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CHAPTER I

Introduction

This dissertation presents a technique for improving the reliability of software.

Software drives nearly everything we do, including transportation, telecommunica-

tions, energy, medicine, and banking. As we increasingly depend on software for our

infrastructure, it becomes ever more important that it works without error. Software

failures can be costly, and in critical systems they can be catastrophic. Studies esti-

mate that software bugs cost the US economy about $60 billion per year [57]. It is

therefore an important challenge to develop tools and techniques to improve software

reliability.

Model checking is one general strategy to improve software reliability. A software

model checker is an automatic tool that exhaustively tests a program on all possible

inputs (usually up to a given size) and on all possible nondeterministic schedules.

Thus, unlike techniques based on branch coverage [63, 27], a model checker can guar-

antee total state coverage within its bounds, eliminating the possibility of unchecked

error states. Unlike formal proof-based techniques [4, 40, 55], model checking is auto-

matic, requiring little effort on the part of the user. However, even when the bounds

on the inputs are small, the number of inputs and schedules that need to be checked

can be very large. In that case, it is infeasible to simply enumerate and test all pos-

sible states. This has motivated much research in state space reduction techniques,

which reduce the amount of work a model checker has to do while maintaining the

full coverage guarantee.

One way to reduce the state space of a model checker is to create an abstraction of

the program being checked by using a technique such as predicate abstraction [3, 32,

9]. This abstraction is much simpler than the original program and has fewer states

to explore. The abstraction is sound in the sense that if the abstraction is shown to be

free of bugs then the original program must be free of bugs. However, the abstraction

may contain bugs that are not in the original program. If such a false positive is
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found, the abstraction must be refined to eliminate the false positive. This technique

is known as Counter Example Guided Abstraction Refinement or CEGAR.

Another state space reduction technique is partial order reduction, which is ef-

fective when checking concurrent programs. Model checkers that use partial order

reduction [25, 26] avoid checking multiple nondeterministic schedules that have prov-

ably identical runtime behavior. Thus, partial order reduction can be said to eliminate

a certain kind of redundancy in the state space of a model checker. There are other

techniques as well that exploit symmetries to eliminate state space redundancy [36].

Unfortunately, model checking has so far been limited in its applicability. When

applied to hardware, model checkers have successfully verified fairly complex finite

state control circuits with up to a few hundred bits of state information; but not cir-

cuits in general that have large data paths or memories. Similarly, for software, model

checkers have primarily verified event sequences with respect to temporal properties;

but not much work has been done to verify programs that manipulate rich complex

data with respect to data-dependent properties. There is a combinatorially large num-

ber of possible states in such programs. For example, a binary tree with n nodes has

a number of possible tree shapes exponential in n.

Thus, while there is much research on model checkers [3, 5, 9, 13, 14, 23, 26, 67,

32, 51] and on state space reduction techniques for software model checkers, none of

these techniques seem to be effective at reducing the state space of model checkers in

the presence of programs that manipulate complex data, such as data structures. For

example, predicate abstraction relies on an alias analysis that is often too imprecise

to describe heap manipulations such as those used by data structures. Partial order

reduction is effective at reducing the number of nondeterministic schedules but it does

little to cope with the large number of possible states of a data structure.

We present glass box model checking, a type of software model checking that can

achieve a high degree of state space reduction in the presence of complex data.

1.1 Motivating Example

Consider checking the ordered binary search tree implementation in Figure 1.2.

Suppose we would like to check that the search tree is always ordered. There are two

operations to check: get and insert. (We omit the delete operation for simplicity.)

The ordering invariant is described by the repOk method, such that repOk returns

true for states that satisfy the invariant.

A model checking technique (in effect) exhaustively checks every valid state of
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t1

t1'

t2

t2' t3'

t3

Figure 1.1: Three search trees (code in Figure 1.2), before an after an insert opera-
tion. The tree path touched by the operation is highlighted in each case.
Note that the tree path is the same in all three cases. Once our system
checks the insert operation on tree t1, it performs a static analysis to
rule out the possibility of bugs in trees t2 and t3.

SearchTree within some given finite bounds. Given a bound of 3 on the height of the

tree, Figure 1.1 shows some possible states of SearchTree.

Consider checking an insert operation on state t1 in Figure 1.1. After the op-

eration, the resulting state is t1’. During execution, the insert operation touches

only a small number of tree nodes along a tree path. These nodes are highlighted in

the figure. Thus, if these nodes remain unchanged, the insert operation will behave

similarly (e.g., on trees t2 and t3).

At this point we would like to conclude that it is redundant to check the operation

on t1, t2, and t3. Then we could only check t1 and achieve a high degree of state space

reduction by not checking all of the similar transitions. However, this is not sound,

and can lead to bugs being missed. To see this, suppose the invariant of SearchTree

includes a balancing invariant in addition to the ordering invariant, so that all trees

must be full up to depth h−1, where h is the height of the tree. Observe that t1’ and

t3’ are properly balanced but t2’ is not. Therefore it would be incorrect to check

the transition on t1 and conclude that all similar transitions (such as that from t2

to t2’) maintain the invariant. Simply pruning t2 and t3 from the search space will

cause bugs to be missed.

To address this, we use a static analysis to efficiently discover if any similar tran-

sitions violate the invariant. After checking t1, our static analysis exploits similarities

in the state space to find similar transitions that violate the invariant, or determine

that none exist. With the addition of the static analysis, it becomes sound to prune

all states similar to t1. Thus, our technique does not just eliminate redundancy in

3



1 class SearchTree implements Map {
2 static class Node {
3 int key;
4 Object value;
5 @Tree Node left;
6 @Tree Node right;
7

8 Node(int key, Object value) {
9 this.key = key;

10 this.value = value;
11 }
12 }
13

14 @Tree Node root;
15

16 Object get(int key) {
17 Node n = root;
18 while (n != null) {
19 if (n.key == key)
20 return n.value;
21 else if (key < n.key)
22 n = n.left;
23 else
24 n = n.right;
25 }
26 return null;
27 }
28

29 void insert(int key, Object value) {
30 Node n = root;
31 Node parent = null;
32 while (n != null) {
33 if (n.key == key) {
34 n.value = value;
35 return;
36 } else if (key < n.key) {
37 parent = n;
38 n = n.left;
39 } else {
40 parent = n;
41 n = n.right;
42 }
43 }
44

45 n = new Node(key, value);
46 if (parent == null)
47 root = n;
48 else if (key < parent.key)
49 parent.left = n;
50 else
51 parent.right = n;
52 }
53

54 @Declarative
55 boolean repOk() {
56 return isOrdered(root, null, null);
57 }
58

59 @Declarative
60 static boolean isOrdered(Node n, Node low, Node high) {
61 if (n == null) return true;
62 if (low != null && low.key >= n.key) return false;
63 if (high != null && high.key <= n.key) return false;
64 if !(isOrdered(n.left, low, n )) return false;
65 if !(isOrdered(n.right, n, high)) return false;
66 return true;
67 }
68 }

Figure 1.2: A simple search tree implementation.
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the state space, but also uses similarities in the state space to soundly eliminate large

classes of non-redundant states as well. For this example, we only explicitly check each

operation once on each unique tree path rather than each unique tree. This leads to

significant reduction in the size of the state space.

1.2 Glass Box Model Checking

We call our technique glass box model checking. In general, the glass box technique

works as follows. First, our checker initializes its search space to the set of all valid

states in a program, up to some finite bounds. Next, our checker chooses an unchecked

state in the search space. While executing from this state, our checker tracks infor-

mation about which parts of the program state are accessed and how they are used.

Using this information, our checker identifies a (usually very large) set of states that

must behave similarly. Then our checker constructs a formula asserting that all simi-

lar states are bug-free, and checks it using a satisfiability solver. This leads to several

orders of magnitude speedups over previous model checking approaches.

1.3 Modular Glass Box Model Checking

Programs are commonly divided into modules that each implement a self-contained

part of a program. For example, many object-oriented languages such as Java provide

classes and packages as a way to organize modules. It is common practice to perform

unit testing, where each module is tested in isolation. This suggests a modular ap-

proach to model checking as well, where each module is checked by a distinct instance

of a model checker. If a model checker has a state space of size n when checking a

module, checking a program composed of two such modules could require a state space

as large as n2. Using a modular approach, two model checkers each explore a state

space of size n for a total of 2n. Thus, modularity has the potential to significantly

reduce the state space of model checkers.

We present a system for modular glass box software model checking, to further

improve the scalability of glass box software model checking. In a modular checking

approach program modules are replaced with abstract implementations, which are

functionally equivalent but vastly simplified versions of the modules. The problem of

checking a program then reduces to two tasks: checking that each program module
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behaves the same as its abstract implementation, and checking the program with its

program modules replaced by their abstract implementations [12].

Extending traditional model checking to perform modular checking is trivial. For

example, Java Pathfinder (JPF) [67] or CMC [51] can check that a program module

and an abstract implementation behave the same on every sequence of inputs (within

some finite bounds) by simply checking every reachable state (within those bounds).

However, it is nontrivial to extend glass box model checking to perform modular

checking, while maintaining the significant performance advantage of glass box model

checking over traditional model checking. In particular, it is nontrivial to extend

glass box checking to check that a module and an abstract implementation behave

the same on every sequence of inputs (within some finite bounds). This is because,

unlike traditional model checkers such as Java Pathfinder or CMC, our model checker

does not check every reachable state separately. Instead it checks a (usually very

large) set of similar states in each single step.

1.4 Glass Box Model Checking of Type Soundness

Type systems provide significant software engineering benefits. Types can enforce

a wide variety of program invariants at compile time and catch programming errors

early in the software development process. Types serve as documentation that lives

with the code and is checked throughout the evolution of code. Types also require

little programming overhead and type checking is fast and scalable. For these reasons,

type systems are the most successful and widely used formal methods for detecting

programming errors. Types are written, read, and checked routinely as part of the

software development process. However, the type systems in languages such as Java,

C#, ML, or Haskell have limited descriptive power and only perform compliance

checking of certain simple program properties. But it is clear that a lot more is

possible. There is therefore plenty of research interest in developing new type systems

for preventing various kinds of programming errors [8, 17, 31, 53, 54, 69].

A formal proof of type soundness lends credibility that a type system does indeed

prevent the errors it claims to prevent, and is a crucial part of type system design.

At present, type soundness proofs are mostly done on paper, if at all. These proofs

are usually long, tedious, and consequently error prone. There is therefore a grow-

ing interest in machine checkable proofs of soundness [2]. However, both the above

approaches—proofs on paper (e.g., [22]) or machine checkable proofs (e.g., [56])—
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require significant manual effort.

Consider an alternate approach for checking type soundness automatically using

a glass box software model checker. Our idea is to systematically generate every type

correct intermediate program state (within some finite bounds), execute the program

one small step forward if possible using its small step operational semantics, and then

check that the resulting intermediate program state is also type correct—but do so

efficiently by using glass box model checking to detect similarities in this search space

and prune away large portions of the search space. Thus, given only a specification of

type correctness and the small step operational semantics for a language, our system

automatically checks type soundness by checking that the progress and preservation

theorems [60, 71] hold for the language (albeit for program states of at most some

finite size).

Since the initial state of a program can be any of a very large number of well-typed

states, the problem of checking type soundness is difficult to even formulate in most

model checkers. However, glass box model checking is well suited to handle this sort

of input nondeterminism.

Note that checking the progress and preservation theorems on all program states

up to a finite size does not prove that the type system is sound, because the theorems

might not hold on larger unchecked program states. However, in practice, we expect

that all type system errors will be revealed by small sized program states. Our exper-

iments using mutation testing suggest that the small scope conjecture also holds for

checking type soundness. We also examined all the type soundness errors we came

across in literature and found that in each case, there is a small program state that

exposes the error. Thus, exhaustively checking type soundness on all program states

up to a finite size does at least generate a high degree of confidence that the type

system is sound.

1.5 Contributions

This dissertation builds on previous work on glass box model checking [16], glass

box model checking of type soundness [62] and modular glass box model checking [61].

We make the following contributions.
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• Efficient software model checking of data oriented programs: We present

glass box software model checking, a method for efficiently checking programs

that manipulate complex data. Our key insight is that there are classes of op-

erations that affect a program’s state in similar ways. By discovering these

similarities, we can dramatically reduce the state space of our model checker

by checking each class of states in a single step. To achieve this state space

reduction, we employ a dynamic analysis to detect similar state transitions and

a static analysis to check the entire class of transitions. Our analyses employ a

symbolic execution technique that increases their effectiveness.

• Technique for modular checking: We present a modular extension to glass

box model checking, which allows us to efficiently check programs composed

of many modules. We check each module for conformance to an abstract im-

plementation of the module. Then the abstract implementation is used while

checking other modules of the program. This further improves the efficiency and

scalability of glass box model checking.

• Checking type soundness: We show how glass box checking can efficiently

demonstrate the soundness of experimental type systems. Since proving type

soundness can be extremely difficult, a model checking approach takes a con-

siderable burden off the language designer.

• Formal description: We formalize our core technique and prove its correct-

ness. Formalization is important for establishing the correctness of our analyses

and for ensuring correct implementation of a glass box checker. Proving cor-

rectness aids evaluation of our technique and assures users of our system that

bugs will not be missed.

• Evaluation: We give experimental evidence that glass box model checking is

effective at checking properties of programs and soundness of type systems. We

test our modular technique by comparing its performance to that of our non-

modular technique, showing that modularity vastly improves the efficiency and

scalability of our analysis. In comparisons with other model checkers, we show

that glass box model checking is more efficient at checking these programs.
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1.6 Organization

The rest of this dissertation is organized as follows. Chapter II describes the basic

glass box model checking approach. Chapter III describes the modular extension to

glass box checking. Chapter IV shows how to use glass box model checking to check

the soundness of type systems. Chapter V presents a formalization of our glass box

algorithm and a proof of its correctness. Chapter VI presents experimental results.

Chapter VII presents related work and Chapter VIII concludes.
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CHAPTER II

Glass Box Model Checking

Model checking is a formal verification technique that exhaustively tests a piece

of hardware or software on all possible inputs (usually up to a given size) and on all

possible nondeterministic schedules. For hardware, model checkers have successfully

verified fairly complex finite state control circuits with up to a few hundred bits of

state information; but not circuits in general that have large data paths or memo-

ries. Similarly, for software, model checkers have primarily verified control-oriented

programs with respect to temporal properties; but not much work has been done to

verify data-oriented programs with respect to complex data-dependent properties.

Thus, while there is much research on software model checkers [3, 5, 9, 13, 14, 23,

26, 67, 32, 51] and on state space reduction techniques for software model checkers

such as partial order reduction [25, 26] and tools based on predicate abstraction [29]

such as Slam [3], Blast [32], or Magic [9], none of these techniques seem to be effec-

tive in reducing the state space of data-oriented programs. For example, predicate

abstraction relies on alias analysis that is often too imprecise. This chapter presents

glass box model checking, a technique capable of efficiently checking data-oriented

programs.

For example, consider checking that a red-black tree [15] implementation main-

tains the usual red-black tree invariants. Previous model checking approaches such

as JPF [67, 43], CMC [51, 50], Korat [5], or Alloy [37, 41] systematically generate all

red-black trees (up to a given size n) and check every red-black tree operation (such

as insert or delete) on every red-black tree. Since the number of red-black trees

with at most n nodes is exponential in n, these systems take time exponential in n for

checking a red-black tree implementation. Our key idea is as follows. Our glass box

checker detects that any red-black tree operation such as insert or delete accesses

only one path in the tree from the root to a leaf (and perhaps some nearby nodes).

Our checker then determines that it is sufficient to check every operation on every
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unique tree path (and some nearby nodes), rather than on every unique tree. Since

the number of unique red-black tree paths is polynomial in n, our checker takes time

polynomial in n.

In general, the glass box technique works as follows. First, our checker initializes

its search space to the set of all valid states in a program, up to some finite bounds.

Next, our checker chooses an unchecked state in the search space. While executing

from this state, our checker tracks information about which parts of the program state

are accessed and how they are used. Using this information, our checker identifies a

(usually very large) set of states that must behave similarly. Then our checker checks

the entire set of states in a single step. This leads to several orders of magnitude

speedups [16] over previous model checking approaches.

Note that like most model checking techniques [5, 23, 26, 67, 51], our system (in

effect) exhaustively checks all states in a state space within some finite bounds. While

this does not guarantee that the program is bug free because there could be bugs in

larger unchecked states, in practice, almost all bugs are exposed by small program

states. This conjecture, known as the small scope hypothesis, has been experimentally

verified in several domains [38, 47, 59]. Thus, exhaustively checking all states within

some finite bounds generates a high degree of confidence that the program is correct

(with respect to the properties being checked).

Compared to glass box checking, formal verification techniques that use theorem

provers [4, 40, 55] are fully sound. However, these techniques require significant human

effort (in the form of loop invariants or guidance to interactive theorem provers). For

example, an unbalanced binary search tree implemented in Java can be checked using

the glass box technique with less than 20 lines of extra Java code, implementing an

abstraction function and a representation invariant. In fact, it is considered a good

programming practice [46] to write these functions anyway, in which case glass box

checking requires no extra human effort. However, checking a similar program using

a theorem prover such as Coq [4] requires more than 1000 lines of extra human effort.

Compared to glass box checking, other model checking techniques are more auto-

matic because they do not require abstraction functions and representation invariants.

However, glass box checking is significantly more efficient than other model checkers

for checking certain kinds of programs and program properties.

We present glass box model checking as a middle ground between automatic model

checkers and program verifiers based on theorem provers that require much more

extensive human effort.

The following sections in this chapter present the glass box model checking ap-
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proach in detail. First we show how program properties are specified. Next we define

the search space, present the glass box algorithm, and discuss how to represent the

search space efficiently. We continue with detailed descriptions of our dynamic and

static analysis techniques, as well as a discussion about how we translate some meth-

ods in logical formulas.

This chapter uses the binary search tree from Chapter I (Figure 1.2) as a running

example.

2.1 Specification

Our analysis guarantees coverage of every state that satisfies the program invari-

ant. The programmer must supply this invariant, which typically appears in a method

called repOk. The repOk method returns true for every state that satisfies the pro-

gram invariant and returns false (or raises an exception) for every state that does not

satisfy the invariant. Our analysis works by translating repOk into a formula, which

must be done efficiently in terms of both time complexity and size of formula. Toward

this end we define a declarative subset of Java that greatly facilitates this translation

process. Note that in Figure 1.2, the methods repOk and isOrdered are annotated

as Declarative, which indicates that they use the declarative syntax. As evidenced

by these methods, the declarative syntax is expressive and capable of representing

complex invariants in a way that is familiar to programmers. We present a detailed

account of declarative methods and their syntax in Section 2.9. We require that the

repOk method is always declarative.

In addition to the program invariant, the programmer can specify precondition

and postcondition methods. Our analysis checks every state that satisfies the pre-

condition and the invariant, and checks that the postcondition and the invariant hold

after each operation. Furthermore, the programmer can insert assertions in the pro-

gram code itself, and we provide a utility method assume. These mechanisms are

detailed in Section 2.11

Also note the Tree annotations in Figure 1.2, which denote that the Nodes form

a tree rooted at the field root. The tree property is considered part of the program

invariant. Thus, these annotations reduce our search space because we do not have to

check non-tree structures. They also relieve programmers of the burden of specifying

a tree structure in repOk. However, our analysis must check that the tree structure

is maintained as the program executes. We describe how we perform this check in

Section 2.10.
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Field Domain Tree 1 Tree 2

root {null, n0} n0 n0

n0.left {null, n1} n1 n1

n0.right {null, n2} n2 null

n1.left {null, n3} n3 n3

n1.right {null, n4} null null

n2.left {null, n5} null

n2.right {null, n6} n6

n0.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 5 6

n1.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 2 7

n2.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 7

n3.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 0 4

n4.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
n5.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
n6.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 9

n0.value {a, b, c, d} a b

n1.value {a, b, c, d} d d

n2.value {a, b, c, d} a

n3.value {a, b, c, d} b c

n4.value {a, b, c, d}
n5.value {a, b, c, d}
n6.value {a, b, c, d} d

method {get, insert} insert insert

get.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
insert.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 3 3

insert.value {a, b, c, d} a a

n3 n4 n5 n6

n1 n2

n0

0,b 9,d

2,d 7,a

5,a

4,c

7,d

6,b

(a) (b)

Figure 2.1: (a) Search space for the binary tree in Figure 1.2 with tree height at most
3 and at most 10 keys and 4 values, and (b) two elements of that search
space. Tree 1 is ordered and Tree 2 is not ordered.

The current implementation of our system checks Java programs, and we present

it in that context. However, the glass box checking technique we describe in this

chapter is general and can be used to check programs in other languages as well.

2.2 Search Space

We define the search space of a model checking task by specifying bounds on the

program states that we will check. For example, consider checking the binary search

tree implementation in Figure 1.2. Suppose we must check all trees of tree height

at most 3, with at most 10 different possible keys and at most 4 different possible
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values. The corresponding search space is shown in Figure 2.1(a). The tree may have

any shape within its height bound because the pointers between nodes may be null.

Every element in this search space represents a binary tree, along with an operation

to run on that tree. Figure 2.1(b) shows two elements of this search space. Tree 1

represents the operation insert(3,a) on an ordered tree. Tree 2 represents the same

operation on an unordered tree, because key 7 in node n1 is greater than key 6 in

node n0. The search space thus may include elements that violate the invariant.

Traditional software model checkers [3, 9, 14, 26, 67, 32, 51] explore a state space

by starting from the initial state and systematically generating and checking every

successor state. This approach does not work for software model checkers that use

the glass box technique. Instead, we check every state within the search space that

satisfies the invariant.

2.3 Search Algorithm

Figure 2.2 presents the pseudo-code for the glass box search algorithm. Given

a bounded search space B, in Line 2 the glass box technique initializes the search

space S to all valid states in B. For example, given the bounded search space B

in Figure 2.1(a), the initial search space S contains all states in B on which repOk

returns true. Lines 3-12 iterate until the search space S is exhausted. In each iteration,

an unchecked state s is selected from S and the desired property is checked on it. For

example, when checking the binary search tree in Figure 1.2, we check that executing

the operation on s preserves its invariant. In Line 6 a set S ′ of states similar to s is

constructed using the dynamic analysis described in Section 2.6. In Line 7 the entire

set of states S ′ is checked using the static analysis described in Section 2.7. If any

of the states fails the check, we obtain an explicit bug trace in Line 9. Finally, in

Line 11 all the checked states S ′ are removed from S. The following sections describe

the above steps in detail.

2.4 Search Space Representation

In the above algorithm, several operations are performed on the search space,

including choosing an unchecked element (Line 4 in Figure 2.2), constructing a subset

(Line 6), checking the subset (Line 7), and pruning the subset from the search space
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1: procedure GlassBoxSearch(BoundedSearchSpace B)
2: S ← Set of all valid elements in B
3: while S 6= ∅ do
4: s← Any element in S
5: Check the desired property on s
6: S ′ ← Elements similar to s
7: Check the property on all elements in S ′

8: if any s′ ∈ S ′ fails the check then
9: Print bug trace s′

10: end if
11: S ← S − S ′
12: end while
13: end procedure

Figure 2.2: Pseudo-code for the glass box search algorithm.

(Line 11). Consider checking the binary search tree in Figure 1.2 on trees with at

most n nodes. The size of the search space is exponential in n. However, our model

checking algorithm described below completes the search in time polynomial in n.

Thus, if we are not careful and choose an explicit representation of the search space,

then search space management itself would take exponential time and negate the

benefits of our search space reduction techniques. We avoid this by choosing a compact

representation. We represent the search space as a finite boolean formula. We use the

incremental SAT solver MiniSat [24] to perform the various search space operations.

For example, consider the search space in Figure 2.1(a). We encode the value of

each field using dlog2 ne boolean variables, where n is the size of the domain of the

field. So we encode n0.key with four boolean variables and n1.right with one boolean

variable. A formula over these bits represents a set of states. For example, the following

formula represents the set of all trees of height one: root = n0 ∧ n0.left = null ∧
n0.right = null. We invoke the SAT solver to provide a satisfying assignment to

the variables of the formula and then decode it into a concrete state. Thus there may

be expensive operations at Line 3 in Figure 2.2, checking if a set is empty, and Line 4,

choosing an element of a non-empty set, because they invoke the SAT solver. Line 11

in Figure 2.2, subtracting one set (S ′) from another (the search space S), takes linear

time (w.r.t. size of S ′) because it only injects clauses (in S ′) into the incremental SAT

solver.
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2.5 Search Space Initialization

In Line 2 of Figure 2.2, given a bounded search spaceB, we first initialize the search

space S to the set of all valid states in B. For example, given the bounded search space

B in Figure 2.1(a), we first initialize the search space S to all states in B on which

repOk returns true. This requires constructing a boolean formula that represents

all states that satisfy repOk. We accomplish this by translating the repOk method

and all the methods that repOk transitively invokes into such a boolean formula,

given the finite bounds. For example, translating the repOk method of the binary

search tree in Figure 1.2 with a tree height of at most of two produces the following

boolean formula: root = null ∨ ((n0.left = null ∨ (n1.key < n0.key)) ∧
(n0.right = null ∨ (n2.key > n0.key))). Section 2.9 describes how we trans-

late declarative methods such as repOk into formulas.

2.6 Dynamic Analysis

Given an element of the search space, the purpose of the dynamic analysis (Line 6

in Figure 2.2) is to identify a set of similar states that can all be checked efficiently

in a single step by the static analysis described in Section 2.7.

Consider checking the binary search tree implementation in Figure 1.2. Suppose

that we choose the unchecked state shown in Tree 1 in Figure 2.1(b). Call this state

s1. We run the corresponding insert(3,a) operation on the state s1 to obtain the

state s2.

As the method insert is concretely executed in the above example, it is also

symbolically executed [44] to build a path constraint. The symbolic execution tracks

formulas representing the values of variables and fields. The path constraint is a

formula that describes the states in the search space that follow the same path through

the program as the current concrete execution. For example, in the above concrete

execution, the first branch point is on Line 32 (in Figure 1.2), with branch condition

n != null. At this program point, n has the concrete value of n0 and the symbolic

value of root. The symbolic value of the branch condition is thus root 6= null. This

symbolic value is saved. The concrete value of the branch condition is true, so the

control flow proceeds into the while loop. The next branch in the concrete execution

is on Line 33, testing n.key == key. This symbolically evaluates to n0.key = key,

concretely to false. Execution continues in this way. Figure 2.3 summarizes all branch
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Line Symbolic Value of Concrete Value of
Branch Condition Branch Condition

32 root6=null true

33 n0.key=key false

36 key<n0.key true

32 n0.left6=null true

33 n1.key=key false

36 key<n1.key false

32 n1.right6=null false

46 n1=null false

48 key<n1.key false

Figure 2.3: Symbolic and concrete values of the branch conditions encountered during
the execution of the insert(3,a) operation on Tree 1 in Figure 2.1(b).
The symbolic values are used to generate the path constraint.

conditions encountered during execution of the insert method.

We generate the path constraint by taking the conjunction of the symbolic branch

conditions, with the false conditions negated. All states satisfying the path constraint

are considered similar to each other (Line 6 in Figure 2.2). In the binary tree example,

the insert method does not find key in the tree, so it inserts a new node. The

path constraint asserts that root and n0.left are not null, but n1.right is null.

The parameter key must be less than n0.key and greater than n1.key. (The path

constraint also asserts that the method being checked is insert).

In general, path constraints are not just branch conditions but also include val-

ues used in instructions that cannot efficiently execute symbolically. This includes

parameters to external code and receiver objects of field assignments. In addition,

instructions that may result in runtime exceptions also generate path constraints.

Figure 2.4 summarizes Java constructs that execute symbolically without generating

path constraints (except for a possible exception condition).

Note from Figure 2.4 that calls to declarative methods execute symbolically.

Declarative methods do not contain side effects. Given a declarative method and the

current symbolic program state, we generate a symbolic return value of the declara-

tive method by translating the declarative method (and the methods it transitively

invokes) into a formula. (We present a detailed explanation of this process in Sec-

tion 2.9). Thus we can use declarative methods during the dynamic analysis without

increasing the size of the path constraint. This allows us to identify a larger set of

similar states.
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Construct Restrictions Exception
Conditions

i<j i>j i<=j i>=j

i+j i-j

+i -i ~i

i&j i|j i^j

x==y x!=y

!a

a||b a&&b b is effect free
if c return x else return y x and y are effect free
x=e

x.m(..) m is declarative x 6=null

x.f x 6=null

x[i] x 6=null ∧ i ≥ 0 ∧ i < x.length

(C)x x=null ∨ (x is an instance of C)
x instanceof C

Figure 2.4: Java constructs that execute symbolically without generating path con-
straints (except for exception condition). The restrictions indicate the con-
ditions under which these constructs execute symbolically without gen-
erating path constraints. The exception conditions are constraints that
are added to the path constraint when no exception is thrown during the
concrete execution.

2.7 Static Analysis

The dynamic analysis above identifies a set S ′ of similar states (Line 6 in Fig-

ure 2.2) that follow the same program path during execution. But the fact that the

code works correctly on one of the states does not necessarily imply that it works

correctly on all of them. For example, a buggy get method of a binary tree might

correctly traverse the tree, but return the value of the node’s parent instead of the

value of the node itself. By chance we might have chosen a state where the two values

are the same. That particular state would not expose the bug, but most of the sim-

ilar states would. The purpose of the static analysis is to check that the code works

correctly on all of the similar states in S ′ (Line 7 in Figure 2.2).

Consider checking the binary search tree implementation in Figure 1.2. To check

that the code works correctly on all the states S ′ that follow the same program path,

we construct the formula: S ′ → R. The proposition S ′ asserts that a state s1 is

among the ones we are checking. R asserts that a state s1 transitions to a state s2

such that s2.repOk() returns true. We use a SAT solver to find a counterexample

to this formula, or establish that none exists. If we find a counterexample, we decode

it into a concrete state and present it as an explicit bug trace.
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Field Symbolic Value

root pre.root

n0.left pre.n0.left

n0.right pre.n0.right

n1.left pre.n1.left

n1.right n’

n2.left pre.n2.left

n2.right pre.n2.right

n0.key pre.n0.key

n1.key pre.n1.key

n2.key pre.n2.key

n3.key pre.n3.key

n4.key

n5.key pre.n5.key

n6.key pre.n6.key

n0.value pre.n0.value

n1.value pre.n1.value

n2.value pre.n2.value

n3.value pre.n3.value

n4.value

n5.value pre.n5.value

n6.value pre.n6.value

n’.key pre.insert.key

n’.value pre.insert.value

method pre.method
get.key pre.get.key

insert.key pre.insert.key

insert.value pre.insert.value

Figure 2.5: Symbolic state of the search tree in Figure 1.2 generated by symbolically
executing the insert operation on Tree 1 in Figure 2.1(b). Node n’ is a
fresh node created during the operation.

To generate the formula R, we symbolically execute the operation using the dy-

namic analysis described above in Section 2.6. After symbolic execution, every field

and variable contains a symbolic value that is represented by a formula. For example,

Figure 2.5 shows the symbolic state of the binary tree in Figure 1.2 generated by

symbolically executing the insert method on Tree 1 in Figure 2.1(b).

2.8 Isomorphism Analysis

Consider checking a method foo with three formal parameters p1, p2, and p3.

Figure 2.6(a) presents an example of such a search space, where each method pa-

rameter can be one of three objects o1, o2, and o3. Consider the two elements of

the above search space in Figure 2.6(b). These two elements are isomorphic because
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Field Domain Element 1 Element 2

o1.value {null, o1, o2, o3} null null

o2.value {null, o1, o2, o3} null null

o3.value {null, o1, o2, o3} null null

method {foo} foo foo

foo.p1 {o1, o2, o3} o1 o2

foo.p2 {o1, o2, o3} o2 o1

foo.p3 {o1, o2, o3} o3 o3

(a) (b)

Figure 2.6: (a) Search space for checking a method foo with three formal parameters
p1, p2, and p3 that can each be one of three objects o1, o2, and o3. (b)
Two isomorphic elements of this search space. Element 1 and Element 2
are isomorphic because o1 and o2 are equivalent memory locations.

o1 and o2 are equivalent memory locations. Therefore, once we check Element 1, it

is redundant to check Element 2. We avoid checking isomorphic elements as follows.

Consider Element 1 in Figure 2.6(b). Suppose that the execution of the method foo

depends only on the values of p1 and p2, and the analyses in the previous sections

conclude that all states where (p1=o1 ∧ p2=o2) can be pruned. The isomorphism

analysis then determines that all states that satisfy the following formula can also be

safely pruned: (p1 ∈ {o2,o3} ∨ (p1=o1 ∧ p2 ∈ {o3})).
In general, given a program state s, we construct such a formula Is denoting the

set of states isomorphic to s as follows. Recall from Section 2.6 that the symbolic

execution on s builds a path constraint formula, say Ps. Suppose during symbolic

execution we encounter a fresh object o by following a field f that points to o. Suppose

the path constraint built so far is P′s. The isomorphism analysis includes in Is all states

that satisfy (P′s ∧ f=o′), for every o′ in the domain of the field f that is another fresh

object. We then prune all the states denoted by Is from the search space.

Note that some software model checkers also prune isomorphic program states

using heap canonicalization [35, 49]. The difference is that in heap canonicalization,

once a checker visits a state, it canonicalizes the state and checks if the state has

been previously visited. In contrast, once we check a state s, we compute a compact

formula Is denoting a (often exponentially large) set of states isomorphic to s, and

prune Is from the search space. We never visit the (often exponentially many) states

in the set Is.
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2.9 Declarative Methods and Translation

The above search algorithm relies on efficiently translating declarative methods

into formulas. The efficiency must not only be in the speed of translation, but also

in the compactness of the final formula so that it can be efficiently solved by a SAT

solver. To achieve this, we restrict declarative methods to use a subset of Java and

be free of side effects.

Declarative methods have the Declarative annotation. A declarative method

may not contain exception handlers, and may only call declarative methods. Declar-

ative methods allow assignment only to local variables, and permit a limited form of

temporary object creation and iterative loop structures, described below. Declarative

methods may be overridden only by other declarative methods. Note that declarative

methods can contain recursion, so our declarative subset of Java is Turing complete.

Our experience indicates that declarative methods are sufficiently expressive to write

program specifications (such as invariants and assertions).

The translation process is somewhat similar to that of AAL [42]. However, be-

cause our declarative methods do not contain side effects, the formulas for declarative

methods that we generate are considerably simpler than the formulas for regular Java

methods that AAL generates. We translate our declarative variant of Java directly

into propositional logic, unlike AAL which first translates Java into Alloy [37] and

then translates Alloy into propositional logic.

Non-declarative methods may call declarative methods. If a declarative method

is encountered during symbolic execution, we symbolically execute the declarative

method by translating it into a formula on the current symbolic state. Branches

in declarative methods thus do not generate path constraints. Therefore, making

methods declarative enables the checking and pruning of a larger set of states in

each iteration of the loop in Figure 2.2. This is particularly useful for methods that

depend on a large part of the state, such as a method that returns the number of

nodes in a tree. We interpret some core Java library calls declaratively, including the

identity hash function and the getClass method. This allows us to use such calls in

specifications and to prune larger sets of similar states.

The glass box algorithm translates the same declarative method several times. For

example, consider checking the code in Figure 1.2. During search space initialization

(see Section 2.5), the above algorithm translates the invocation of the isOrdered

method on each tree node. Subsequently, during each iteration of the loop in Fig-

ure 2.2, it again translates the invocation of the isOrdered method on each tree
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node. However, note that each operation on the tree, such as an insert operation,

changes only a small part of the tree. Thus, most invocations of the isOrdered method

on the same tree node return the same formula. To speed up translation, we cache

the formulas generated by translating the declarative methods during search space

initialization. The cache stores a different formula per combination of parameters

passed to a declarative method. We also maintain a list of fields that each cache entry

depends on. If any of these fields changes during an operation then the cache entry is

temporarily disabled, requiring the declarative method to be translated again on the

changed state. Sometimes a declarative method is called with the same parameters

multiple times per iteration (of the loop in Figure 2.2). If the cache entry is disabled

or does not exist, the method must be translated every time. To avoid that, we use a

temporary cache. When a declarative method is called, we look up the method and

its parameters in the main cache. If the cache misses (because the entry is disabled

or was never created) then we try the temporary cache. If that misses then we trans-

late the method and store the result in the temporary cache. After every iteration,

the temporary cache is cleared and all main cache entries are enabled. This caching

system improves the performance of glass box checking considerably.

2.9.1 Core Translation

Consider a core syntax of declarative methods that includes only if statements,

calls to declarative methods, and return statements, as well as expressions with no side

effects. For example, the declarative methods in Figure 1.2 have such a syntax. We

translate such methods to formulas in a straightforward way. Each return statement

is changed into a guarded command, where the guards are the particular conditions

from the if statements that cause control flow to reach the return statement. Given

the list of guarded return statements, we construct a formula asserting that under

each guard, the return variable has the correct corresponding value.

Calls to other declarative methods are resolved recursively. If the condition guard-

ing a method call is trivially unsatisfiable, we short circuit the recursion. Furthermore,

we can detect when the same method is recursively called with the same parameters

and short circuit the recursion. Nevertheless, it is possible that recursion will continue

indefinitely. To address this, we assume that a stack overflow has occurred after a very

large depth of recursion has been reached, and that no further recursion is needed.

Any guard that leads to a stack overflow does not satisfy the invariant.

The core syntax is fully expressive for writing specifications. In the following sec-
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tions we present enhancements to the core syntax that add convenience for program-

mers.

2.9.2 Assignment to Local Variables

The declarative syntax allows assignments to local (non-state) variables. When

such assignments are present, we translate the method to Static Single Assignment

(SSA) form, so each variable is assigned exactly once. Some of these assignments are at

merge points in the code, and combine variables from different branches. We translate

each assignment to a guarded command, as above, and use the guards to construct

formulas defining the values of each such merge assignment. Then we replace each

reference to a variable with the corresponding value, restoring the core syntax.

2.9.3 Iterative Structures

We also permit iterative structures such as while loops in declarative methods.

When a while loop is present in declarative code, we effectively create a new method

mv for each variable v that is modified in the loop. The parameters to the new methods

include every local variable that is accessed in the loop. The return value is the formula

describing the variable v after the loop terminates. The method implements the body

of the loop, returning if the loop condition does not hold and calling itself recursively

if it does. Finally, we replace the loop with assignments for the form v = mv(), such

that each variable v is updated with its new value from the method mv. This restores

the core syntax, with assignments to variables processed as above.

2.9.4 Object Creation

Declarative methods may not alter any state variables, but they may create ad-

ditional objects on the heap. Once initialized, the objects may not be modified from

within a declarative method. This is a convenient way to aggregate multiple values

into a single parameter or return value. Furthermore, this mechanism allows a declar-

ative clone method to be created. Large parts of the program state can be cloned

without adding to the path constraint, improving the efficiency of our analysis.

To allow object creation, we introduce declarative constructors. Declarative con-

structors have the same syntax as declarative methods, with the following exceptions.
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1: procedure Warshall(Set T , Matrix m)
2: for k ∈ T do
3: for i ∈ T do
4: for j ∈ T do
5: m[i][j]← m[i][j] ∨ (m[i][k] ∧m[k][j])
6: end for
7: end for
8: end for
9: end procedure

Figure 2.7: Pseudo-code for the symbolic Warshall’s algorithm that computes reach-
ability. The input T is the set of tree field indices and the input m is the
initial matrix. After the call, m[i][j] contains a formula asserting that field
fj is reachable through tree fields from field fi.

Like all constructors, declarative constructors may not return a value. Declarative

constructors may call other declarative constructors as well as declarative methods.

If the superclass default constructor is not declarative then another constructor must

be specified. (We take the default Object constructor to be implicitly declarative.)

Finally, declarative constructors may assign to their own fields, in addition to local

variables. Since the new object is not shared at the time the constructor is invoked,

its fields are effectively local.

We translate declarative constructors as though each field is being returned when

the constructor exits. Thus we find formulas for each field of the new object. Further-

more, we repeat this process at each call site in the constructor. Since the new object

could be passed as a parameter to a method or constructor, the fields of the object

must accurately reflect its state at the call site.

2.10 Checking the Tree Structure

Recall that we specify the tree structure of programs by using Tree annotations.

Each field with this annotation is considered a tree field. The object graph induced

by the tree fields must have a tree rooted at the main program object. For example,

the tree fields in Figure 1.2 require that the main SearchTree object is the root of a

tree that includes the nodes reachable through the root field.

This property is considered to be part of the program invariant, so it must be

translated into a formula and checked along with the rest of the invariant. We con-

struct this formula as follows. First, we create a special tree field f0 that always points
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1: procedure TreeFormula(Set T )
2: Initialize matrix m with tree field connections.
3: Warshall(T,m)
4: result← true
5: for i ∈ T do
6: for j ∈ T where i < j do
7: result← result ∧ (m[0][i] ∧m[0][j]→ ¬Eq(fi, fj))
8: end for
9: end for

10: end procedure

Figure 2.8: Pseudo-code for building the formula asserting that the tree structure is
valid. The input T is the set of tree field indices. After the call, result
is a formula asserting that the tree fields form a tree rooted at f0. The
formula Eq(fi, fj) asserts that fields fi and fj point to the same object.

to the main program object. For each tree field f , let R(f) be a formula that is true

exactly when the field f is reachable from f0 through a path containing only tree

fields. When R(f) is true, we say that f is tree-reachable. For a pair of tree fields f1

and f2, let Eq(f1, f2) be a formula that is true exactly when the fields f1 and f2 point

to the same object. The formula (R(f1) ∧ R(f2)) → ¬Eq(f1, f2) asserts that when

f1 and f2 are both tree-reachable, they point to different objects. The conjunction of

this formula applied to all pairs of fields asserts that tree fields define a tree rooted at

f0. The Eq(f1, f2) formulas are easily constructed by comparing the symbolic values

stored in f1 and f2 for equality, and ensuring that they are not null. We construct

the R(f) formulas as described below.

To compute tree-reachability, we first construct a matrix m of formulas, where

m[i][j] is true when field fj is reachable from field fi through tree fields. Then R(fi)

is equal to m[0][i]. We use a symbolic version of Warshall’s algorithm to compute

the entries of m. Figure 2.7 presents this algorithm. Next, we construct a formula

asserting that if any two tree fields i and j are both reachable from the root object

through tree fields, then i and j must not point to the same object. This algorithm

appears in Figure 2.8.

The above technique will construct an formula asserting that the tree structure

holds. We construct this formula once to initialize the search space and again at every

iteration of the algorithm in Figure 2.2 to check that the tree structure is maintained.

However, most aspects of the tree structure are not likely to have changed across

transitions.

In Section 2.9 we presented a caching system for declarative methods that takes
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1: procedure WarshallIncremental(Set T , Set M , Matrix m, Set L)
2: I ← {i | ∃j ∈M m[i][j] 6= false}
3: for k ∈ T −M do
4: for i ∈ I do
5: for j ∈ T do
6: m[i][j]← m[i][j] ∨ (m[i][k] ∧m[k][j])
7: end for
8: end for
9: end for

10: for k ∈M do
11: for i ∈ I do
12: for j ∈ T do
13: if i = 0 ∧m[i][k] 6= false ∧m[k][j] 6= false then
14: L← L ∪ {j}
15: end if
16: m[i][j]← m[i][j] ∨ (m[i][k] ∧m[k][j])
17: end for
18: end for
19: end for
20: end procedure

Figure 2.9: Pseudo-code for the incremental Warshall’s algorithm. T is the set of tree
fields indices, M is the set of modified field indices, and m is the previous
matrix. This procedure adds to L the indices of all fields that are tree-
reachable through a modified field. The only rows of m that are updated
are rows i where field i can reach a modified field.

advantage of the fact that usually only a small part of the state is modified during an

operation. Likewise, the efficiency of our tree checking is greatly improved by using an

incremental approach. Given that the reachability matrix m has been created for the

initial state, we would like to make minimal changes to update it to the final state.

Consider an entry m[i][j], which gives a condition for fi reaching fj in the initial state.

If fi was not modified and can’t reach any modified fields (i.e. m[i][k] = false for

all modified fk) then the formula m[i][j] will be unchanged in the final state. Thus,

only entries m[i][j] where fi can reach a modified field need to be considered. It is

simple to calculate which fi satisfy this criterion because we monitor changes in the

fields. Since the number of modified fields is expected to be small, this significantly

increases the efficiency of building the new matrix m.

We introduce one further optimization. After we update the matrix m as described

above, we need to construct a formula (R(fi) ∧ R(fj)) → ¬Eq(fi, fj) for each pair

of tree fields fi and fj. However, many of these formulas are likely to be unchanged,
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1: procedure TreeFormulaIncremental(Set T , Set M , Matrix m)
2: L←M
3: WarshallIncremental(T,M,m,L)
4: result← true
5: for i ∈ L do
6: for j ∈ T where i < j do
7: result← result ∧ (m[0][i] ∧m[0][j]→ ¬Eq(fi, fj))
8: end for
9: end for

10: end procedure

Figure 2.10: Pseudo-code for incrementally building the formula asserting that the
tree structure is valid after a transition. T is the set of tree field in-
dices, M is the set of all modified tree field indices, and m is the matrix
computed by Warshall’s algorithm before the transition. After the call,
result contains a formula with the additional constraints for ensuring
that the tree structure holds, given the modified fields in M .

and therefore trivially hold. We omit the construction of such formulas and avoid the

computational complexity of considering every pair of fields. We can omit considering

fi and fj when the following conditions hold:

• Neither field has been modified, so Eq(fi, fj) is unchanged.

• Neither field is tree-reachable through any modified fields, so R(fi) and R(fj)

are unchanged (or strictly weaker).

We generate a set L of tree fields indices that are tree-reachable through modified

fields, or are modified themselves. Then, instead of considering every pair of tree

fields, we only need consider pairs that include at least one field index from L. Iden-

tifying the modified fields is simple, since we track changes to fields. We identify

the fields that are tree-reachable through modified fields by splitting the incremental

Warshall’s algorithm above into two phases. First, we only use values of k such that

fk is not modified. Thus, we compute reachability through only fields that have not

been modified. Next, we complete the algorithm by considering values of k such that

fk is modified. During this phase, if the entry m[0][j] is changed then fj may be

tree-reachable through fk, and so we add j to L. We present the pseudo-code of the

incremental version of Warshall’s algorithm in Figure 2.9 and the pseudo-code of the

incremental tree checking algorithm in Figure 2.10.
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2.11 Advanced Specifications

In addition to the invariant defined by repOk and the tree property defined by

the Tree annotation, we provide other ways for the programmer to create specifica-

tions. First, the programmer can define preconditions and postconditions using the

declarative methods precondition and postcondition as follows.

@Declarative boolean precondition() {

// specify precondition

}

@Declarative boolean postcondition(Object prestate) {

// specify postcondition using prestate

}

In addition to the usual restrictions on the search space, the model checker will

only check states where precondition returns true. Likewise, in addition to the

checks that are performed after each transition, the model checker will ensure that

postcondition returns true.

It is common for postconditions to check correctness relative to the state of the

program before the transition, so we provide a parameter prestate to the postcon-

dition. This parameter is effectively a copy of the program before the transition, and

it can be accessed directly through its fields or indirectly through declarative method

calls.

One subtle point is the behavior of the Java operator == when comparing objects

from the prestate to objects from the current state. For example, consider the com-

parison x == prestate.x where the field x has not been modified. If the comparison

evaluates to true then it’s natural to assume that x.f == prestate.x.f will also

evaluate to true (given that x is not null). However, that may not be the case, since

x.f may have been modified. To avoid this confusion, we take x == prestate.x to

be false. In general, an equality comparison between an object from the current state

and an object from the prestate evaluates to false. Nevertheless, it is often useful to

know if x is the same (but perhaps modified) object as prestate.x. We provide a

method isSameObject for this purpose. isSameObject(x, y) returns true when x

and y refer to the same object in memory, regardless of whether or not one or the

other is in the prestate.

One common mechanism for program specification is to use assert statements to

check important properties at certain places in the code. We support this practice by
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interpreting assert statements as additional checks that must be made. We append

the symbolic values of all assert statements to the postcondition and confirm after

each transition that no asserts could have been violated. Additionally, we provide a

method assume that restricts the search space to only those states that satisfy every

call to assume encountered during execution. The assert and assume statements

allow programmers to specify pre- and postconditions based on intermediate program

states during a transition.

2.12 Conclusions

This chapter presents a system for glass box software model checking. A glass box

software model checker does not check every state separately but instead checks a

large set of states together in each step. A dynamic analysis discovers a set of similar

states, and a static analysis checks all of them efficiently in a single step using a SAT

solver. Our analysis achieves a high degree of state space reduction in this way.

Our technique includes features such as isomorph pruning and tree structure check-

ing, and supports a number of ways for a programmer to specify program behavior.

We present a convenient syntax for specifying declarative code, which we use for

specifications. Declarative code can be efficiently translated into compact formulas.
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CHAPTER III

Modular Glass Box Model Checking

This chapter extends the glass box software model checking technique presented

in Chapter II by introducing modularity. Our modular approach further improves the

scalability of the glass box technique when checking large programs composed of mul-

tiple modules. In a modular checking approach program modules are replaced with

abstract implementations, which are functionally equivalent but vastly simplified ver-

sions of the modules. The problem of checking a program then reduces to two tasks:

checking that each program module behaves the same as its abstract implementa-

tion, and checking the program with its program modules replaced by their abstract

implementations [12].

Extending traditional model checking to perform modular checking is trivial. For

example, Java Pathfinder (JPF) [67] or CMC [51] can check that a program module

and an abstract implementation behave the same on every sequence of inputs (within

some finite bounds) by simply checking every reachable state (within those bounds).

However, it is nontrivial to extend glass box model checking to perform modular

checking, while maintaining the significant performance advantage of glass box model

checking over traditional model checking. In particular, it is nontrivial to extend

glass box checking to check that a module and an abstract implementation behave

the same on every sequence of inputs (within some finite bounds). This is because,

unlike traditional model checkers such as Java Pathfinder or CMC, our model checker

does not check every reachable state separately. Instead it checks a (usually very

large) set of similar states in each single step. This chapter presents a technique to

solve this problem.
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Figure 3.1: Glass box checking against an abstraction. Our modular technique checks
that the outputs of executing the same operation on s1 and a1 are the
same and the states a2 and a2′ are equal.

3.1 Example

Consider checking the Java program in Figure 3.2. This program tracks the fre-

quency of integers received by its count method, storing the most frequent in its

most frequent i field. It internally uses a map data structure, implemented as a bi-

nary search tree shown in Figure 3.4. Thus the program has two modules: IntCounter

and SearchTree. Our modular approach checks each of these independently.

3.1.1 Abstraction

Our system first checks SearchTree against an abstract map implementation, and

then uses the abstract map to check IntCounter. The abstract map must implement

the Map interface, which includes the operations insert and get. (For brevity, this ex-

ample omits other Map operations such as delete.) Figure 3.5 shows an AbstractMap

implementation. It stores map entries in an unsorted list and uses a simple linear

search algorithm to implement the map operations. AbstractMap is not an opti-

mized implementation, but its simplicity makes it ideal as an abstraction for efficient

software model checking. Using AbstractMap in place of SearchTree significantly

improves the performance of our system. In fact, AbstractMap can be used in place

of any data structure that implements the Map interface, including complex data
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1 class IntCounter {

2 Map map = new SearchTree();

3 int max_frequency = 0;

4 int most_frequent_i = 0;

5

6 public void count(int i) {

7 Integer frequency = (Integer)map.get(i);

8 if (frequency == null) frequency = new Integer(0);

9 map.insert(i, new Integer(frequency+1));

10

11 if (frequency >= max_frequency) {

12 max_frequency = frequency;

13 most_frequent_i = i;

14 }

15 }

16

17 public int get_most_frequent_i() {

18 return most_frequent_i;

19 }

20

21 public int get_max_frequency() {

22 return max_frequency;

23 }

24 }

Figure 3.2: IntCounter internally using a SearchTree.

structures such as hash tables and red-black trees.

Note that AbstractMap uses a construct called AbstractionList. This is a linked

list provided by our system that is useful in many abstract implementations. Using

AbstractionList enables our system to arrange the list internally to achieve optimal

performance during model checking. From the programmer’s perspective, it is just a

linked list data structure.

3.1.2 Checking the Abstraction

Our system checks that SearchTree behaves the same as AbstractMap. To do this

it uses glass box checking to (in effect) exhaustively check every valid state of Search-

Tree within some given finite bounds against an equivalent state of AbstractMap.

Figure 3.1 illustrates how we check that SearchTree and AbstractMap have the same

behavior. We run the same operation on a SearchTree state s1 and its abstraction a1

to obtain states s2 and a2 respectively. We then check that (1) the abstraction of s2

is equal to a2, and (2) the return values are same. Our system invokes the abstraction

function to generate the abstractions of states s1 and s2. The abstraction function
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Figure 3.3: (a) Three search trees (code in Figure 3.4), before and after an insert

operation, and (b) the corresponding abstract maps (code in Figure 3.5).
The tree path touched by the operation is highlighted in each case. Note
that the tree path is the same in all three cases. Once our system checks
the insert operation on tree t1, it determines that it is redundant to
check the same insert operation on trees t2 and t3. The list nodes in
gray correspond to tree nodes that are not reachable.

for SearchTree is in Figure 3.4. The method for testing equality of two AbstractMaps

is shown in Figure 3.5.

Given a bound of 3 on the height of the tree, Figure 3.3(a) shows some possible

states of SearchTree. Our system generates states of AbstractMap by calling an

abstraction function. It creates a AbstractionList and passes it as an argument

to the constructor of AbstractMap. Our system provides methods for generating

AbstractionLists from several data structures, to make it convenient to implement

abstraction functions. Behind the scenes, our system constructs a list long enough to

hold the largest possible tree within the given bounds. Figure 3.3(b) shows the result

of generating a few lists from trees. The list nodes in gray correspond to tree nodes

that are not reachable. This arrangement facilitates the performance of the glass box

model checking algorithm described in Section 2.3.
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Consider checking an insert operation on state t1 in Figure 3.3(a). After the

operation, the resulting state is t1’. As described in Chapter II, our glass box checking

identifies similar states (such as t2 and t3) and prunes them all from the search space.

The glass box analyses described in Sections 2.6 and 2.7 ensure that the presence of

the abstract map does not increase the number of states that are explicitly checked.

3.1.3 Checking Using the Abstraction

Once our system establishes that AbstractMap and SearchTree have the same

behavior, it uses AbstractMap instead of SearchTree to simplify the checking of Int-

Counter. For example, consider checking the invariant of IntCounter, that the fields

most frequent i and max frequency correspond to the most frequent integer in the

map and its frequency, respectively. When checking IntCounter, our system substi-

tutes SearchTree with AbstractMap. Otherwise, the checking proceeds as above. Our

system repeatedly generates valid states of IntCounter (including its AbstractMap),

identifies similar states, checks the similar states in a single step, and prunes them

from its search space.

Using AbstractMap instead of SearchTree has several advantages. First, our state

space reduction techniques are more effective on AbstractMap. In Figure 3.3, a1, a2,

and a3 are part of a larger set of similar states than t1, t2, and t3 (w.r.t. the insert

operation). Second, AbstractMap has a smaller state space to begin with. SearchTree

encodes the shape of the tree in addition to key value pairs. More complex data struc-

tures such as red-black trees have even larger state spaces. Third, AbstractMap has

a simpler invariant which translates to smaller formulas (as described in Section 2.9).

3.2 Specification

Given a program module M, programmers must first define an abstraction A which

is functionally equivalent to M but is presumably simpler than M. However, note that

an abstraction needs to be defined only once per interface and can be shared by all

program modules that implement the same interface. For example, the AbstractMap

defined in Figure 3.5 can be shared by all implementations of the Map interface includ-

ing those that implement the map using an unbalanced binary tree (as in Figure 3.4),

using a balanced binary tree such as a red-black tree, using a hash table, or using
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1 class SearchTree implements Map {
2 static class Node implements AbstractionList.ListNodeSource {
3 int key;
4 Object value;
5 @Tree Node left;
6 @Tree Node right;
7

8 @Declarative
9 Node(int key, Object value) {

10 this.key = key;
11 this.value = value;
12 }
13

14 @Declarative
15 AbstractMap.Node abstraction() { return new AbstractMap.Node(key, value); }
16 }
17

18 @Tree Node root;
19

20 Object get(int key) {
21 Node n = root;
22 while (n != null) {
23 if (n.key == key)
24 return n.value;
25 else if (key < n.key)
26 n = n.left;
27 else
28 n = n.right;
29 }
30 return null;
31 }
32

33 void insert(int key, Object value) {
34 Node n = root;
35 Node parent = null;
36 while (n != null) {
37 if (n.key == key) {
38 n.value = value;
39 return;
40 } else if (key < n.key) {
41 parent = n;
42 n = n.left;
43 } else {
44 parent = n;
45 n = n.right;
46 }
47 }
48

49 n = new Node(key, value);
50 if (parent == null)
51 root = n;
52 else if (key < parent.key)
53 parent.left = n;
54 else
55 parent.right = n;
56 }
57

58 @Declarative
59 boolean repOk() { return isOrdered(root, null, null); }
60

61 @Declarative
62 static boolean isOrdered(Node n, Node low, Node high) {
63 if (n == null) return true;
64 if (low != null && low.key >= n.key) return false;
65 if (high != null && high.key <= n.key) return false;
66 if !(isOrdered(n.left, low, n )) return false;
67 if !(isOrdered(n.right, n, high)) return false;
68 return true;
69 }
70

71 @Declarative
72 AbstractMap abstraction() {
73 return new AbstractMap(GlassBox.ListFromTree_BF(root));
74

75 // ListFromTree_BF returns an AbstractionList corresponding
76 // to a breadth first traversal of the tree.
77 }
78 }

Figure 3.4: A simple search tree implementation.
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1 class AbstractMap implements Map {
2 static class Node {
3 Object key;
4 Object value;
5

6 Node(Object key, Object value) {
7 this.key = key;
8 this.value = value;
9 }

10

11 @Declarative
12 boolean equalTo(Node n) {
13 return n.key.equals(key) && n.value == value;
14 }
15 }
16

17 AbstractionList list;
18

19 @Declarative
20 AbstractMap(AbstractionList l) {
21 list = l;
22 }
23

24 Object get(Object key) {
25 AbstractionList.Node pnode = list.head();
26

27 while (pnode != null) {
28 Node n = (Node)pnode.data();
29 if (n.key.equals(key)) {
30 return n.value;
31 } else {
32 pnode = pnode.next();
33 }
34 }
35 }
36

37 void insert(Object key, Object value) {
38 AbstractionList.Node pnode = list.head();
39

40 while (pnode != null) {
41 Node n = (Node)pnode.data();
42 if (n.key.equals(key)) {
43 n.value = value;
44 return;
45 } else {
46 pnode = pnode.next;
47 }
48 }
49

50 list.add(new Node(key, value));
51 }
52

53 @Declarative
54 public boolean equalTo(AbstractMap m) {
55 return list.equalTo(m.list);
56 }
57 }

Figure 3.5: An abstract map implementation.
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a linked list. Every abstraction must also define an equalTo method to check if two

instances of the abstraction are equivalent.

To check a program module M against an abstraction A, programmers must specify

the invariant of M, an abstraction function that given an instance of M returns an

equivalent instance of A, and finite bounds on the size of instances of M. For example,

to check the binary search tree implementation in Figure 3.4 against the abstract map

in Figure 3.5, programmers only need to specify the representation invariant of the

search tree (repOk and Tree annotations), the abstraction function (abstraction in

Figure 3.4), and finite bounds on the size of the search trees. Our system then checks

that within the given bounded domain, the behavior of M is functionally equivalent to

that of A on every sequence of inputs. Functional equivalence is defined in Section 3.4.

3.3 Modular Analysis

In our modular approach, the glass box search algorithm of Figure 2.2 is applied

to the task of checking a module for equivalence to an abstraction. At each iteration

of the algorithm, we apply the process depicted in Figure 3.1. For example, consider

checking the binary search tree implementation in Figure 3.4 against the abstract map

in Figure 3.5. We proceed as usual by choosing an unchecked SearchTree state s1.

However, before running a transition on this state we use the abstraction function to

generate a corresponding AbstractMap state a1. The abstraction function is defined

as the declarative method abstraction of SearchMap. This method calls a declarative

constructor of AbstractMap. We describe declarative constructors in Section 2.9.4.

Next we run the same operation on both s1 and a1 to yield states s2 and a2,

applying the dynamic analysis of Section 2.6. After generating s2, we apply the ab-

straction function to produce a2’, which corresponds to s2.

Finally, we use the static analysis described in Section 2.7 to check the invariant,

along with the additional postcondition that a2 is equal to a2’.

We express this process using the powerful specification mechanisms described in

Chapter II. We present a driver for checking modules against abstractions in Fig-

ure 3.6. This driver checks that a class Module is functionally equivalent to a class

Abstraction with respect to a method transition. The assertions in the method

transition are checked after the transition, along with the invariant specified in

repOk.

After we have checked functional equivalence of a module with its abstraction, we
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1 class ModularDriver {

2 @Tree Module s;

3 @Tree Abstraction a;

4

5 void transition() {

6 a = s.abstraction();

7

8 Object result_s = s.transition();

9 Object result_a = a.transition();

10

11 assert(result_s == result_a);

12 assert(a.equalTo(s.abstraction()));

13 }

14

15 @Declarative

16 boolean repOk() { return s.repOk(); }

17 }

Figure 3.6: A driver for checking a module against an abstraction. We assume
that a method transition calls corresponding methods of Module and
Abstraction. The assertions contain declarative expressions that are
checked along with repOk.

replace the module with the abstraction and check the rest of the program. Instead

of specifying finite bounds on the module we specify finite bounds on the abstraction.

The checking proceeds as described in Chapter II. Because the module has been

replaced with a simple abstraction, the process takes significantly fewer iterations

and less time per iteration than it would with the original module. (See Chapter VI.)

3.4 Checking Functional Equivalence

A module M is said to be functionally equivalent to an abstraction A if starting

from an initial state of the module and the corresponding state of the abstraction,

every sequence of operations on M and A produce the same outputs.

To check the functional equivalence between a module M and an abstraction A

within some given finite bounds, we check the following two properties in those finite

bounds.

The first property that we check is as follows. See Figure 3.7 for notation. We

check that for every valid state s1 of the module, that is, on every state s1 on which

repOk returns true: s2.repOk(), the outputs of executing the operation on s1 and

a1 are the same, and a2.equalTo(a2′).

The second property that we check is as follows. See Figure 3.7 for notation. We
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Figure 3.7: Operations on a module and its abstraction.

check that for every pair of states a2 and a2′ of the abstraction that are equal, that

is, for every pair of states a2 and a2′ such that a2.equalTo(a2′): the outputs of

executing the same operation on a2 and a2′ are the same and the resulting states

a3 and a3′ are equal, that is, a3.equalTo(a3′). Checking this property checks that

the equalTo method of the abstraction is implemented correctly with respect to the

other methods in the abstraction.

The above two properties together imply functional equivalence, assuming that

every initial state of the module satisfies repOk. Consider a sequence of two operations

on a module state s1. See Figure 3.7 again for notation. Property 1 asserts that the

outputs of executing the first operation on s1 and a1 are the same and that the

outputs of executing the second operation on s2 and a2′ are the same. Property 1 also

asserts that a2.equalTo(a2′). Property 2 then asserts that the outputs of executing

the second operation on a2 and a2′ are the same. Thus, together these properties

assert that the outputs of executing the sequence of two operations on s1 and a1 are

the same. Extending this argument to a sequence of operations of arbitrary length

proves that the above two properties together imply functional equivalence.

We check the above two properties efficiently using the search algorithm described
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in the above sections. To check the first property using the glass box search algorithm

(see Figure 2.2), our system creates a bounded search space B consisting of all instances

of the module within the given finite bounds. An element s of this search space is

valid if s.repOk() returns true. To check the second property, our system creates a

bounded search space B consisting of all pairs instances of the abstraction within the

given finite bounds. An element (a, a′) of this search space is valid if a.equalTo(a′).

This is why we require repOk and equalTo to be declarative methods, so that they

can be efficiently translated into boolean formulas during search space initialization.

3.5 Conclusions

This chapter presents a modular extension to glass box software model check-

ing. Our system first checks a program module against an abstract implementation,

establishing functional equivalence. It then replaces the program module with the

abstract implementation when checking other program modules. We explain how we

leverage the strengths of glass box software model checking to establish functional

equivalence. Modular checking further improves the scalability of glass box software

model checking when checking large programs composed of multiple modules.
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CHAPTER IV

Glass Box Model Checking of Type Soundness

Type systems provide significant software engineering benefits. Types can enforce

a wide variety of program invariants at compile time and catch programming errors

early in the software development process. Types serve as documentation that lives

with the code and is checked throughout the evolution of code. Types also require

little programming overhead and type checking is fast and scalable. For these reasons,

type systems are the most successful and widely used formal methods for detecting

programming errors. Types are written, read, and checked routinely as part of the

software development process. However, the type systems in languages such as Java,

C#, ML, or Haskell have limited descriptive power and only perform compliance

checking of certain simple program properties. But it is clear that a lot more is

possible. There is therefore plenty of research interest in developing new type systems

for preventing various kinds of programming errors [8, 17, 31, 53, 54, 69].

A formal proof of type soundness lends credibility that a type system does indeed

prevent the errors it claims to prevent, and is a crucial part of type system design.

At present, type soundness proofs are mostly done on paper, if at all. These proofs

are usually long, tedious, and consequently error prone. There is therefore a grow-

ing interest in machine checkable proofs of soundness [2]. However, both the above

approaches—proofs on paper (e.g., [22]) or machine checkable proofs (e.g., [56])—

require significant manual effort.

This chapter presents an alternate approach for checking type soundness automat-

ically using a glass box software model checker. Our idea is to systematically generate

every type correct intermediate program state (within some finite bounds), execute

the program one small step forward if possible using its small step operational se-

mantics, and then check that the resulting intermediate program state is also type

correct—but do so efficiently by using glass box model checking to detect similar
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t ::= true constant true
| false constant false
| 0 constant zero
| succ t successor
| pred t predecessor
| iszero t zero test
| if t then t else t conditional

Figure 4.1: Abstract syntax of the language of integer and boolean expressions from
[60, Chapters 3 & 8].

states and prune away large portions of the search space. Thus, given only a speci-

fication of type correctness and the small step operational semantics for a language,

our system automatically checks type soundness by checking that the progress and

preservation theorems [60, 71] hold for the language (albeit for program states of at

most some finite size).

Note that checking the progress and preservation theorems on all programs states

up to a finite size does not prove that the type system is sound, because the theo-

rems might not hold on larger unchecked program states. However, in practice, we

expect that all type system errors will be revealed by small sized program states.

This conjecture, known as the small scope hypothesis [38], has been experimentally

verified in several domains. Our experiments using mutation testing [59, 47] suggest

that the conjecture also holds for checking type soundness. We also examined all the

type soundness errors we came across in literature and found that in each case, there

is a small program state that exposes the error. Thus, exhaustively checking type

soundness on all programs states up to a finite size does at least generate a high

degree of confidence that the type system is sound.

4.1 Example

This section illustrates our approach with an example. Consider the language of

integer and boolean expressions in the book Types and Programming Languages [60,

Chapters 3 & 8]. The syntax of the language is shown in Figure 4.1. The small step

operational semantics and the type checking rules for this language are in [60]. To

check type soundness, our system systematically generates and checks the progress

and preservation theorems on every type correct program state within some finite

bounds.

Figure 4.2 shows three abstract syntax trees (ASTs) t1, t2, and t3. AST t1 rep-
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Figure 4.2: Three abstract syntax trees (ASTs) for the language in Figure 4.1, before
and after a small step evaluation. The tree path touched by each evalua-
tion is highlighted. Note that the tree path is the same in all three cases.
Once our system checks the progress and preservation theorems on AST
t1, it determines that it is redundant to check them on ASTs t2 and t3.

resents the term ‘if (iszero 0) then true else false’. AST t2 represents the

term ‘if (iszero 0) then (pred 0) else (succ 0)’. AST t3 represents the term

‘if (iszero 0) then (if false then false else true) else false’. Each of

the ASTs is presented before and after a small step evaluation according to the small

step operational semantics of the language.

Our state space reduction technique works as follows. As our system checks the

progress and preservation theorems on t1, it detects that the small step evaluation

of t1 touches only a small number of AST nodes along a tree path in the AST.

These nodes are highlighted in the figure. If these nodes remain unchanged, the small

step evaluation will behave similarly (e.g., on ASTs such as t2 and t3). Our system

determines that it is redundant to check the progress and preservation theorems on

ASTs such as t2 and t3 once it checks the theorems on t1. Our system safely prunes

those program states from its search space, while still achieving complete test coverage

within the bounded domain. Our system thus checks the progress and preservation

theorems on every unique tree path (and some nearby nodes) rather than on every

unique AST. Note that the number of unique ASTs of a given maximum height

h is exponential in n, where n = 3h, but the number of unique tree paths is only

polynomial in n. This leads to significant reduction in the size of the search space and

makes our approach feasible.

Our system performs even better if the operational semantics of the above lan-

guage is implemented efficiently. For the example in Figure 4.2, our system detects
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that only the nodes in the redex ‘iszero 0’ matter, as long as that is the next redex

to be reduced. It therefore prunes all program states where those nodes remain the

same and that is the next redex to be reduced. This leads to even greater speedups.

Our system then only checks O(n) number of program states.

4.2 Specifying Language Semantics

To check the soundness of a type system, language designers only need to specify

the small step operational semantics of the language, rules for checking type correct-

ness of intermediate program states, and finite bounds on the size of intermediate

program states. The operational semantics must be specified in an executable lan-

guage to facilitate our dynamic analysis (see Section 2.6). The type system must be

specified in a declarative language to facilitate our static analysis (see Section 2.7).

The operational semantics may also be specified in a declarative language if the

declarative specifications can be automatically translated into executable code. For

example, a large subset of JML can be automatically translated to Java using the

JML tool set [45].

Figure 4.3 shows an example implementation of the expression language in Fig-

ure 4.1. An object of class ExpressionLanguage represents an intermediate program

state of the expression language. Every such class that implements Language must

have three methods: (i) a Java method smallStep that either performs a small step

of evaluation and terminates normally, or throws an exception if the evaluation gets

stuck; (ii) a declarative method wellTyped that returns true if and only if the cor-

responding intermediate program state is well typed; and (iii) another declarative

method isFinalState that returns true if and only if the corresponding program

state is fully evaluated. Declarative methods are annotated as Declarative, and are

described in detail in Section 2.9.

We note that our model checking techniques are not tied to our above choice

of specification language and can also be made to work with other languages (e.g.,

Ott [64]).
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1 class ExpressionLanguage implements Language {
2 static final int TRUE = 0;
3 static final int FALSE = 1;
4 static final int ZERO = 2;
5 static final int SUCC = 3;
6 static final int PRED = 4;
7 static final int ISZERO = 5;
8 static final int IF = 6;
9 static final int BOOL = 0;

10 static final int INT = 1;
11

12 static class Expression {
13 int kind; /* TRUE / FALSE / ZERO / SUCC / PRED / ISZERO / IF */
14 @Tree Expression e1, e2, e3; /* Subexpressions */
15

16 @Declarative
17 boolean wellTyped() {
18 if ( !syntaxOk() ) return false;
19 if ( kind == TRUE || kind == FALSE || kind == PRED ) return true;
20 if ( kind == SUCC || kind == PRED || kind == ISZERO )
21 return e1.wellTyped() && e1.type() == INT;
22 if ( kind == IF )
23 return e1.wellTyped() && e1.type() == BOOL
24 && e2.wellTyped() && e3.wellTyped() && e2.type() == e3.type();
25 return false;
26 }
27

28 Expression smallStep() throws StuckException {
29 if ( e1 == null ) { throw new StuckException(); }
30 if ( !e1.isValue() ) { e1 = e1.smallStep(); return this; }
31

32 if ( kind == PRED && e1.kind == ZERO ) return e1;
33 if ( kind == PRED && e1.kind == SUCC ) return e1.e1;
34 if ( kind == ISZERO && e1.kind == ZERO ) return True();
35 if ( kind == ISZERO && e1.kind == SUCC ) return False();
36 if ( kind == IF && e1.kind == TRUE ) return e2;
37 if ( kind == IF && e1.kind == FALSE ) return e3;
38

39 throw new StuckException();
40 }
41

42 // Helper functions
43

44 @Declarative
45 boolean syntaxOk() {
46 if ( kind == TRUE || kind == FALSE || kind == ZERO )
47 return e1 == null && e2 == null && e3 == null;
48 if ( kind == SUCC || kind == PRED || kind == ISZERO )
49 return e1 != null && e2 == null && e3 == null;
50 if ( kind == IF )
51 return e1 != null && e2 != null && e3 != null;
52 return false;
53 }
54

55 @Declarative
56 int type() {
57 if ( kind == TRUE || kind == FALSE || kind == ISZERO ) return BOOL;
58 else if ( kind == ZERO || kind == SUCC || kind == PRED ) return INT;
59 else /*( kind == IF )*/ return e2.type();
60 }
61

62 @Declarative
63 boolean isValue() {
64 return kind == TRUE || kind == FALSE || kind == ZERO || kind == SUCC && e1.isValue();
65 }
66

67 static Expression True () {Expression e = new Expression(); e.kind = TRUE; return e;}
68 static Expression False() {Expression e = new Expression(); e.kind = FALSE; return e;}
69 }
70

71 @Tree Expression root;
72

73 @Declarative public boolean wellTyped() { return root.wellTyped(); }
74 @Declarative public boolean isFinalState() { return root.isValue(); }
75 public void smallStep() throws StuckException { root = root.smallStep(); }
76 }

Figure 4.3: An implementation of the language in Figure 4.1.
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1 class LanguageDriver {

2 @Tree Language language;

3

4 void transition() {

5 try {

6 language.smallStep();

7 } catch (StuckException e) {

8 assert(false);

9 }

10 }

11

12 @Declarative

13 boolean precondition() { return !language.isFinalState(); }

14

15 @Declarative

16 boolean repOk() { return language.wellTyped(); }

17 }

Figure 4.4: A driver for checking a language for type soundness. Checking the
method transition with specification defined in methods repOk and
precondition effectively checks the type soundness of language by check-
ing that the progress and preservation theorems hold.

4.3 Glass Box Analysis

Given the specification of the language, we apply the glass box technique described

in Chapter II. In order to check that the progress and preservation theorems hold for

all well-typed states, we enumerate all well-typed program states, evaluate them over

one small step, and ensure that no stuck exception was thrown and that the resulting

program state is also well-typed. We need not check the final states of the program,

since these implicitly satisfy the progress and preservation theorems.

We express this process using the powerful specification mechanisms described in

Chapter II. We present a driver for checking languages for type soundness in Fig-

ure 4.4. This driver checks that a class implementing Language satisfies the progress

and preservation theorems. Here we use the construct assert(false), which is inter-

preted as an unconditional error. We also use a precondition method to exclude the

final states of the language from consideration. See Section 2.11 for more information

on these constructs.
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1 class Node {

2 int kind;

3 int value;

4

5 @Tree Node left;

6 @Tree Node right;

7

8 @Declarative

9 Node copy() {

10 return new Node(this);

11 }

12

13 @Declarative

14 Node(Node n) {

15 kind = n.kind;

16 value = n.value;

17 if (n.left != null) left = n.left.copy();

18 if (n.right != null) right = n.right.copy();

19 }

20 }

Figure 4.5: A class that implements a declarative clone operation. A call to copy

produces a deep copy of the node, such that the left and right fields are
copied as well. This operation is declarative, so the shape of the subtree
rooted at this node is not part of the path constraint.

4.4 Handling Special Cases

In addition to the standard analyses of glass box checking, our checker handles

the following special cases.

Handling Term Cloning

Consider the following semantics for the while statement of the imperative lan-

guage IMP from [70, Chapter 2], which clones the entire loop body.

while c do b −→ if c then (b; while c do b)

The cloning of different loop bodies could make smallStep follow different control

flow paths. However, in one iteration of the glass box algorithm (See Figure 2.2), the

symbolic execution described above only prunes states on which smallStep follows

the same control flow path. To enable the pruning of program states with different

loop bodies in the same iteration of the glass box algorithm, we implement term

cloning using declarative methods and constructors. (See Section 2.9.4.) Figure 4.5
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presents an example of such a declarative cloning operation.

Other examples of cloning include method calls that have a method inlining se-

mantics (e.g., in Featherweight Java [34]).

Handling Substitution

Consider a language where method calls have a method inlining semantics. Sup-

pose one small step of evaluation substitutes all the formals with actuals in the method

body. Our model checker works best when each small step of evaluation reads only

a small part of the program state. However, the above substitution reads the entire

method body. Language designers can avoid the problem by defining the semantics of

method calls using incremental substitution, where each small step of evaluation per-

forms substitution on at most one AST node, and by ensuring that the type checking

rules handle partially substituted program states.

Handling Nondeterministic Languages

The discussion so far assumes deterministic languages. Consider a language L

with nondeterministic operational semantics. Its implementation in our system must

include a deterministic method smallStep that takes an integer x as an argument, as

shown below. If there are n transitions enabled on a given state, then smallStep must

execute a different transition for each different value of x from 1 to n. Our system

then checks that the progress and preservation theorems hold on every program state

(within the finite bounds), with respect to every transition that is enabled on the

state. For example, the following language nondeterministically chooses which of two

threads to execute.

1 class L extends NondeterministicLanguage {

2 LThread thread1;

3 LThread thread2;

4 @Declarative public boolean wellTyped() {...}

5 @Declarative public boolean isFinalState() {...}

6 public void smallStep(int x) throws StuckException {

7 if (x == 0) thread1.smallStep();

8 else thread2.smallStep();

9 }

10 }
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4.5 Conclusions

This chapter presents a technique that automatically checks the soundness of a

type system, given only the specification of type correctness of intermediate program

states and the small step operational semantics. We adapt our glass box software

model checking technique to perform this check. Currently, proofs of type soundness

are either done on paper or are machine checked, but require significant manual

assistance in both cases. Consequently proofs of type soundness are usually done

after language design, if at all. Our system can be used during language design with

little extra cost.
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CHAPTER V

Formal Description

This chapter formalizes the core features of the glass box dynamic and static

analyses for the simple Java-like language in Figure 5.1. This language resembles

Featherweight Java [34] but it also includes imperative constructs such as assignments

to a mutable heap. We assume that programs in this language have been type checked

so that all field accesses and method calls are valid, except when accessed through a

null pointer. Null pointer dereferencing is fatal in this language.

We define the values of the language as true, false, null, and all heap objects.

Let a heap H be a mapping of objects and fields to values. We denote the value

mapped by object obj and field f by H(f, obj). We use the notation H[(f, obj)← α]

to refer to the heap H with the additional mapping of (f, obj) to the value α.

We define the small-step operational semantics of this language. For a heap H

and expression e, each reduction of the form 〈H, e〉 −→ 〈H ′, e′〉 modifies the heap to

H ′ and reduces the expression to e′. For the purposes of the semantics, we extend the

syntax to allow all objects on the heap to be expressions.

e ::= . . . | obj

Figure 5.3 presents congruence rules for reducing subexpressions and Figure 5.4

presents rules for reducing the various syntactic forms. The rule R-Call uses a

helper function mbody. For a method m and a heap object α, mbody(m,α) is equal

to x.e, where x is the sequence of formal parameters and e is the main expression of

method m of object α.

We define a stuck state as a state 〈H, e〉 that can not be reduced by any of the

rules, and where e is not a value. Stuck states represent runtime errors.
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cn : class name
m : method name
f : field name
x : variable name

P ::= cd

cd ::= class cn extends C {fd md}
C ::= cn | Object
T ::= C | boolean
fd ::= T f ;

md ::= T m(vd) {e}
vd ::= T x

e ::= e ; e
| e.f
| e.f = e
| if e then e else e
| while e do e
| new C
| e.m(e)
| x
| this

| null

| true

| false

| e && e
| e || e
| !e
| e == e

Figure 5.1: Syntax of a simple Java-like language. We write cd as shorthand for cd1

cd2 ... cdn (without commas), write vd as shorthand for vd1, vd2, ..., vdn
(with commas), etc., similar to the notation in [34].

5.1 Symbolic Values and Symbolic State

We now define the notion of a symbolic state. We define a symbolic value as a

set of elements of the form c → α, where c is a boolean formula and α is a concrete

value as defined above. Informally, the formula c is a condition that must hold for

the symbolic value to correspond to the concrete value α. For a given symbolic value

{c1 → α1, c2 → α2, . . . , cn → αn}, we require that all conditions ci are pairwise unsat-

isfiable and mutually exhaustive, and that all concrete values αi are distinct. We refer

to this symbolic value as {c → α}, where c = c1, c2, . . . , cn and α = α1, α2, . . . , αn.

As a notational convenience, we use {α} as an abbreviation for the singleton set

{true → α}, which is a symbolic value that unconditionally corresponds to a single

concrete value α. Furthermore, we use {c → true} as an abbreviation for the set

{c→ true,¬c→ false}, which is a boolean symbolic value whose boolean concrete

value depends to the formula c. For a symbolic value v and a concrete value α, let

v = α denote c if (c→ α) ∈ v and false otherwise.

We define a symbolic state as a triple 〈H,P, e〉, where H is the symbolic heap, P is

the current path constraint, and e is the current expression to evaluate. The symbolic

heap H maps objects and fields to symbolic values. We use the notations H(f, obj)
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md ::= @Declarative T m(vd) {de}

de ::= if de then de else de
| de.f

| de.m(de)
| x
| this

| null

| true

| false

| de && de
| de || de
| !de
| de == de

Figure 5.2: Syntax of a declarative subset of the language in Figure 5.1, showing the
syntax of declarative methods.

RC-SEQ

〈H, e0〉 −→ 〈H′, e′0〉
〈H, e0 ; e1〉 −→ 〈H′, e′0 ; e1〉

RC-FIELD-READ

〈H, e0〉 −→ 〈H′, e′0〉
〈H, e0.f〉 −→ 〈H′, e′0.f〉

RC-FIELD-WRITE

〈H, e0〉 −→ 〈H′, e′0〉
〈H, e0.f = e1〉 −→ 〈H′, e′0.f = e1〉

RC-FIELD-WRITE-2

〈H, e1〉 −→ 〈H′, e′1〉
〈H, v0.f = e1〉 −→ 〈H′, v0.f = e′1〉

RC-IF

〈H, e0〉 −→ 〈H′, e′0〉
〈H, if e0 then e1 else e2〉 −→ 〈H′, if e′0 then e1 else e2〉

RC-CALL

〈H, e0〉 −→ 〈H′, e′0〉
〈H, e0.m(e)〉 −→ 〈H′, e′0.m(e)〉

RC-CALL-2

〈H, ei〉 −→ 〈H′, e′i〉
〈H, v.m(v0, . . . , vi−1, ei, . . . )〉 −→ 〈H′, v.m(v0, . . . , vi−1, e

′
i, . . . )〉

RC-OP

〈H, e0〉 −→ 〈H′, e′0〉
〈H, e0 && e1〉 −→ 〈H′, e′0 && e1〉
〈H, e0 || e1〉 −→ 〈H′, e′0 || e1〉

〈H, !e0〉 −→ 〈H′, !e′0〉
〈H, e0 == e1〉 −→ 〈H′, e′0 == e1〉
〈H, v == e0〉 −→ 〈H′, v == e′0〉

Figure 5.3: Congruence reduction rules for the simple Java-like language in Figure 5.1.
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R-SEQ

〈H, v ; e〉 −→ 〈H, e〉

R-FIELD-READ

v′ = H(f, v)
v 6= null

〈H, v.f〉 −→ 〈H, v′〉

R-FIELD-WRITE

v0 6= null

〈H, v0.f = v1〉 −→ 〈H[(f, v0)← v1], v1〉

R-IF-T

〈H, if true then e1 else e2〉 −→ 〈H, e1〉

R-IF-F

〈H, if false then e1 else e2〉 −→ 〈H, e2〉

R-WHILE

〈H, while e0 do e1〉 −→ 〈H, if e0 then e1 ; while e0 do e1 else false〉

R-NEW

α is a fresh object of class C with fields f.

〈H, new C〉 −→ 〈H[(f, α)← {null}], α〉

R-CALL

v 6= null mbody(m, v) = x.e
〈H, v.m(v)〉 −→ 〈H, e[v/x, v/this]〉

R-EQUALS-SAME

〈H, v0 == v0〉 −→ 〈H, true〉

R-EQUALS-DIFF

v0 6= v1

〈H, v0 == v1〉 −→ 〈H, false〉

R-AND-T

〈H, true && e〉 −→ 〈H, e〉

R-AND-F

〈H, false && e〉 −→ 〈H, false〉

R-OR-T

〈H, true || e〉 −→ 〈H, true〉

R-OR-F

〈H, false || e〉 −→ 〈H, e〉

R-NOT-T

〈H, !true〉 −→ 〈H, false〉

R-NOT-F

〈H, !false〉 −→ 〈H, true〉

Figure 5.4: Small-step operational semantics for the simple Java-like language in Fig-
ure 5.1.
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and H[(f, object)← v] as usual for reading and modifying symbolic heaps.

We sometimes need to construct a symbolic value from a number of other symbolic

values. Let c = c1, c2, . . . , cn be a sequence of n pairwise unsatisfiable and mutually

exhaustive boolean formulas, and let v = v1, v2, . . . , vn be a sequence of n symbolic

values. Then we define the symbolic value c→ v as follows.

c→ v =

{
d→ α

∣∣∣∣∣ d =
∨

1≤i≤n

ci ∧ (vi = α), for d 6= false

}

Informally, c→ v selects the symbolic value vi when the condition ci holds. In addi-

tion, we define the following notation for building symbolic values from values on the

heap.

c→ H(f, α) = c→ (H(f, α1), H(f, α2), . . . , H(f, αn))

To facilitate dynamic semantics, we extend the expression syntax of Figure 5.1 to

include symbolic values:

e ::= . . . | v

Initially, the symbolic state is 〈H0, true, {α0}.m(v)〉, where H0 is the initial sym-

bolic heap of the finite search space, α0 is the main object, m is a method to be run,

and v are symbolic values of arguments to m. The initial heap H0 contains symbolic

values for each field of each object. Each symbolic value v = {c → β} defines a

domain of n concrete values β (see Figure 2.1). The formulas c are each in terms of

dlog ne fresh boolean variables that mutually define a binary index into β.

The informal correspondence between symbolic and concrete values is made ex-

plicit by assignments. An assignment is a map from the fresh boolean variables in H0

to truth values. Consider an assignment Φ. For a boolean formula c, let Φ(c) denote

the truth value of c when each boolean variable A is given the truth value Φ(A). For

a symbolic value v, let Φ(v) denote the unique concrete value α such that Φ(v = α).

5.2 Symbolic Execution

Figures 5.5 and 5.6 define the small-step operational semantics of symbolic execu-

tion. The reductions in Figure 5.5 are congruence rules for evaluating subexpressions.

The reductions in Figure 5.6 define the rules for symbolic execution. Each conclusion

of the form 〈H,P, e〉 −→Φ 〈H ′, P ′, e′〉 describes a transition in the presence of an
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RCS-SEQ
〈H,P, e0〉 −→Φ 〈H′, P ′, e′0〉

〈H,P, e0 ; e1〉 −→Φ 〈H′, P ′, e′0 ; e1〉

RCS-FIELD-READ
〈H,P, e0〉 −→Φ 〈H′, P ′, e′0〉

〈H,P, e0.f〉 −→Φ 〈H′, P ′, e′0.f〉

RCS-FIELD-WRITE
〈H,P, e0〉 −→Φ 〈H′, P ′, e′0〉

〈H,P, e0.f = e1〉 −→Φ 〈H′, P ′, e′0.f = e1〉

RCS-FIELD-WRITE-2
〈H,P, e1〉 −→Φ 〈H′, P ′, e′1〉

〈H,P, v0.f = e1〉 −→Φ 〈H′, P ′, v0.f = e′1〉

RCS-IF
〈H,P, e0〉 −→Φ 〈H′, P ′, e′0〉

〈H,P, if e0 then e1 else e2〉 −→Φ 〈H′, P ′, if e′0 then e1 else e2〉

RCS-CALL
〈H,P, e0〉 −→Φ 〈H′, P ′, e′0〉

〈H,P, e0.m(e)〉 −→Φ 〈H′, P ′, e′0.m(e)〉

RCS-CALL-2
〈H,P, ei〉 −→Φ 〈H′, P ′, e′i〉

〈H,P, v.m(v0, . . . , vi−1, ei, . . . )〉 −→Φ 〈H′, P ′, v.m(v0, . . . , vi−1, e
′
i, . . . )〉

RCS-OP

〈H,P, e0〉 −→Φ 〈H′, P ′, e′0〉
〈H,P, e0 && e1〉 −→Φ 〈H′, P ′, e′0 && e1〉
〈H,P, e0 || e1〉 −→Φ 〈H′, P ′, e′0 || e1〉

〈H,P, !e0〉 −→Φ 〈H′, P ′, !e′0〉
〈H,P, e0 == e1〉 −→Φ 〈H′, P ′, e′0 == e1〉
〈H,P, v == e0〉 −→Φ 〈H′, P ′, v == e′0〉

Figure 5.5: Congruence reduction rules of symbolic execution for the simple Java-like
language in Figure 5.1.
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RS-SEQ 〈H,P, v ; e〉 −→Φ 〈H,P, e〉

RS-FIELD-READ

v = {c→ α}
v′ = c→ H(f, α)

Φ(v) 6= null

〈H,P, v.f〉 −→Φ 〈H,P ∧ ¬(v = null), v′〉

RS-FIELD-WRITE
Φ(v0) = α α 6= null

〈H,P, v0.f = v1〉 −→Φ 〈H[(f, α)← v1], P ∧ (v0 = α), v1〉

RS-IF-T
Φ(v) = true

〈H,P, if v then e1 else e2〉 −→Φ 〈H,P ∧ (v = true), e1〉

RS-IF-F
Φ(v) = false

〈H,P, if v then e1 else e2〉 −→Φ 〈H,P ∧ (v = false), e2〉

RS-WHILE 〈H,P, while e0 do e1〉 −→Φ 〈H,P, if e0 then e1 ; while e0 do e1 else {false}〉

RS-NEW
α is a fresh object of class C with fields f.

〈H,P, new C〉 −→Φ 〈H[(f, α)← {null}], P, {α}〉

RS-CALL
Φ(v) = α α 6= null mbody(m,α) = x.e

〈H,P, v.m(v)〉 −→Φ 〈H,P ∧ (v = α), e[v/x, v/this]〉

RS-EQUALS
v0 = {c→ α} v1 = {d→ β}

v′ = {
∨
{ci ∧ di | αi = βi} → true}

〈H,P, v0 == v1〉 −→Φ 〈H,P, v′〉

RS-AND-T
Φ(v) = true

〈H,P, v && e〉 −→Φ 〈H,P ∧ (v = true), e〉

RS-AND-F
Φ(v) = false

〈H,P, v && e〉 −→Φ 〈H,P ∧ (v = false), {false}〉

RS-OR-T
Φ(v) = true

〈H,P, v || e〉 −→Φ 〈H,P ∧ (v = true), {true}〉

RS-OR-F
Φ(v) = false

〈H,P, v || e〉 −→Φ 〈H,P ∧ (v = false), e〉

RS-NOT
v = {c→ true}
v′ = {¬c→ true}

〈H,P, !v〉 −→Φ 〈H,P, v′〉

RS-TRUE 〈H,P, true〉 −→Φ 〈H,P, {true→ true}〉

RS-FALSE 〈H,P, false〉 −→Φ 〈H,P, {false→ true}〉

RS-NULL 〈H,P, null〉 −→Φ 〈H,P, {null}〉

Figure 5.6: Small-step operational semantics of symbolic execution. The symbolic
state includes a heap H, a path constraint P , and an expression e. An
assignment Φ is required for converting symbolic values v into concrete
values α.
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RD-FIELD-READ
H ` de ⇓ (v, E) v = {c→ α}

v′ = c→ H(f, α)
H ` de.f ⇓ (v′, E ∨ v = null)

RD-IF

H ` de0 ⇓ ({b→ true}, E0) H ` de1 ⇓ (v1, E1) H ` de2 ⇓ (v2, E2)
v = (b,¬b)→ (v1, v2)

E = E0 ∨ (b ∧ E1) ∨ (¬b ∧ E2)
H ` if de0 then de1 else de2 ⇓ (v, E)

RD-CALL

H ` de0 ⇓ (v0, E0) v0 = {c→ α} mbody(m,αi) = xi.de′i
∀i : H ` dei ⇓ (vi, Ei)

H ` de′i[v/x
i, {αi}/this] ⇓ (v′i, E

′
i)

E = E0 ∨
∨
E ∨ (v0 = null) ∨

∨
i(ci ∧ E

′
i)

H ` de0.m(de) ⇓ (c→ v′, E)

RD-EQUALS
H ` de0 ⇓ ({c→ α}, E0) H ` de1 ⇓ ({d→ β}, E1)

v = {
∨

i,j{ci ∧ dj | αi = βj} → true}
H ` de0 == de1 ⇓ (v, E0 ∨ E1)

RD-AND
H ` de0 ⇓ ({c→ true}, E0) H ` de1 ⇓ ({d→ true}, E1)

v = {c ∧ d→ true}
H ` de0 && de1 ⇓ (v, E0 ∨ (c ∧ E1))

RD-OR
H ` de0 ⇓ ({c→ true}, E0) H ` de1 ⇓ ({d→ true}, E1)

v = {c ∨ d→ true}
H ` de0 || de1 ⇓ (v, E0 ∨ (¬c ∧ E1))

RD-NOT
H ` de ⇓ ({c→ true}, E)

v = {¬c→ true}
H ` !de ⇓ (v, E)

RD-VALUE H ` v ⇓ (v, false)

RD-TRUE H ` true ⇓ ({true→ true}, false)

RD-FALSE H ` false ⇓ ({false→ true}, false)

RD-NULL H ` null ⇓ ({null}, false)

Figure 5.7: Big-step operational semantics of declarative methods, used in their trans-
lation to formulas. Given a heap H an expression e evaluates to a value v
with an error condition E. E holds true for concrete states that encounter
an error.
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assignment Φ. We say that a symbolic state 〈H,P, e〉 is a symbolic stuck state in Φ

when e is not a symbolic value and none of the reductions apply to this state using

Φ.

The rules describe how expressions evaluate to symbolic values, and how expres-

sions change the heap and the path constraint. For example, the rule RS-Field-Read

evaluates expressions of the form v.f , where v = {c → α} is a symbolic value and

f is a field. For each non-null αi in the sequence α, the symbolic value H(f, αi) is

the result of accessing field f through the object αi. The result v′ combines all such

symbolic values into one result. The rule requires that Φ(v), the concrete evaluation

of v, is not null. If Φ(v) is null, then no evaluation rule applies and this is a symbolic

stuck state in Φ. Otherwise, if Φ(v) is not null, then this fact is added to the path

constraint.

The rule RS-Call performs method calls by inlining a method’s body at the

call site and substituting formal parameters with their actual symbolic values. Recall

that the function mbody(m,α) denotes x.e, where e is the body of the method m of

object α and x is the list of formal method parameters. We use e[v/x] to denote the

expression e with all instances of variable x replaced with symbolic value v.

The rules RS-If-T and RS-If-F for the if expressions depend on the concrete

value of the branch condition v. If the concrete value is true, then v = true is added

to the path constraint. If the concrete value is false, then v = false is added to

the path constraint. Similarly, the rules for the operators && and || generate path

constraints.

The reason the rules for the if expressions and the && and || operators gener-

ate path constraints is that these expressions and operators short circuit and their

operands might have side effects. For example, (true && e) evaluates e but (false

&& e) does not and e might have side effects.

However, if the operands of if expressions and the && and || operators do not

have any side effects then they can be executed symbolically without generating path

constraints. We describe this process in Section 5.4.

5.3 Translation of Declarative Methods

Figure 5.2 presents a declarative subset of the language in Figure 5.1, showing

the syntax of declarative methods. Declarative methods may not contain object cre-

ations, assignments, or loops and may only call declarative methods. This corresponds
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to the core declarative syntax presented in Section 2.9. Accordingly, additional syn-

tax features such as assignment to local variables and iteration structures may be

implemented by first translating to the core syntax.

Figure 5.7 presents the big-step operational semantics of declarative methods that

are used to translate them into formulas. Declarative methods do not have assign-

ments or object creations, so they do not modify the heap H. Unlike non-declarative

methods, the semantics of declarative methods do not depend on concrete values, so

they do not need an assignment Φ. Furthermore, branches in declarative methods do

not generate path constraints, so the semantics of declarative methods do not use a

path constraint. As with the non-declarative expressions above, we extend the syntax

of declarative expressions to include symbolic values:

de ::= . . . | v

Judgments are of the form H ` e ⇓ (v, E), indicating that under heap H, an

expression e translates to a value v with an error condition E. The error condition E

is a formula that holds true for concrete states that encounter an error.

The result of calling a declarative method is a symbolic value and error condition

(v, E). In the case of boolean methods (such as repOk), v is of the form {c→ true}
where c∧¬E holds for states where the method successfully returns true. Thus, this

process translates a boolean declarative method into a formula that describes the

conditions under which the method returns true.

5.4 Symbolic Execution of Declarative Expressions

Recall from Figure 5.6 that the symbolic execution of the short circuiting operators

&& and || generates path constraints because of the possibility of side effects. However,

the operands of these operators often do not have side effects. In such cases, these

operators execute symbolically without generating path constraints. The same applies

to if statements. In general, strictly declarative expressions symbolically execute

without generating path constraints (except for the exception condition) according

to the following rule.
RS-DECL

e has declarative syntax
H ` e ⇓ (v, E)
Φ(E) = false

〈H,P, e〉 −→ 〈H,P ∧ ¬E, v〉
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Require: H is a symbolic heap and α is a checkable object in H.
1: procedure GlassBoxSearch(H, α)
2: S ← s ∧ ¬E, where H ` {α}.repOk() ⇓ ({s→ true}, E)
3: while S is satisfiable do
4: Φ← any satisfying assignment of S
5: 〈H ′, P, e〉 ← symbolic execution of 〈H, true, {α}.transition()〉 with Φ
6: if 〈H ′, P, e〉 is a stuck state then
7: return false
8: end if
9: R← r ∧ ¬E, where H ′ ` {α}.repOk() ⇓ ({r → true}, E)

10: if S ∧ P ∧ ¬R is satisfiable then
11: return false
12: end if
13: S ← S ∧ ¬P
14: end while
15: return true
16: end procedure

Figure 5.8: The glass box search algorithm as applied to the formalism of a simple
Java-like language.

A simple static analysis determines if an expression has declarative syntax. By

requiring Φ(E) to be false, the above rule only applies when no errors are encountered.

The final path constraint reflects this requirement.

5.5 The Glass Box Algorithm

Figure 5.8 presents the glass box algorithm in terms of the formalism above.

For simplicity, we assume that we are checking that a method called transition

maintains the invariant defined in a declarative method called repOk. We consider an

object checkable when it provides these methods. The symbolic heap H defines the

search bounds and the checkable object α is exhaustively tested up to these bounds.

We now prove the correctness of the algorithm. In preparation, we introduce the

following notation. Let −→∗ be the transitive and reflexive closure of the concrete

transition operator −→. Given an assignment Φ, let −→∗Φ be the transitive and re-

flexive closure of the symbolic transition operator −→Φ. For a symbolic heap H, let

HΦ be the concrete heap defined by the composition Φ ◦ H. Thus, HΦ is the heap

H with symbolic values replaced with concrete values. For a symbolic expression e,

let eΦ be the concrete expression generated by replacing every symbolic value v that

60



appears as a subexpression of e with Φ(v). Note that according to this definition,

vΦ = Φ(v).

The correctness of the algorithm depends on the soundness of declarative transla-

tion and symbolic execution with respect to the concrete semantics of the language.

We formalize this soundness in the following theorems.

Theorem 1 (Soundness of Declarative Translation). If H ` e ⇓ (v, E) then for all

assignments Φ,

(i) if Φ(E) then there exists no value v′ such that 〈HΦ, eΦ〉 −→∗ 〈HΦ, v
′〉, and

(ii) if ¬Φ(E) then 〈HΦ, eΦ〉 −→∗ 〈HΦ, vΦ〉.

Theorem 2 (Soundness of Symbolic Execution). For all assignments Φ, if there

exists a chain of symbolic transitions such that 〈H, true, e〉 −→∗Φ 〈H ′, P, e′〉 then

(i) if 〈H ′, P, e′〉 is a symbolic stuck state in Φ then 〈H ′Φ, e′Φ〉 is a stuck state,

(ii) Φ(P ) holds, and

(iii) for all assignments Ψ, if Ψ(P ) holds then 〈HΨ, eΨ〉 −→∗ 〈H ′Ψ, e′Ψ〉.

Proving these theorems requires a straightforward enumeration of the declarative

and symbolic semantic rules defined above. The proofs are included at the end of this

chapter for completeness.

We prove the correctness of the GlassBoxSearch algorithm with the following

theorem, which states that the algorithm returns true exactly when the invariant is

maintained for all states in the finite bounds.

Theorem 3 (Correctness of the Glass Box Algorithm). When it terminates, the

GlassBoxSearch algorithm exits with a return value of true if and only if the

following property holds for every assignment Ψ: If 〈HΨ, α.repOk()〉 evaluates to

〈HΨ, true〉 then 〈HΨ, α.transition()〉 evaluates to 〈h, v〉 for some concrete heap h

and some concrete value v, where 〈h, α.repOk()〉 evaluates to 〈h, true〉.

Proof. For an assignment Ψ and concrete heap h, we define the following propositions.
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OK(h): 〈h, α.repOk()〉 −→∗ 〈h, true〉

Pre(Ψ): OK(HΨ)

Trans(Ψ, h): 〈HΨ, α.transition()〉 −→∗ 〈h, v〉 for some value v

Post(Ψ): Trans(Ψ, h) and OK(h) for some heap h

Then the theorem states that when it terminates, GlassBoxSearch returns true

if and only if ∀Ψ(Pre(Ψ)→ Post(Ψ)). Note that because the language semantics are

determinate, for a given Ψ there will be at most one h such that Trans(Ψ, h).

After Line 2, we establish that for every assignment Ψ, Ψ(S) holds if and only

if OK(HΨ). The forward implication follows immediately from Theorem 1(ii), and

the inverse implication follows from Theorem 1(i) when Ψ(E) holds and from Theo-

rem 1(ii) when ¬Ψ(s) holds, along with the knowledge that the concrete semantics

are determinate.

Throughout each iteration of the main loop in Lines 3-14, we show that the fol-

lowing invariant holds:

Invariant: For every assignment Ψ,

(i) if Ψ(S) then Pre(Ψ), and

(ii) if ¬Ψ(S) then Pre(Ψ)→ Post(Ψ).

The invariant holds at the start of the first iteration, by the established property of

S above. At the end of the last iteration, S is not satisfiable, which means that ¬Ψ(S)

holds for all Ψ. Thus the invariant establishes the forward implication of the theorem

statement, since the only place where the algorithm returns true is immediately after

the loop exits.

It remains to show that the invariant is maintained across iterations, and that the

inverse implication holds.

Suppose the invariant holds at the start of an iteration. At Line 4 we find Φ such

that Φ(S) holds. Next, at Line 5, we use symbolic execution to find 〈H ′, P, e〉 such that

〈H, true, {α}.transition()〉 −→∗Φ 〈H ′, P, e〉. By Theorem 2(iii) we conclude that

for all Ψ where Ψ(P ) holds (including Φ), 〈HΨ, {α}.transition()〉 −→∗ 〈H ′Ψ, eΨ〉.
If we reached a stuck state during symbolic execution then by Theorem 2(i), the

state 〈HΦ, {α}.transition()〉 does not reduce to a value, so Post(Φ) does not hold.

However, Pre(Φ) holds by the invariant(i). Therefore, Pre(Φ) → Post(Φ) does not

hold. If this is the case, the algorithm detects it on Line 6 and returns false.
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Otherwise, no stuck state was reached during symbolic execution, and e is a value.

Thus for all Ψ, Trans(Ψ, H ′Ψ) holds when Ψ(P ) holds. At Line 9 we define R as r∧¬E,

where H ′ ` {α}.repOk() ⇓ ({r → true}, E). As above, we observe using Theorem 1

that for every assignment Ψ, Ψ(R) holds if and only if OK(H ′Ψ).

Then at Line 10 we check to see if there exists Ψ such that Ψ(S)∧Ψ(P )∧¬Ψ(R).

If such a Ψ exists, we establish Pre(Ψ) from invariant(i). From Ψ(P ) we know that

Trans(Ψ, H ′Ψ) holds. However, we know from ¬Ψ(R) that OK(H ′Ψ) does not hold.

There can be no other h such that Trans(Ψ, h) holds, so Post(Ψ) does not hold.

Therefore, Pre(Ψ)→ Post(Ψ) does not hold. If this is the case, the algorithm returns

false.

Otherwise, no such Ψ exists, and we conclude that for all Ψ, if Ψ(S) and Ψ(P )

hold then Ψ(R) holds as well. Thus, for all Ψ such that Ψ(S) and Ψ(P ), it is true

that Pre(Ψ) → Post(Ψ). Therefore, when the algorithm updates S to S ∧ ¬P , the

invariant is maintained.

Finally, note that if the algorithm returns false, either at Line 7 or at Line 11, we

found Ψ such that Pre(Ψ)→ Post(Ψ) does not hold. Therefore the inverse implication

in the theorem statement holds. This concludes the proof.

Due to the inherent undecidability of the problem of analyzing program behavior,

the algorithm may not always terminate. However, the following theorem shows that

the algorithm always terminates under the assumption that the symbolic execution

and declarative translation steps terminate.

Theorem 4 (Conditional Termination of the Glass Box Algorithm). If all symbolic

execution and declarative translation operations terminate then GlassBoxSearch

terminates.

Proof. If symbolic execution and declarative translation terminate then the algorithm

must terminate as long as there is a bounded number of loop iterations. We show that

the number of satisfying assignments of S strictly decreases across iterations, so the

number of iterations is bounded by the finite number of assignments.

As established in the proof of Theorem 3, Φ is a satisfying assignment of both S

and P . Thus, Φ is not a satisfying assignment of S ∧ ¬P . Therefore, the number of

satisfying assignments of S decreases by at least one in every iteration. This concludes

the proof.
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5.6 Proofs of Theorem 1 and Theorem 2

Theorem 1 (Soundness of Declarative Translation). If H ` e ⇓ (v, E) then for all

assignments Φ,

(i) if Φ(E) then there exists no value v′ such that 〈HΦ, eΦ〉 −→∗ 〈HΦ, v
′〉, and

(ii) if ¬Φ(E) then 〈HΦ, eΦ〉 −→∗ 〈HΦ, vΦ〉.

Proof. Let Φ be an arbitrary assignment. We proceed by induction on the derivation

of the judgment H ` e ⇓ (v, E). For each rule in Figure 5.7, we assume that the

theorem holds for all judgments in the premises and show that the theorem also

holds for the judgment in the conclusion. We use the notation from Figure 5.7.

Consider the rule RD-Value, where H ` v ⇓ (v, false). Then (i) vacuously holds

and (ii) is immediate from the fact that −→∗ is reflexive.

Consider the rules RD-True, RD-False, and RD-Null. Then (i) vacuously

holds and (ii) is immediate from the definition of Φ.

Consider the rule RD-Field-Read, where H ` de.f ⇓ (c → H(f, α), E ∨ v =

null). If Φ(E∨v = null) then either Φ(E) or Φ(v = null). Suppose that Φ(E). Then

by the induction hypothesis 〈HΦ, deΦ〉 does not reduce to a value. So 〈HΦ, (de.f)Φ〉
does not reduce to a value either, and the theorem holds. Next, suppose that ¬Φ(E).

By the induction hypothesis 〈HΦ, deΦ〉 −→∗ 〈HΦ, vΦ〉 and thus 〈HΦ, de.fΦ〉 −→∗

〈HΦ, vΦ.f〉. If Φ(v = null) then vΦ = null and the evaluation above leads to the

stuck state 〈HΦ, null.f〉, so the theorem holds. If ¬Φ(v = null) then 〈HΦ, vΦ.f〉 −→
〈HΦ, HΦ(f, vΦ)〉. Note that Φ(c → H(f, α)) is equal to HΦ(f, vΦ), so the theorem

holds.

Consider the rule RD-If, where H ` if de0 then de1 else de2 ⇓ (v, E). If

Φ(E0) then by the induction hypothesis 〈HΦ, de0Φ〉 does not reduce to a value, so the

theorem holds. Suppose then that ¬Φ(E0), so 〈HΦ, de0Φ〉 −→∗ 〈HΦ, {b→ true}Φ〉. If

either Φ(b∧E1) or Φ(¬b∧E2), then the corresponding expression de1Φ or de2Φ does not

reduce to a value, and the if expression reduces to one of these stuck states. Suppose

that ¬Φ(b∧E1) and ¬Φ(¬b∧E2). Then, depending on Φ(b), the original if expression

reduces to v1Φ or v2Φ. Observe that this is equal to vΦ = Φ((b,¬b)→ (v1, v2)), so the

theorem holds.

Consider the rule RD-Call, where H ` de0.m(de) ⇓ (c→ v′, E). The expression

does not reduce to a value in the following cases.
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• Φ(E0) : The method target de0 does not reduce to a value.

• Φ(Ei) for some i : The method parameter dei does not reduce to a value.

• Φ(v0 = null) : The expression reduces to null.m(vΦ), which can not be re-

duced.

• Φ(ci ∧E ′i) for some i : The body of the called method de′i does not reduce to a

value.

If none of the above cases hold then, using the induction hypothesis, the expression

reduces to v0Φ.m(vΦ) for v0Φ 6= null. Thus, it reduces to de′i[vΦ/x
i, {αi}/this] for

some i, which by induction hypothesis reduces to v′iΦ. Observe that this is equal to

(c→ v′)Φ because Φ(ci) holds.

Consider the rule RD-Equals. If either Φ(E0) or Φ(E1) then by the induction

hypothesis either de0Φ or de1Φ does not reduce to a value, so the expression does

not reduce to a value. If neither Φ(E0) nor Φ(E1) then by the induction hypothesis,

de0Φ −→∗ {c→ α}Φ and de1Φ −→∗ {d→ β}Φ. The equality expression then reduces

to true if and only if these two reduced values are equal. Thus the result is true

exactly when Φ(ci) and Φ(dj) for αi = βj. This is the same as vΦ.

Consider the rule RD-And. If Φ(E0) then de0Φ does not reduce to a value,

so (de0&&de1)Φ does not reduce to a value. Otherwise, (de0&&de1)Φ −→∗ {c →
true}Φ&&de1. Suppose that ¬Φ(c). Then (de0&&de1)Φ −→∗ false, which is equal to

vΦ under the assumption that ¬Φ(c). Next, suppose that Φ(c), so de0&&de1 −→∗ de1.

If Φ(E1) then this expression does not reduce to a value. Otherwise, it reduces to

{d→ true}Φ, which is equal to vΦ under the assumption that Φ(c).

The rule RD-Or is similar to the above.

Consider the rule RD-Not. If Φ(E) then deΦ does not evaluate to a value, so

neither does !deΦ. Otherwise, !deΦ −→∗ !{c → true}Φ, which reduces to true if

and only if ¬Φ(c). This is equal to {¬c→ true}Φ, so the theorem holds.

Toward a proof of Theorem 2, we first establish the following lemma.

Lemma 1. For all assignments Φ, if 〈H,P, e〉 −→Φ 〈H ′, P ′, e′〉 then

(i) if Φ(P ) then Φ(P ′),

(ii) for all assignments Ψ, if Ψ(P ′) then Ψ(P ), and

(ii) for all assignments Ψ, if Ψ(P ′) then 〈HΨ, eΨ〉 −→∗ 〈H ′Ψ, e′Ψ〉.
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Proof. We prove by structural induction on the expression e. That is, we assume that

the lemma holds for all subexpressions of e and show that it holds for e as well. We

do this by considering each possible application of the symbolic semantic rules.

First, we show that property (i) holds. This is trivial for rules RS-Seq, RS-

While, RS-New, RS-Equals, RS-True, RS-False, and RS-Null. Furthermore,

the property is immediate for the remaining rules from Figure 5.6, P ′ = P ∧ b, where

Φ(b) holds by premise. It is also immediate for rule RS-Decl. Finally, we note that

property (i) follows immediately from the induction hypothesis for the congruence

rules of Figure 5.5.

Next we show property (ii) for an arbitrary assignment Ψ such that Ψ(P ′) holds.

Note that Ψ(P ) holds by inspection for the rules in Figure 5.6, along with RS-Decl.

For the congruence rules, (ii) follows immediately from the induction hypothesis.

Next we show property (iii) for an arbitrary assignment Ψ such that Ψ(P ′) holds.

The rules RS-True, RS-False, and RS-Null trivially correspond to a reflexive

application of −→∗. The rules RS-Seq, RS-While, and RS-New correspond to

single applications of the rules R-Seq, R-While, and R-New by inspection. Also

by inspection, the rules RS-And-T and RS-Or-T correspond to single applications

of the rules R-And-T and R-Or-T given that Ψ(v) = false. Likewise for RS-And-

F and RS-Or-F for Ψ(v) = false.

Consider the rule RS-Field-Read. Given that Ψ(¬(v = null) holds, apply rule

R-Field-Read to show that 〈HΨ, vΨ.f〉 −→ 〈HΨ, HΨ(f, vΨ)〉. The final expression

is the same as (c→ H(f, α))Ψ.

Consider the rule RS-Field-Write. Given that Ψ(v0) = α and α 6= null, apply

rule R-Field-Write to show that 〈HΨ, v0Ψ.f = v1Ψ〉 −→ 〈HΨ[(f, v0Ψ)← v1Ψ], v1Ψ〉.
Note that the final heap state is the same as H[(f, α)← v1]Ψ.

Consider the rule RS-If-T. Given that Ψ(v) = true, apply rule R-If-T to show

that 〈HΨ, if true then e1Ψ else e2Ψ〉 −→ 〈HΨ, e1Ψ〉.
Consider the rule RS-If-F. Given that Ψ(v) = false, apply rule R-If-F to show

that 〈HΨ, if false then e1Ψ else e2Ψ〉 −→ 〈HΨ, e2Ψ〉.
Consider the rule RS-Call. Then we have Ψ(v) = α and α 6= null, as well as the

fact that mbody(m,α) = x.e. Apply rule R-Call to show that 〈HΨ, vΨ.m(vΨ)〉 −→
〈HΨ, e[vΨ/x, vΨ/this]〉. Note that the final expression is the same as e[v/x, v/this]Ψ.

Consider the rule RS-Equals. Suppose that Ψ(v0) = Ψ(v1) = αi = βj for some i

and j. Then v′Ψ = true by the definition of v′. Apply rule R-Equals-Same to show

that 〈HΨ, v0Ψ == v1Ψ〉 −→ 〈H, true〉. Now suppose that Ψ(v0) = αi 6= Phi(v1) = βj
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for some i and j. Then v′Ψ = false by the definition of v′. Apply rule R-Equals-

Diff.

Next consider the rule RS-Decl. Then we have H ` e ⇓ (v, E) and Ψ(E) = false.

Applying Theorem 1, we find that 〈HΨ, eΨ〉 −→∗ 〈HΨ, vΨ〉.
Finally, consider the congruence rules. Each of these rules has a premise of the

form 〈H,P, e〉 −→Φ 〈H ′, P ′, e′〉 for some subexpression e. By induction hypothesis,

we have 〈HΨ, eΨ〉 −→∗ 〈H ′Ψ, e′Ψ〉. Then an application of the corresponding concrete

congruence rule from Figure 5.3 yields the desired result.

This concludes the proof.

Theorem 2 (Soundness of Symbolic Execution). For all assignments Φ, if there

exists a chain of symbolic transitions such that 〈H, true, e〉 −→∗Φ 〈H ′, P, e′〉 then

(i) if 〈H ′, P, e′〉 is a symbolic stuck state in Φ then 〈H ′Φ, e′Φ〉 is a stuck state,

(ii) Φ(P ) holds, and

(iii) for all assignments Ψ, if Ψ(P ) holds then 〈HΨ, eΨ〉 −→∗ 〈H ′Ψ, e′Ψ〉.

Proof. Let Φ be an arbitrary assignment.

We establish (i) by proving the stronger property that if any symbolic state

〈H,P, e〉 is a symbolic stuck state then 〈HΦ, eΦ〉 is a stuck state. Assuming that

all the usual type errors are eliminated by the type system, we have the following

possible symbolic stuck states:

• 〈H,P, null.f〉

• 〈H,P, null.f = v〉

• 〈H,P, null.m(v)〉

If 〈H,P, e〉 is one of the above states then 〈HΦ, eΦ〉 is clearly a stuck state.

We prove (ii) and (iii) by induction on the length n of the chain of symbolic reduc-

tions from 〈H, true, e〉 to 〈H ′n, Pn, e
′
n〉. As the basis of the inductive argument, consider

that (ii) and (iii) hold trivially for a chain consisting of a single state, 〈H, true, e〉.
We next assume that (ii) and (iii) hold for chains of length n and show that they

must also hold for chains of length n + 1, for n ≥ 1. For property (ii), this follows

immediately from Lemma 1(i) and the induction hypothesis.
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Next, let Ψ be an assignment such that Ψ(Pn+1) holds. By Lemma 1(ii), it must

also be the case that Ψ(Pn) holds. Thus by the induction hypothesis, 〈HΨ, eΨ〉 −→∗

〈H ′nΨ, e
′
nΨ〉. By Lemma 1(iii), 〈H ′nΨ, e

′
nΨ〉 −→∗ 〈H ′(n+1)Ψ, e

′
(n+1)Ψ〉. Thus, property (iii)

holds. This concludes the proof.
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CHAPTER VI

Experimental Results

This chapter presents experimental results evaluating our glass box model checking

technique. We implemented the glass box checking system described in Chapter II as

well as the modular extension described in Chapter III and the extension for checking

type soundness described in Chapter IV. Our implementation is written in Java and

checks Java programs, but other programming languages would work as well. We

extended the Polyglot [58] compiler framework to automatically instrument program

modules to perform our dynamic analysis. We used MiniSat [24] as our incremental

SAT solver to perform our static analysis. We ran all our experiments on a Linux

Fedora Core 8 machine with a Pentium 4 3.4 GHz processor and 1 GB memory using

IcedTea Java 1.7.0.

We evaluate our system in three phases. In Section 6.1 we use the basic glass box

checking implementation to check a variety of data structure invariants. In Section 6.2

we use the modular extension to glass box checking to check some programs composed

of modules. In Section 6.3 we use the extension for checking type soundness to check

the soundness of several type systems.

6.1 Checking Data Structures

To evaluate the effectiveness of glass box model checking, we used our system to

check the invariants of several data structures. We implemented each invariant as a

declarative repOk method. We checked the following data structures:

• Stack, a stack implemented with a linked list. The invariant asserts that the

list is acyclic. We check the push and pop operations.

• Queue, a queue implemented with two stacks, a front stack and a back stack.

Items are enqueued onto the back stack and dequeued from the front stack.
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The invariant asserts that the stacks are non-null, and that their invariants also

hold. We check the enqueue and dequeue operations.

• TreeMap, a red-black tree from the Java Collections Framework. The invariants

are the usual red-black tree invariants that guarantee ordering and balancing

properties, plus the additional requirement that the size field accurately re-

flects the size of the tree. We check the put, remove, get, isEmpty, and clear

methods.

• HashMap, a hash table from the Java Collections Framework. The invariant

asserts that each key in the hash table is unique and is in the correct bin and

that the size field accurately reflects the size of the tree. We check the put,

remove, get, isEmpty, and clear methods.

TreeMap and HashMap are from the source code of the Java SE 6 JDK with Java

generics removed. Although generics do not pose any difficulties to our technique, the

Polyglot compiler framework does not fully support them.

We compare our glass box checker with the following state-of-the-art model check-

ers:

• Java Pathfinder

Java Pathfinder (JPF) is a stateful model checker for Java [67]. We use JPF to

exhaustively check all possible operations starting with an initially empty data

structure.

• Korat

Korat is a system for efficient test case generation [5]. We supply Korat with

our class invariant and have it generate all test cases up to our finite bounds.

• Blast

Blast is a model checker that uses predicate abstraction based on Counter Ex-

ample Guided Abstraction Refinement (CEGAR) [32]. Due to its imprecise alias

analysis, Blast is unable to complete any of the checks we tested. We therefore

do not show results for our tests using Blast. This illustrates the challenge of

checking complex data-oriented properties.

We used our system and the above model checkers to check all operations on all

states of these data structures up to a maximum of n nodes with at most n different

possible keys and eight different possible values. In Stack and Queue, we exclude the

70



Data Max Number JPF Korat Glass Box
Structure of Nodes Transitions Time (s) Transitions Time (s) Transitions Time (s)

1 28 0.539 4 0.275 2 0.050
2 36 0.551 6 0.270 2 0.049
3 44 0.564 8 0.273 2 0.051
4 52 0.571 10 0.271 2 0.053

... ... ... ... ... ... ...
Stack 8 84 0.622 18 0.276 2 0.074

16 148 0.733 34 0.295 2 0.088
32 276 0.952 66 0.312 2 0.105
64 532 1.690 130 0.362 2 0.154

128 1044 4.604 258 0.528 2 0.266
256 2068 17.138 Timeout 2 0.730
512 4116 743.233 2 2.846

1024 Timeout 2 15.977

1 180 0.714 8 0.395 3 0.066
2 792 0.997 18 0.391 4 0.075
3 6144 2.704 32 0.397 5 0.083
4 71768 22.993 50 0.400 6 0.087
5 Memory Out 72 0.410 7 0.109
6 98 0.409 8 0.116
7 128 0.415 9 0.125

Queue 8 162 0.424 10 0.137
... ... ... ... ...
16 578 0.474 18 0.230
32 2178 0.666 34 0.419
64 8450 3.089 66 0.915

128 33282 38.728 130 3.420
256 Timeout 258 23.406
512 514 199.202

1024 1026 2489.931

1 210 0.526 10 0.668 14 0.171
2 4880 1.182 35 0.625 24 0.238
3 194130 24.020 120 0.643 46 0.430
4 Memory Out 465 0.719 58 0.505
5 2070 0.885 86 0.689
6 8655 1.638 98 0.775
7 31460 4.445 132 0.950
8 241885 123.615 144 1.028
9 1137890 698.132 184 1.351

TreeMap 10 5149115 3699.716 198 1.478
11 Timeout 256 1.967
12 270 2.099
13 313 2.500
14 326 2.661
15 396 3.372
... ... ...
31 1052 18.956
63 2748 240.928

127 6644 5726.031

1 245 1.025 15 0.506 10 0.171
2 3000 1.799 50 0.431 15 0.210
3 94095 38.028 165 0.503 20 0.241
4 Memory Out 530 0.526 27 0.279
5 1665 0.556 36 0.332
6 5150 0.626 45 0.387
7 15765 0.687 54 0.430
8 68520 1.446 60 0.512
9 297765 3.566 66 0.551

HashMap 10 1293720 11.427 72 0.633
11 5619765 40.493 78 0.721
12 24406920 149.523 84 0.857
13 105981765 571.363 90 1.068
14 460129120 2236.581 96 1.361
15 Timeout 102 1.651
16 108 2.271
... ... ...
32 204 55.115
64 396 1748.281

Table 6.1: Results of checking data structure invariants.
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pop and dequeue operations when the corresponding data structure is empty, since

in this case the methods’ preconditions are not met. We aborted all experiments after

two hours, or after running out of memory.

The results of these experiments are tabulated in Table 6.1. For each given max-

imum number of nodes, we present results for checking exhaustively up to those

bounds. For each model checker, we show the number of transitions explicitly checked,

as well as the time it takes to perform the check.

Our system checks Stack very quickly because all calls to push and pop behave

similarly, regardless of the size of the Stack. Thus we check the push and pop oper-

ations only once each, and prune the rest of the transitions. The analysis to safely

prune these transitions becomes more complex for larger stacks, even though the

number of transitions does not increase. We check Queue efficiently as well, only ex-

plicitly checking a number of transitions linear in the maximum number of nodes.

Java Pathfinder manages to check the simple stack up to 512 nodes, but the extra

complexity of the Queue causes it to quickly run out of memory. Korat checks both

the Stack and the Queue up to t node bound of 128 before suddenly encountering a

state space explosion and running out of time.

Our system achieves good performance when checking the more complex data

structures as well. We exhaustively checked all TreeMaps with up to 63 nodes in

under five minutes and all HashMaps with up to 64 nodes in under 30 minutes. In

contrast, Java Pathfinder and Korat quickly encounter a state space explosion and

are forced to abort. These results indicate that the state space reduction of glass box

model checking is effective.

6.2 Modular Checking

Using our modular extension to glass box checking, we tested modules that im-

plement the Map and Set interfaces from the Java Collections Framework. We cre-

ated two abstract implementations, AbsMap and AbsSet and tested several modules

for conformance to these implementations. Our AbsMap implementation is similar

to AbstractMap from Figure 3.5. We tested the Map interface on the methods put,

remove, get, isEmpty, and clear and the Set interface on the methods add, remove,

contains, isEmpty, and clear. All the Java Collections Framework modules are

from the source code of the Java SE 6 JDK. Although Java generics do not pose any

difficulties to our technique, the Polyglot compiler framework does not fully support
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Module Max Number Time (s)
of Nodes

1 0.188
2 0.244
3 0.392
4 0.485
5 0.670
6 0.751
7 0.985
8 1.124

TreeMap 9 1.491
10 1.670
11 2.303
12 2.555
13 3.142
14 3.435
15 4.571
... ...
31 40.405
63 787.411

1 0.176
2 0.227
3 0.258
4 0.305
5 0.373
6 0.422
7 0.494
8 0.599
9 0.675

HashMap 10 0.780
11 0.953
12 1.162
13 1.356
14 1.708
15 2.143
16 2.879
... ...
32 75.139
64 2004.723

Module Max Number Time (s)
of Nodes

1 0.195
2 0.246
3 0.393
4 0.489
5 0.651
6 0.752
7 0.961
8 1.090

TreeSet 9 1.473
10 1.665
11 2.238
12 2.493
13 3.065
14 3.399
15 4.481
... ...
31 39.789
63 796.955

1 0.171
2 0.221
3 0.248
4 0.299
5 0.363
6 0.414
7 0.478
8 0.579
9 0.644

HashSet 10 0.773
11 0.948
12 1.068
13 1.344
14 1.608
15 2.029
16 2.816
... ...
32 68.011
64 2543.034

Table 6.2: Results of checking modules against abstractions. We check TreeMaps of
up to 63 nodes in under 15 minutes.

them. So we removed them from the source. We tested the following modules:

• TreeMap, which implements the Map interface using a red-black tree, which is a

balanced binary tree.

• TreeSet, which implements the Set interface using an underlying TreeMap

• HashMap, which implements the Map interface using a hash table.

• HashSet, which implements the Set interface using an underlying HashMap

We used our system to exhaustively check module states up to a maximum of n

nodes, with at most n different possible keys and eight different possible values. We

checked the functional equivalence (see Section 3.4) between the above modules and

their abstractions.
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The results of these experiments are presented in Table 6.2. We exhaustively

checked all TreeMaps with up to 63 nodes in under 15 minutes and all HashMaps with

up to 64 nodes in under 40 minutes.

Next, we tested the effectiveness of replacing the maps with the abstract map. We

checked the following programs:

• TreeSet and HashSet. Since they use a Map internally, they can be checked

modularly. We again checked functional equivalence between these modules and

AbsSet.

• IntCounter from Figure 3.2, implemented with a TreeMap. We checked that

the fields most frequent i and max frequency are consistent with the state of

the map.

• A two-layer cache, DualCache, similar to the one described in Section 2.9, im-

plemented using two TreeMaps. One map is the permanent map and the other

is the temporary map. DualCache has some internal consistency constraints,

such as the property that no key can be in both maps at once. We checked the

following operations:

– lookup : Looks up a value in the cache. If the value is not present, it

computes it and adds it to the cache.

– remove : Removes a value from the cache, if it exists.

– enableTemporary : Causes future cache additions to go to the temporary

map.

– disableTemporary : Clears the temporary map and causes future cache

additions to go to permanent map.

– promote : Removes a value from the temporary map and adds it to the

permanent map.

– demote : Removes a value from the permanent map and adds it to the

temporary map.

We used our system to check the given implementations of these programs. We

then replaced the maps with abstract maps and checked the programs again. We

checked maps with at most n nodes. We checked IntCounter with at most n integers
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Max Time (s)
Module Number Original Modules Replaced with

of Nodes Program Abstract Implementations

1 0.195 0.122
2 0.246 0.153
3 0.393 0.167
4 0.489 0.185
5 0.651 0.207
6 0.752 0.246

TreeSet 7 0.961 0.251
... ... ...
15 4.481 0.429
31 39.789 0.991
63 796.955 3.388

127 Timeout 16.690
255 184.827
511 425.328

1 0.171 0.106
2 0.221 0.141
3 0.248 0.153
4 0.299 0.169
5 0.363 0.193
6 0.414 0.218

HashSet 7 0.478 0.238
... ... ...
15 2.029 0.412
16 2.816 0.451
32 68.011 0.989
64 2543.034 3.464

128 Timeout 17.071
256 91.629
512 754.426

1 0.198 0.113
2 0.279 0.154
3 0.469 0.164
4 0.579 0.184
5 0.815 0.214

IntCounter 6 0.918 0.251
7 1.182 0.267

... ... ...
15 5.591 0.539
31 41.500 1.867
63 632.488 10.794

127 Timeout 93.276
255 946.091

1 0.203 0.222
2 0.283 0.323
3 0.503 0.327
4 0.589 0.511
5 0.828 0.654

DualCache 6 0.950 0.548
7 1.207 0.529

... ... ...
15 5.765 1.015
31 53.434 4.057
63 723.267 26.192

127 Timeout 215.521
255 2180.506

Table 6.3: Results of checking programs that use a map internally. Replacing the map
with an abstract implementation speeds up the checking considerably.
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and frequencies ranging from 0 to 7. We checked DualCache with at most n keys and

at most eight values.

The results of these experiments are presented in Table 6.3. Checking these pro-

grams with AbsMap is significantly faster than checking them with a TreeMap or a

HashMap.

6.3 Checking Type Soundness

This section presents results of the extension to glass box model checking for

checking type soundness. We present results for the following languages, each with

increasing complexity:

1. The language of integer and boolean expressions from [60, Chapters 3 & 8], as

implemented in Figure 4.3.

2. A typed version of the imperative language IMP from [70, Chapter 2].

This language contains integer and boolean variables, so its type checking rules

include an environment context. This language also contains while statements.

3. An object-oriented language Featherweight Java [34].

This language has classes, objects, and methods. The semantics of method calls

require term level substitution (of the formal method parameters with their

actual values).

4. An extension to Featherweight Java we call Mini Java.

This language models the heap explicitly, supports mutations to objects in

the heap, and includes a null value. This language also contains integers and

booleans, and operations on integers and booleans.

5. An extension to Mini Java to support ownership types [1, 7, 11], that we call

Ownership Java.

This language has classes parameterized by owner parameters. Therefore the

semantics of a method call require both term level and type level substitution.

For each benchmark, we checked the progress and preservation theorems exhaus-

tively on all program states up to a maximum size n. In all languages, we limited
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Benchmark Max Expression States Time (s)
Size Checked

1 1 0.068
2 3 0.093
3 3 0.105
4 5 0.122

Expression ... ... ...
Language 13 11 0.246

40 17 0.551
121 23 1.376
364 29 3.633

1093 35 10.833
3280 41 38.543

1 1 0.102
2 7 0.185
3 11 0.256
4 19 0.408
5 34 0.710
6 34 0.739

IMP 7 34 0.816
... ... ...
15 61 2.158
31 96 5.107
63 147 10.066

127 230 21.013
255 377 52.208
511 652 331.138

1 3 1.148
2 7 1.594
3 9 1.650
4 9 1.899

Featherweight 5 13 2.151
Java ... ... ...

21 70 6.905
85 298 43.756

341 1210 475.022

1 5 2.721
2 21 3.117
3 40 3.897

Mini 4 53 5.750
Java 5 59 6.191

... ... ...
21 275 37.354
85 1133 342.435

341 4565 5981.114

1 13 50.818
2 73 77.135
3 110 103.230
4 135 231.328

Ownership 5 157 247.954
Java ... ... ...

21 733 2760.734
25 877 3963.836
29 1021 5271.509
33 1165 6255.260

Table 6.4: Results of checking soundness of type systems. Our system achieves sig-
nificant state space reduction. For example, there are over 2786 well typed
IMP programs of expression size up to 511, but our system checks only 652
states to exhaustively cover this space.
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Max Expression Percentage of Errors Caught
Size

1 0
2 8
3 40
4 68
5 76
6 80
7 84
8 100

Table 6.5: Evaluating the small scope hypothesis. A maximum expression size of 8
is sufficient to catch all the type system errors that we introduced into
Ownership Java.

the maximum expression size to be bound by a balanced AST with n nodes. In the

imperative language IMP, we limited program states to have at most n variables and

n integer literals. In Featherweight Java, Mini Java, and Ownership Java, we limited

program states to have at most four classes, where each class can have at most two

fields and two methods (in addition to inherited fields and methods). In Mini Java

and Ownership Java, we limited program states to have at most four heap objects and

n integer literals. In Ownership Java, we limited classes to have at most two owner

parameters.

We report both the number of states explicitly checked by our checker and the

time taken by our checker. Note that we did not yet optimize the execution time of our

checker, but we report it here nonetheless to provide a rough idea. The results indicate

that our approach is feasible and that our model checker achieves significant state

space reduction. For example, the number of well typed IMP programs of maximum

size 511 is over 2786, but our checker explicitly checks only 652 states to exhaustively

cover this space.

Finally, Table 6.5 presents our results that suggest that exhaustive testing within

a small finite domain does indeed catch all type system errors in practice, a conjecture

also known as the small scope hypothesis [38, 47, 59]. We introduced twenty different

errors into the type system of Ownership Java (one at a time) and five different

errors into the operational semantics. Some are simple mistakes such as forgetting to

include a type checking clause. Some are more subtle errors as the following examples

illustrate.

The Java compiler rejects as ill typed a term containing a type cast of a value of

declared type T1 into a type T2 if T1 is neither a subtype nor supertype of T2. The

Ownership Java (as also the Featherweight Java) compiler, however, accepts such a

term as well typed. We changed Ownership Java to reject such casts as ill typed. Our

model checker then correctly detected that the preservation theorem does not hold
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for the changed language. The term (T2) (Object<world>) new T1() provides a

counter example. It is well typed initially. But after the upcast, the term in effect

simplifies to (T2) new T1() which is ill typed in the changed language. The preser-

vation theorem therefore does not hold.

We also introduced a subtle bug (see [6, Figure 24]) into Ownership Java such that

the owners as dominators property does not hold. Our checker correctly detected the

bug.

The results in Table 6.5 indicate that exhaustive testing within a small finite

domain is an effective approach for checking soundness of type systems.
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CHAPTER VII

Related Work

Model checking is a formal verification technique that exhaustively tests a cir-

cuit/program on all possible inputs (sometimes up to a given size) and on all possi-

ble nondeterministic schedules. There has been much research on model checking of

software. Verisoft [26] is a stateless model checker for C programs. Java Pathfinder

(JPF) [67, 43] is a stateful model checker for Java programs. XRT [30] checks Mi-

crosoft CIL programs. Bandera [14] and JCAT [18] translate Java programs into the

input language of model checkers like SPIN [33] and SMV [48]. Bogor [23] is an exten-

sible framework for building software model checkers. CMC [51] is a stateful model

checker for C programs that has been used to test large software including the Linux

implementation of TCP/IP and the ext3 file system. Chess [52] and CalFuzzer [39]

help find and reproduce concurrency bugs.

For hardware, model checkers have been successfully used to verify fairly complex

finite state control circuits with up to a few hundred bits of state information; but

not circuits that have large data paths or memories. Similarly, for software, model

checkers have been primarily used to verify control-oriented programs with respect

to temporal properties; but not much work has been done to verify data-oriented

programs with respect to complex data-dependent properties.

Thus, most of the research on reducing the state space of a software model checker

has focused on checking temporal properties of programs. Tools such as Slam [3],

Blast [32], and Magic [9] use heuristics to construct and check an abstraction of a

program (usually predicate abstraction [29]). Abstractions that are too coarse gener-

ate false positives, which are then used to refine the abstraction and redo the checking.

This technique is known as Counter Example Guided Abstraction Refinement or CE-

GAR. There are also many static [26] and dynamic [25] partial order reduction systems

for concurrent programs. There are many other symmetry-based reduction techniques
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as well (e.g., [36]). However, none of the above techniques seem to be effective in re-

ducing the state space of a model checker when checking complex data-dependent

properties of programs. Our experiments comparing the performance of our system

to other model checkers support this observation.

Tools such as Alloy [37, 41] and Korat [5] systematically generate all test inputs

that satisfy a given precondition. A version of JPF [43] uses lazy initialization of fields

to essentially simulate the Korat algorithm. Kiasan [19] uses a lazier initialization.

However, these tools generate and test every valid state within the given finite bounds

(or portion of state that is used, in case of Kiasan) and so do not achieve as much

state space reduction as glass box checking. In particular, unlike the above systems,

our static analysis allows us to prune a very large number of states in a single step

using a SAT solver.

Tools such as CUTE [63, 27], Whispec [65], and a version of JPF [68] use constraint

solvers to obtain good branch coverage (or good path coverage on paths up to a given

length) for testing data structures. However, this approach could miss bugs even on

small sized data structures. For example, a buggy tree insertion method that does not

rebalance the tree might work correctly on a test case that exercises a certain program

path, but fail on a different unchecked test case that exercises the same program path

because the second test case makes the tree unbalanced. Therefore, it seems to us

that this approach is more suitable for checking control-dependent properties rather

than data-dependent properties.

Jalloy [66], Miniatur [21], and Forge [20] translate a Java program and its specifi-

cations into a boolean formula and check it with a SAT solver. In our experience with

a similar approach, translating general Java code usually leads to large formulas that

take a lot of time to solve with a SAT solver. Our technique of translating declarative

methods and using symbolic execution for general Java code is more efficient.

Because of input nondeterminism, it is difficult to even formulate the problem of

checking type soundness automatically in the context of most software model checkers.

A technique exists for checking properties of programming languages specified in

αProlog, using a bounded backtracking search in an αProlog interpreter [10]. However,

that work does not use our search space reduction techniques and does not scale as

well as our model checker.

This dissertation builds on previous work on glass box software model checking.

We present the culmination of this work to date. Darga and Boyapati introduced the

idea that some data-oriented programs can be efficiently checked by pruning tran-

sitions that touch the same part of the program state [16]. We then extended this
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idea by using a precise symbolic execution to identify similar transitions and a static

analysis to guarantee the correctness of the pruning. We also created a declarative

method syntax and a process for translating declarative methods into formulas, and

we used a boolean satisfiability solver to efficiently work with these formulas. Our

system for glass box software model checking is presented in our work on checking

type soundness [62] as well as our work on modularity [61]. This dissertation com-

pletely describes our technique, including numerous extensions, enhancements, and

optimizations.
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CHAPTER VIII

Conclusions

This dissertation presents glass box model checking, a technique for efficiently

checking data-dependent properties of programs. A glass box software model checker

does not check every state separately but instead checks a large set of states together

in each step. A dynamic analysis discovers a set of similar states, and a static analysis

checks all of them efficiently in a single step using a SAT solver. Our analysis achieves

a high degree of state space reduction in this way. We present a formal description of

our symbolic execution and declarative method translation.

We extended glass box model checking to enable modular checking. Our sys-

tem first checks a program module against an abstract implementation, establishing

functional equivalence. It then replaces the program module with the abstract im-

plementation when checking other program modules. Adding modularity to glass

box checking presents unique challenges due to the nature of glass box pruning. We

overcome these challenges by using an abstraction function and a notion of equality

between abstractions.

We also extended our checker to automatically check the soundness of a type

system, given only the specification of type correctness of intermediate program states

and the small step operational semantics. Currently, proofs of type soundness are

either done on paper or are machine checked, but require significant manual assistance

in both cases. Consequently proofs of type soundness are usually done after language

design, if at all. Our system can be used during language design with little extra cost.

Our experimental results indicate that our glass box checking technique is effective

at checking data-dependent properties. We compare our system to several state-of-

the-art software model checkers and find that glass box checking is significantly more

efficient in this problem domain. We find that our modular approach is effective at

checking programs composed of multiple modules. Our modular approach significantly

outperforms the non-modular technique for these programs. Finally, we tested our
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system for checking type soundness on several small to medium sized languages that

include several features such as term and type level substitution, explicit heap, and

objects. Our results indicate that our approach is feasible. We expect this system

to be particularly useful to researchers who design novel type systems but formalize

only a core subset of their type systems, as is the standard practice in the research

community.

8.1 Future Work

We present the following directions for future work.

Checking Arbitrary Code Blocks

The glass box software model checking approach excels at checking operations that

depend on only a small part of the program state. Sometimes these operations appear

as code blocks within a larger context, rather than as methods of a class. Using the

assert and assume constructs described in Section 2.11, programmers can specify the

behavior of these code blocks. Then, instead of checking a class method our system

could check the code block in isolation of the rest of the method. One challenge to

this approach is setting appropriate bounds on the search space, including bounds on

all local variables that are live in the code block. Using a combination of intelligent

defaults and programmer input, these bounds could be set appropriately for efficient

and effective model checking.

Checking Atomic Method Commutativity

The property of atomicity guarantees that every concurrent interleaving is equiv-

alent to a sequential execution. However, two atomic methods might not commute,

which means that the order in which they are sequentially invoked affects the out-

come of the program. This can lead to errors due to unexpected interleavings of atomic

methods. If we check that two atomic methods commute then we can ensure that no

such errors exist.

Consider checking that methods m1 and m2 are atomic and commute. We assume

that the atomicity of the methods has already been established by one of the existing

techniques. Now consider using glass box software model checking to show that these

methods commute. We can exhaustively check two successive of calls to m1 and m2

and compare the result to the same calls but in reverse order. If we establish that
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calling m1 followed by m2 is equivalent to calling m2 followed by m1 then the methods

commute up to the bounds of our check.

The above analysis requires a notion of two program states being equivalent. For

example, the order in which items are entered into a red-black tree affects the shape of

the tree, but does not affect the resulting set of items, so these trees are all equivalent

with respect to the sets they represent. Thus we would need a method analogous to

the equalTo method for comparing abstractions in Chapter III. We would also need

to check that this notion of equivalence is maintained across operations. For every

two equivalent states, we would check that the states are still equivalent after the

same operation is run on them.

Using First-Order Logic

We currently convert all of our constraints into boolean formulas and use a boolean

satisfiability solver to check them. In this system, modeling arithmetic operators on

floating point numbers is very complex. This affects our ability to effectively prune in

the presence of these operators as well as our ability to handle specifications that use

them. As future work, we could represent such operators in first-order logic and use a

Satisfiability Modulo Theories (SMT) solver in place of a boolean satisfiability solver.

This would come at an increased runtime cost, but it may be essential to properly

check programs that make extensive use of floating point computations.

Parallelizing the Glass Box Algorithm

Our experiments show the total time for running our algorithm sequentially. How-

ever, the glass box algorithm can be parallelized. The critical path through the algo-

rithm includes exhaustively choosing an unchecked state and pruning a set of similar

states. Thus the dynamic analysis, which generates the set of similar states, is on the

critical path as well. The static analysis is not on the critical path. As long as all

static analyses are eventually run, they can be deferred or done in parallel. As future

work, we could parallelize the algorithm by offloading the static analysis tasks onto

other processors or cores. In our experience, that this would improve performance

considerably. The static analysis comprises half of the invocations of the satisfiability

solver, and these problems tend to have larger formulas and take much more time

than the problem of incrementally exploring the state space.
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ABSTRACT

Glass Box Software Model Checking

by

Michael E. Roberson

Chair: Chandrasekhar Boyapati

Model checking is a formal verification technique that exhaustively tests a piece

of hardware or software on all possible inputs (usually up to a given size) and on all

possible nondeterministic schedules. For hardware, model checkers have successfully

verified fairly complex finite state control circuits with up to a few hundred bits of

state information; but not circuits in general that have large data paths or memo-

ries. Similarly, for software, model checkers have primarily verified control-oriented

programs with respect to temporal properties; but not much work has been done to

verify data-oriented programs with respect to complex data-dependent properties.

This dissertation presents glass box software model checking, a novel software

model checking approach that achieves a high degree of state space reduction in

the presence of complex data-dependent properties. Our key insight is that there are

classes of operations that affect a program’s state in similar ways. By discovering

these similarities, we dramatically reduce the state space of our model checker by

checking each class of states in a single step. To achieve this state space reduction,

we employ a dynamic analysis to detect similar state transitions and a static analysis

to check the entire class of transitions. These analyses employ a symbolic execution

technique that increases their effectiveness.
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We also present a modular extension to glass box software model checking, to

further improve the efficiency of checking large programs composed of multiple mod-

ules. In a modular checking approach program modules are replaced with abstract

implementations, which are functionally equivalent but vastly simplified versions of

the modules.

We also apply the glass box model checking technique to the problem of checking

type soundness. Since proving type soundness can be extremely difficult, a model

checking approach takes a considerable burden off the language designer.

Our experimental results indicate that glass box model checking is efficient and

effective at checking a variety of programs and properties, including program invari-

ants, equivalence to an abstraction, and type soundness. Comparisons with other

model checking techniques show that our technique is more efficient at checking these

programs and properties.
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