not matter but only their relative
ordering matters, our checker prunes states which are sym-
metric in the above respect using efficient BDD operations.

3.3.3 Initializing the Search Space

This section describes how to execute Lines 2, 3, and 4 in
Figure 17 efficiently. Line 2 builds a BDD F that represents
the search space described by a given finitization (e.g., the
search spaces in Figures 12 and 14). It takes linear time.
Lines 3 and 4 initialize the search space with the set I of all
structures that satisfy the invariant. The pseudo code for
constructing the set I is shown in Figure 22. First, it initial-
izes I to F. It then performs a post-order traversal of the tree
backbone of the data structure. Each time it encounters a
node N, it constrains I with the local constraints specified
by repOkLocal (Lines 6-14 in Figure 22). Finally, it further
constrains I with the global constraints specified by rep0Ok
(Lines 19-27 in Figure 22). Note that the above algorithm
for initializing the search space is similar to the algorithm
for performing the search (Figure 17).

The last part of the above algorithm (Lines 19-27 in Fig-
ure 22) is also similar to our previous work on Korat [2]
for generating all structures satisfying a given global invari-
ant (repOk), except that in this paper we use information
flow tracking to improve the precision of the analysis (Sec-
tion 3.3.2.3) and we use BDDs to represent the search space
which leads to better pruning. (Recall that Korat imposes a
linear order on the search space and keeps all unexplored el-

375

ements contiguous at the end of the linear order. While this
makes the search space management efficient, it also means
that Korat can only prune a subset of elements its analyses
identify, so that all unexplored elements remain contiguous
at the end. Our checker can prune all the elements its anal-
yses identify because it uses BDDs.)

The main difference between Korat and our glass box model
checker, however, is that Korat ultimately works like a black
box model checker. That is, Korat generates every valid
state (within a bounded domain) and checks every operation
on every state. Our glass box checker, on the other hand,
detects redundancies in the state space and prunes away
a large number of states and operations on states without
explicitly checking them. We present experimental results
comparing Korat with glass box model checking in Section 4.

4. Experimental Results

This section presents our preliminary experimental results.
We implemented a rudimentary glass box model checker as
described in this paper. We extended the Polyglot [41] com-
piler framework to automatically instrument programs to
perform our dynamic analysis (described in Section 3.3.2),
and to automatically generate the finitization descriptions
(described in Section 3.1.5). We used JavaBDD [50] for
BDDs, which is built on top of the BuDDy package [31].
We performed all our experiments on a Linux Fedora Core
4 machine with a Pentium 4 3.2 GHz processor and 1 GB
memory using Sun’s Java 1.4.2_08.

We present results for the following benchmarks: (a) Stack
shown in Figure 8, with methods push and pop; (b) Queue
shown in Figure 2, implemented using the Stack in Figure 8,
with methods enqueue and dequeue; (c) HeapArray [§8], an
array based implementation of a binary heap to represent a
priority queue, with methods insert and eztractMin; (d) Red-
BlackTree [8], from java.util. TreeMap, with methods get,
put, and remove; and (e) FileSystem, adopted from the
Daisy file system benchmark [11], with methods lookup, cre-
ate, unlink, mkdir, and rmdir. For each benchmark, we ran
the model checking tools to check that the implementation
preserves the data structure invariants.

We checked each benchmark on states up to a maximum
size, where: a Stack of maximum size n has at most n nodes
and at most n different non-null values and possibly some
null values; a Queue of maximum size n has at most n nodes
in the front Stack, at most n nodes in the back Stack, and
at most n different non-null values and possibly some null
values; a HeapArray of maximum size n has at most n nodes
and at most n different non-null values; a RedBlackTree of
maximum size h has at most h height, at most 2" — 1 dif-
ferent keys, and at most 2" — 1 different non-null values and
possibly some null values; and a FileSystem of maximum
size (h,d) has at most h height and at most d degree, i.e.,
each directory has at most d entries.

Figure 23 presents our experimental results. It reports the
following numbers for glass box model checking. It shows
the number of transitions that are explicitly checked by our
checker (that is, the number of times the loop in Lines 5-10

i Glass Box i JPF |
[Benchmark [Max Size || Transitions | BDD Nodes [Time (s) [[Transitions | States | Time (s) |
1 4 9 0.016 33 15 0.533
2 5 14 0.016 141 83 0.669
3 5 16 0.017 1033 687 1.349
4 5 18 0.017 10949 7819 7.233
5 5 20 0.017 149313 111983 96.529
6 5 22 0.017 2471943 | 1922551 | 1661.628
7 5 24 0.017 timeout
Stack 8 5 26 0.017 timeout
9 5 28 0.017 timeout
10 5 30 0.017 timeout
16 5 42 0.018 timeout
32 5 74 0.018 timeout
64 5 140 0.020 timeout
128 5 268 0.023 timeout
1 5 17 0.019 601 299 1.121
2 7 36 0.020 89756 53852 47.598
3 8 46 0.020 timeout
4 9 61 0.020 timeout
5 10 68 0.021 timeout
6 11 75 0.021 timeout
Queue 7 12 101 0.021 timeout
8 13 114 0.022 timeout
16 21 272 0.028 timeout
32 37 834 0.050 timeout
64 69 2873 0.086 timeout
128 133 12292 0.118 timeout
1 4 9 0.016 19 7 0.434
2 7 58 0.016 133 67 0.521
3 11 245 0.018 1816 1090 1.464
4 17 565 0.019 39565 26377 15.184
5 24 2053 0.022 timeout
6 34 4398 0.029 timeout
HeapArray 7 45 9032 0.035 timeout
8 57 16621 0.045 timeout
9 70 55382 0.080 timeout
10 86 81364 0.114 timeout
11 103 145832 0.198 timeout
12 122 254985 0.318 timeout
13 142 556949 0.647 timeout
14 165 1344220 2.098 timeout
Max Height
1 6 28 0.022 49 19 0.617
2 28 493 0.028 timeout
3 108 3860 0.066 timeout
RedBlackTree 4 366 24400 0.134 timeout
5 1094 128314 0.340 timeout
6 2968 781369 1.543 timeout
7 7524 6263228 10.340 timeout
Max Height / Max Degree
2 2 62 784 0.035 12901 7482 6.883
3 2 135 1764 0.057 timeout
4 2 240 3728 0.075 timeout
5 2 380 6531 0.096 timeout
6 2 558 9984 0.109 timeout
7 2 T 13467 0.125 timeout
FileSystem 8 2 1040 21755 0.147 timeout
9 2 1350 31031 0.167 timeout
10 2 1710 40954 0.203 timeout
2 3 102 1132 0.051 timeout
3 3 270 2754 0.076 timeout
4 3 560 6707 0.115 timeout
5 3 1005 12115 0.158 timeout

Figure 24. Comparing glass box model checking to JPF.

376

Glass Box

| Black Box

[[Black Box With Abstraction |

|
l

|
| Transitions | BDD Nodes

[Benchmark [Max Size [Time (s) |[Transitions | States | Time (s) |[Transitions [States | Time (s) |
1 4 9 0.016 9 3 0.008 4 2 0.010
2 5 14 0.016 32 8 0.009 6 3 0.009
3 5 16 0.017 115 23 0.012 8 4 0.009
4 5 18 0.017 450 75 0.030 10 5 0.008
5 5 20 0.017 1946 278 0.067 12 6 0.009
6 5 22 0.017 9240 1155 0.137 14 7 0.009
7 5 24 0.017 47655 5295 0.437 16 8 0.009
Stack 8 5 26 0.017 264420 26442 2.242 18 9 0.009
9 5 28 0.017 1566587 | 142417 15.648 20 10 0.009
10 5 30 0.017 9851844 | 820987 105.304 22 11 0.009
16 5 42 0.018 timeout 34 17 0.012
32 5 74 0.018 timeout 66 33 0.026
64 5 140 0.020 timeout 130 65 0.041
128 5 268 0.023 timeout 258 129 0.098
1 5 17 0.019 27 9 0.011 8 4 0.011
2 7 36 0.020 356 89 0.044 18 9 0.012
3 8 46 0.020 6610 1322 0.161 32 16 0.014
4 9 61 0.020 176430 29405 2.126 50 25 0.016
5 10 68 0.021 6330912 | 904416 92.334 72 36 0.019
6 11 75 0.021 timeout 98 49 0.025
Queue 7 12 101 0.021 timeout 128 64 0.029
8 13 114 0.022 timeout 162 81 0.036
16 21 272 0.028 timeout 578 289 0.069
32 37 834 0.050 timeout 2178 1089 0.211
64 69 2873 0.086 timeout 8450 4225 1.231
128 133 12292 0.118 timeout 33282 16641 11.148
1 4 9 0.016 4 2 0.007 4 2 0.007
2 7 58 0.016 18 6 0.008 18 6 0.008
3 11 245 0.018 96 24 0.013 96 24 0.013
4 17 565 0.019 550 110 0.035 550 110 0.035
5 24 2053 0.022 3984 664 0.088 3984 664 0.088
6 34 4398 0.029 31605 4515 0.284 31605 4515 0.284
HeapArray 7 45 9032 0.035 333568 41696 2.382 333568 41696 2.382
8 57 16621 0.045 3101139 344571 25.261 3101139 344571 25.261
9 70 55382 0.080 timeout timeout
10 86 81364 0.114 timeout timeout
11 103 145832 0.198 timeout timeout
12 122 254985 0.318 timeout timeout
13 142 556949 0.647 timeout timeout
14 165 1344220 2.098 timeout timeout
Max Height
1 6 28 0.022 12 3 0.013 6 2 0.012
2 28 493 0.028 936 52 0.084 99 11 0.020
3 108 3860 0.066 18143370 | 259191 431.682 11781 561 0.298
RedBlackTree 4 366 24400 0.134 timeout timeout
5 1094 128314 0.340 timeout timeout
6 2968 781369 1.543 timeout timeout
7 7524 6263228 10.340 timeout timeout
Max Height / Max Degree
2 2 62 784 0.035 570 19 0.045 210 7 0.032
3 2 135 1764 0.057 14820 247 0.201 900 15 0.063
4 2 240 3728 0.075 552900 5529 6.267 3100 31 0.117
5 2 380 6531 0.096 timeout 9450 63 0.226
6 2 558 9984 0.109 timeout 26670 127 0.569
7 2 T 13467 0.125 timeout 71400 255 1.682
FileSystem 8 2 1040 21755 0.147 timeout 183960 511 5.088
9 2 1350 31031 0.167 timeout 460350 1023 15.066
10 2 1710 40954 0.203 timeout 1125850 2047 40.609
2 3 102 1132 0.051 222670 3181 2.573 5110 73 0.147
3 3 270 2754 0.076 timeout 851955 4369 18.740
4 3 560 6707 0.115 timeout timeout
5 3 1005 12115 0.158 timeout timeout

Figure 25. Comparing glass box model checking to black box model checking.

377

Glass Box

I

Korat

|
l

I
|

[Benchmark [Max Size Transitions [BDD Nodes [Time (s) “ Transitions [States Considered Time (s)
1 4 9 0.016 6 7 0.001
2 5 14 0.016 9 12 0.001
3 5 16 0.017 12 18 0.000
4 5 18 0.017 15 25 0.001
5 5 20 0.017 18 33 0.001
6 5 22 0.017 21 42 0.001
7 5 24 0.017 24 52 0.001
Stack 8 5 26 0.017 27 63 0.002
9 5 28 0.017 30 75 0.002
10 5 30 0.017 33 88 0.003
16 5 42 0.018 51 187 0.007
32 5 74 0.018 99 627 0.018
64 5 140 0.020 195 2275 0.053
128 5 268 0.023 387 8643 0.259
1 5 17 0.019 12 15 0.001
2 7 36 0.020 27 39 0.001
3 8 46 0.020 48 78 0.002
4 9 61 0.020 75 135 0.005
5 10 68 0.021 108 213 0.007
6 11 75 0.021 147 315 0.010
Queue 7 12 101 0.021 192 444 0.015
8 13 114 0.022 243 603 0.019
16 21 272 0.028 867 3315 0.059
32 37 834 0.050 3267 21219 0.363
64 69 2873 0.086 12675 149955 3.972
128 133 12292 0.118 49923 1123203 57.416
1 4 9 0.016 4 4 0.000
2 7 58 0.016 18 19 0.001
3 11 245 0.018 96 106 0.001
4 17 565 0.019 550 643 0.006
5 24 2053 0.022 3984 4606 0.023
6 34 4398 0.029 31605 36692 0.128
HeapArray 7 45 9032 0.035 333568 370714 0.879
8 57 16621 0.045 3101139 3579511 10.852
9 70 55382 0.080 36626580 41004532 95.155
10 86 81364 0.114 429394636 483881209 1356.158
11 103 145832 0.198 timeout
12 122 254985 0.318 timeout
13 142 556949 0.647 timeout
14 165 1344220 2.098 timeout
Max Height
1 6 28 0.022 8 14 0.017
2 28 493 0.028 144 460 0.035
3 108 3860 0.066 16044 105779 0.858
RedBlackTree 4 366 24400 0.134 155496600 1236548801 | 16023.741
5 1094 128314 0.340 timeout
6 2968 781369 1.543 timeout
7 7524 6263228 10.340 timeout

Figure 26. Comparing glass box model checking to Korat.

378

in Figure 17 is executed). It shows the number of BDD nodes
created, as a measure of the search space management over-
head. It also shows the time taken by our checker. Note that
we did not yet optimize the execution time of our checker,
but we report it here nonetheless to provide a rough idea.
For the number of BDD nodes created and the time taken,
the figure shows the totals as well as the numbers separately
for the initialization phase (Lines 2-4 in Figure 17) and the
checking phase (Lines 5-10 in Figure 17). Finally, the figure
also shows the maximum size of the BDD representing the
search space (set S in Figure 17).

Note that in Figure 23, for checking the Stack, our glass box
checker checks only O(1) transitions regardless of the size of
the Stack. This is because push and pop touch only a con-
stant number of fields at the beginning of the linked list. For
checking the Queue, our glass box checker checks O(n) tran-
sitions, as explained in Section 2.2. For the HeapArray and
the RedBlackTree, the growth in the number of transitions
appears to be roughly O(n?) (where n is the maximum size
of the HeapArray and h = logn is the maximum height of
the RedBlackTree). However, for the HeapArray, the search
space management overhead dominates the cost. We are
currently exploring other search space representation tech-
niques (e.g., an incremental SAT solver) to see if our search
space management overhead can be further reduced.

Figure 24 presents results of comparing the performance of
our glass box model checker with JPF [48] (version 4). For
JPF, we wrote a test harness for each benchmark and we
marked all the methods in the benchmarks to be atomic
(because the benchmarks are all single threaded programs).
We report the number of transitions explicitly checked by
JPF, as well as the number of unique states visited within
the finite bounds (as a measure of the space overhead, as
JPF is a stateful checker). We timeout if the tool runs out
of memory or if it takes too long. The results show how JPF
takes exponentially more time as the size of the structures
increases. Our glass box checker scales much better.

While running experiments with JPF, we noticed that JPF
sometimes does not detect that two states are isomorphic,
perhaps because of their different memory layouts. It there-
fore visits a lot more states than necessary. To make for
a fairer comparison, we implemented our own black box
checker that accurately detects heap isomorphisms. Fig-
ure 25 presents results of comparing the performance of our
glass box model checker with our black box model checker.
The results clearly indicate that glass box model checking
scales significantly better than black box model checking.

We also extended our black box model checker such that
if programmers implement an abstraction function [51, 43],
then our checker treats all concrete states that map to the
same abstract state as isomorphic (in addition to detecting
heap isomorphisms). (Abstraction functions can thus speed
up model checking but require manual assistance and are
error-prone.) We handcoded an abstraction function for each
of our benchmarks. For Stack, Queue, and RedBlackTree,
the abstraction function ignores the value fields because the
invariants of the above data structures do not depend on the

379

values. For the FileSystem benchmark, the general pur-
pose heap isomorphism detector does not work well because
FileSystem uses array indices instead of pointers—our ab-
straction function for FileSystem maps all such isomorphic
concrete states into the same abstract state. Figure 25 also
presents results of comparing the performance of our glass
box model checker with our black box model checker with
abstraction functions. Once again, the results clearly indi-
cate that glass box model checking scales much better.

Finally, Figure 26 presents the results of comparing our glass
box model checker with Korat [2]. We report the number
of transitions explicitly checked by Korat. We also report
the number of candidate states considered by Korat, which
includes both transitions checked by Korat (such as Fig-
ure 15) and invalid states considered by the Korat (such as
Figure 16). We could not run Korat on the FileSystem
benchmark because the Korat infrastructure does not yet
support multidimensional arrays. The results show that our
glass box checker scales much better that Korat.

A version of JPF [28] uses lazy initialization of fields to es-
sentially simulate the Korat algorithm. Its asymptotic per-
formance is similar to that of Korat. However, because JPF
is a general purpose model checker, it has higher overhead
and is slower than Korat. We therefore expect our glass box
checker to similarly scale better than [28].

5. Related Work

There are many model checking tools that exhaustively test
a program on all possible inputs up to a given size (to han-
dle input nondeterminism) and on all possible nondeter-
ministic schedules (to handle scheduling nondeterminism).
Verisoft [15] is a stateless model checker for C programs.
Java PathFinder (JPF) [48, 28] is a stateful model checker
for Java programs. XRT [20] checks Microsoft CIL pro-
grams. Bandera [7] and JCAT [9] translate Java programs
into the input language of model checkers like SPIN [22] and
SMV [34]. Bogor [12] provides an extensible framework for
building software model checkers. CMC [39] is a stateful
model checker for C programs that has been used to test
large pieces of software including the Linux implementation
of TCP/IP and the ext3 file system [38]. However, most of
the above work on applying model checking to software fo-
cuses on control oriented programs and properties, primarily
to verify event sequences with respect to temporal proper-
ties. This paper, in contrast, focuses on data oriented (and
single threaded) programs and properties.

There has been much research on techniques for reducing
the state space of a model checker. Tools such a Slam [1],
Blast [21], and Magic [4] use heuristics to construct and
check an abstraction of a program (usually predicate ab-
straction [19]). Abstractions that are too coarse generate
false positives, which are then used to refine the abstraction
and redo the checking. This technique is known as Counter
Example Guided Abstraction and Refinement, or CEGAR.
There are also many static [15, 16] and dynamic [13] par-
tial order reduction systems for concurrent programs. There
are many other symmetry-based reduction techniques as well
(e.g., [25]). However, it is unclear how any of the above tech-

niques can be used to significantly reduce the state space of
data oriented programs such as a file system implementation
or a balanced tree implementation. We believe CEGAR, par-
tial order reduction, and other techniques are complimentary
to our glass box approach.

There is a large body of research on specification-based test-
ing. An early paper [18] emphasizes its importance. Many
projects automate test case generation from specifications,
such as Z specifications [23], UML statecharts [42], or ADL
specifications [5]. These specifications typically do not con-
sider data structures that use pointers, and the tools do not
generate Java test cases.

Tools such as Alloy [26, 27] and Korat [2, 33] systematically
generate all inputs that satisfy a given precondition. A ver-
sion of JPF [28] uses lazy initialization of fields to essentially
simulate the Korat algorithm. However, these tools work as
black box checkers because they generate and test every valid
state, unlike our glass box checker. (Section 4 compares the
performance of such systems with our glass box checker.)
Jalloy [47] translates a Java program and its specifications
into a SAT formula and uses a constraint solver to check the
program. [28] extends Korat by treating integers symboli-
cally. Symstra [52] also treats some integers symbolically.

Tools such as CUTE [45, 17] and a version of JPF [49] use
constraint solvers to obtain complete branch coverage (or
complete path coverage on paths up to a given length) for
testing data structures. However, this approach does not
guarantee that an implementation works correctly on all
data structures up to a given size. For example, a buggy
tree insertion method that does not rebalance the tree might
work correctly on a set of test cases that exercise complete
branch (or finite path) coverage, but fail on a different test
case that makes the tree unbalanced. Therefore, it seems to
us that this approach is more suitable for checking control
dependent properties rather than data dependent properties.

ESC/Java [14] uses a theorem prover to verify absence of
such errors as null pointer dereferences and array bounds
violations. Static analyses such as TVLA [44] and PALE [36]
offer a promising approach for verifying shape properties of
data structures. However, none of the above techniques are
currently practical enough to verify, say, the correctness of
implementations of balanced trees, such as red-black trees.
Software model checking, on the other hand, is a general
approach that can verify any decidable property, but for
inputs bounded by a given size.

6. Conclusions

This paper presents a novel approach to software model
checking of data structure properties. Most previous work
on software model checking focuses on control oriented pro-
grams and properties, primarily to verify event sequences
with respect to temporal properties. This paper, in contrast,
focuses on data oriented programs and properties. In par-
ticular, it deals with verifying properties of data structures.
While there is much research on state space reduction tech-
niques for model checkers such as partial order reduction [13,
15, 16] and tools based on predicate abstraction [19] such as

380

Slam [1], Blast [21], or Magic [4], none of these techniques
seem to be effective in reducing the state space of data ori-
ented programs. The paper presents novel techniques for de-
tecting similarities in the state space of data structures, and
for soundly pruning large numbers of redundant states and
operations without explicitly checking them. It also presents
novel techniques for efficiently managing extremely large sets
of data structures. This results in dramatic speedups. We
do not know of any other model checker that scales nearly
as well for checking linked data structures. We believe our
techniques can make software model checking significantly
faster, and thus enable checking of much larger programs
and complex program properties than currently possible.

Acknowledgments

We thank Sarfraz Khurshid, Darko Marinov, Madan Musu-
vathi, and the anonymous referees for their useful comments.

References
(1] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani.
Automatic predicate abstraction of C programs. In

Programming Language Design and Implementation
(PLDI), June 2001.

C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In
International Symposium on Software Testing and Analysis
(ISSTA), July 2002. Winner of an ACM SIGSOFT
distinguished paper award.

(2]

R. E. Bryant. Symbolic boolean manipulation with ordered
binary decision diagrams. ACM Computing Surveys 24(3),
1992.

S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith.
Modular verification of software components in C. In
International Conference on Software Engineering (ICSE),
June 2003.

J. Chang and D. J. Richardson. Structural
specification-based testing: Automated support and
experimental evaluation. In Foundations of Software
Engineering (FSE), September 1999.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby,

S. Laubach, and H. Zheng. Bandera: Extracting finite-state
models from Java source code. In International Conference
on Software Engineering (ICSE), June 2000.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, 1991.

C. DeMartini, R. Tosif, and R. Sisto. A deadlock detection
tool for concurrent Java programs. Software—Practice and
Ezperience (SPE) 29("7), June 1999.

D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. In Communications of the
ACM (CACM) 20(7), July 1977.

Daisy file system. Joint CAV/ISSTA Special Event on
Specification, Verification, and Testing of Concurrent
Software.
http://research.microsoft.com/~qadeer/cav-issta.htm.

M. Dwyer, J. Hatcliff, M. Hoosier, and Robby. Building
your own software model checker using the Bogor extensible
model checking framework. In Computer Aided Verification
(CAV), January 2005.

C. Flanagan and P. Godefroid. Dynamic partial-order

reduction for model checking software. In Principles of
Programming Languages (POPL), January 2005.

[4

[5

(10]

(11]

12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

25]

(26]

27]

(28]

[29]

(30]

(31]
(32]

(33]

(34]

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,

J. B. Saxe, and R. Stata. Extended static checking for Java.
In Programming Language Design and Implementation
(PLDI), June 2002.

P. Godefroid. Model checking for programming languages
using VeriSoft. In Principles of Programming Languages
(POPL), January 1997.

P. Godefroid. Partial-order methods for the verification of
concurrent systems—An approach to the state-explosion
problem. Lecture Notes in Computer Science (LNCS) 1052,
Springer-Verlag, January 1996.

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Programming Language
Design and Implementation (PLDI), June 2005.

J. Goodenough and S. Gerhart. Toward a theory of test
data selection. IEEE Transactions on Software Engineering
(TSE) SE-1(2), June 1975.

S. Graf and H. Saidi. Construction of abstract state graphs
with PVS. In Computer Aided Verification (CAV), June
1997.

W. Grieskamp, N. Tillmann, and W. Shulte.
XRT—Exploring runtime for .NET: Architecture and
applications. In Workshop on Software Model Checking
(SoftMC), July 2005.

T. A. Henzinger, R. Jhala, and R. Majumdar. Lazy
abstraction. In Principles of Programming Languages
(POPL), January 2002.

G. Holzmann. The model checker SPIN. Transactions on
Software Engineering (TSE) 23(5), May 1997.

H.-M. Horcher. Improving software tests using Z
specifications. In International Conference of Z Users,
September 1995.

R. losif. Symmetry reduction criteria for software model
checking. In SPIN workshop on Model Checking of Software
(SPIN), April 2002.

C. N. Ip and D. Dill. Better verification through symmetry.
In Computer Hardware Description Languages, April 1993.

D. Jackson. Alloy: A lightweight object modeling notation.
Transactions on Software Engineering and Methodology
(TOSEM) 11(2), April 2002.

S. Khurshid and D. Marinov. TestEra: Specification-based
testing of Java programs using SAT. In Automated Software
Engineering (ASE), November 2001.

S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized
symbolic execution for model checking and testing. In Tools

and Algorithms for Construction and Analysis of Systems
(TACAS), April 2003.

B. Korel and J. Laski. Dynamic program slicing. In
Information Processing Letters (IPL) 29(3)s, October 1988.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
design of JML: A behavioral interface specification
language for Java. Technical Report TR 98-06i, Department
of Computer Science, lowa State University, May 1998.

J. Lind-Nielsen. BuDDy.
http://sourceforge.net/projects/buddy.

B. Liskov and J. Guttag. Abstraction and Specification in
Program Development. MIT Press, 1986.

D. Marinov. Automatic testing of software with structurally
complex inputs. Ph.D. thesis, Massachusetts Institute of
Technology, February 2005.

K. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

381

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

(50]
[51]

[52]

(53]

S. McPeak and G. C. Necula. Data structure specification
via local equality axioms. In Computer Aided Verification
(CAV), January 2005.

A. Moeller and M. I. Schwartzbach. The pointer assertion
logic engine. In Programming Language Design and
Implementation (PLDI), June 2001.

M. Musuvathi and D. Dill. An incremental heap
canonicalization algorithm. In SPIN workshop on Model
Checking of Software (SPIN), August 2005.

M. Musuvathi and D. R. Engler. Using model checking to
find serious file system errors. In Operating System Design
and Implementation (OSDI), December 2004. Winner of
the best paper award.

M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and
D. Dill. CMC: A pragmatic approach to model checking
real code. In Operating System Design and Implementation
(0SDI), December 2002.

A. C. Myers. JFlow: Practical mostly-static information
flow control. In Principles of Programming Languages
(POPL), January 1999.

N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot:
An extensible compiler framework for Java. In Compiler
Construction (CC), April 2003.

J. Offutt and A. Abdurazik. Generating tests from UML
specification. In International Conference on the Unified
Modeling Language, October 1999.

C. Pasareanu, R. Pelanek, and W. Visser. Test input
generation for red black trees using abstraction. In
Automated Software Engineering (ASE), November 2005.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis
problems in languages with destructive updating.
Transactions on Programming Languages and Systems
(TOPLAS) 20(1), January 1998.

K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In European Software Engineering
Conference and Foundations of Software Engineering
(ESEC/FSE), September 2005.

D. Suwimonteerabuth, S. Schwoon, and J. Esparza.
jMoped: A Java bytecode checker based on Moped. In
Tools and Algorithms for Construction and Analysis of
Systems (TACAS), April 2005.

M. Vaziri and D. Jackson. Checking properties of
heap-manipulating procedures using a constraint solver. In
Tools and Algorithms for Construction and Analysis of
Systems (TACAS), April 2003.

W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Automated Software Engineering
(ASE), September 2000.

W. Visser, C. S. Pasareanu, and S. Khurshid. Test input
generation with Java PathFinder. In International
Symposium on Software Testing and Analysis (ISSTA),
July 2004.

J. Whaley. JavaBDD. http://javabdd.sourceforge.net/.

T. Xie, D. Marinov, and D. Notkin. Rostra: A framework
for detecting redundant object-oriented unit tests. In
Automated Software Engineering (ASE), September 2004.

T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
A framework for generating object-oriented unit tests using
symbolic execution. In Tools and Algorithms for
Construction and Analysis of Systems (TACAS), April
2005.

X. Zhang and R. Gupta. Cost effective dynamic program
slicing. In Programming Language Design and
Implementation (PLDI), June 2004.

