
JPS: A Distributed Persistent Java System

by

Chandrasekhar Boyapati

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1998

c©Massachusetts Institute of Technology 1998. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science
September 14, 1998

Certified by .

Barbara Liskov
Ford Professor of Engineering

Thesis Supervisor

Accepted by .

Arthur C. Smith
Chairman, Committee on Graduate Students

JPS: A Distributed Persistent Java System

by

Chandrasekhar Boyapati

Submitted to the Department of Electrical Engineering and Computer Science
on September 14, 1998, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Distributed persistent object systems provide a convenient environment for applica-
tions that need to manage complex long-lived data. Since Java has no persistence
model built into it, the tremendous growth in the popularity of Java has generated
a lot of interest in systems that add persistence to Java. This thesis presents the
design, implementation and performance evaluation of a Java Persistent Store called
JPS. JPS is an efficient distributed persistent Java system built on top of the Thor
object-oriented database.

JPS provides several advantages over other persistent Java systems. Unlike most
of other systems, JPS is a distributed system that allows multiple clients to simul-
taneously access the object store. JPS is built to be used over a wide area network
and scales well with large databases. JPS also provides a very reliable and highly
available storage.

More importantly, JPS offers significantly better performance for many impor-
tant types of workloads. The original Thor system that used Theta as the database
programming language has been extensively compared to other OODBs and shown to
consistently outperform other systems—sometimes by more than an order of magnitude—
under a wide variety of commonly used workloads. Our performance results indicate
that JPS performs almost as well as the Theta-based system.

Thesis Supervisor: Barbara Liskov
Title: Ford Professor of Engineering

2

Acknowledgments

I would like to thank Barbara Liskov, my thesis supervisor, for her patience, counsel

and support. Her insightful comments have been most valuable for my thesis. The

presentation of this thesis has been significantly improved because of her careful and

critical proof-reading.

Atul Adya, Miguel Castro and Andrew Myers helped me understand the various

aspects of Thor design and implementation. They have also been wonderful compan-

ions.

Jason Hunter has been a great office-mate and a good friend. Other members

of the lab have also contributed to make the lab a pleasant environment. I would

like to thank Arvind, Dina, Dorothy, Doug, Kavita, Liuba, Paul, Peter, Phil, Rahul,

Sandeep, Shan-Ming, Umesh and Zheng for providing a friendly and relaxed work

atmosphere.

Prasad and Shiva have been terrific house-mates and great sources of fun.

Finally, my family has been very supportive of my goals and efforts. I thank my

parents for the many things they have done to make this possible.

3

Contents

1 Introduction 8

1.1 Research Approach . 9

1.2 Thesis Outline . 10

2 A Sketch of Thor 11

2.1 Thor Interface . 11

2.1.1 Object Universe and Transactions 11

2.1.2 Theta: The Database Programming Language 12

2.1.3 Writing Applications in Unsafe Languages 12

2.2 Thor Implementation . 13

2.2.1 Client-Server Architecture . 13

2.2.2 Storage Management at Servers 14

2.2.3 Object References . 15

2.2.4 Client Cache Management . 16

2.2.5 Concurrency Control . 16

3 Programming Model 18

3.1 Persistence by Reachability . 18

3.2 Transient Classes in Java . 19

3.2.1 Transient Classes and Native Methods in Java 20

3.2.2 Identifying Transient Classes 21

3.2.3 A Design for Storing Transient Objects Persistently 22

3.3 Handling Objects of Transient Classes 23

3.3.1 Static Model . 23

3.3.2 Persistent Programming Language Model 26

3.4 Persistence of Java Static Variables 26

4

4 Implementation 28

4.1 Basic Approach . 29

4.2 JPS Runtime System . 30

4.2.1 Object Layout . 31

4.2.2 Differences with a Standard Java Runtime System 31

4.2.3 The Translator-Runtime System Interface 33

4.3 Bytecodes-to-C Translation . 34

4.3.1 Toba . 34

4.3.2 Other Java-to-C Translators 36

4.4 Extensions made to the Thor/Theta Runtime System 37

4.4.1 Interface Methods . 37

4.4.2 Exception Handling . 39

4.4.3 Static Variables and Methods 40

4.5 Limitations . 41

4.5.1 Threads . 41

4.5.2 Native Code in Class Libraries 41

5 Programming Interface 42

5.1 JPS API . 42

5.2 Use of RMI in JPS . 43

6 Performance Evaluation 46

6.1 Experimental Setup . 46

6.2 OO7 Benchmark . 47

6.3 Comparisions with the Thor/Theta System 48

6.3.1 Overheads in JPS . 48

6.3.2 Results . 49

7 Other Persistent Java Systems 51

7.1 PJama . 51

7.2 Persistence Storage Engine for Java 52

7.3 GemStone/J . 53

8 Conclusions 54

8.1 Summary . 54

8.2 Future Work . 56

5

8.2.1 Supporting all the Java Class Libraries 56

8.2.2 Dynamic Class Loading . 56

8.2.3 Translator Optimizations . 56

6

List of Figures

2-1 Application interface in Thor . 13

2-2 The Thor architecture . 14

3-1 Hidden state maintained by native methods 21

3-2 Specifications of possible persist and unpersist methods 22

4-1 Object layout in JPS . 32

4-2 Examples illustrating the translator-runtime system interface 33

4-3 Replacing stack management with local variables 35

4-4 Reseting an object reference during a type cast 38

4-5 Casting up is implicit in Java bytecodes 39

4-6 Native methods in java.lang.Object 41

5-1 Specifications of the jps.JPS class . 44

5-2 Specifications of the jps.Directory class 45

6-1 Translating structured loops . 48

6-2 Instruction counts from running structured loops 49

6-3 Hot traversals, small database . 50

6-4 Hot traversals, small database . 50

6-5 Hot traversals, medium database . 50

6-6 Hot traversals, medium database . 50

7

Chapter 1

Introduction

Distributed persistent object systems provide a convenient environment for appli-

cations that need to manage complex long-lived data. These systems are drawing

increasing interest from application designers whose data requirements are not met

by traditional data management systems. Commonly cited application areas that use

persistent object stores include computer aided software engineering (CASE) tools

[LLOW91], computer aided design and computer aided manufacturing (CAD/CAM)

[CDN93], geographical information systems (GIS) [DKL+94], office automation and

document preparation systems [BM92].

Since Java [GJS96] has no persistence model built into it, the tremendous growth

in the popularity of Java has generated a lot of interest in systems that add persistence

to Java. This thesis describes the design and implementation of a Java Persistent

Store called JPS. JPS is an efficient distributed persistent Java system built on top

of the Thor [LAC+96, CALM97] object-oriented database.

There are many other research and commercial efforts underway to add persis-

tence to Java. These include PJama [AJDS96], which is being built by Sun and the

University of Glasgow, the Persistent Storage Engine for Java [PSE] developed by

ObjectStore, and GemStone/J [Gem] developed by GemStone. Also, Oracle is plan-

ning to put Java into their next version of the Oracle8 database server, release 8.1.

However, our approach offers two important advantages over these other systems.

Firstly, JPS is a more complete system. Unlike most of the systems mentioned

above, it allows multiple clients to simultaneously access the object store without

interfering with one another. Furthermore, JPS is built to be used over a wide area

network and scales well with large databases. JPS also provides a very reliable and

highly available storage for objects.

8

Secondly, JPS offers better performance for many important types of workloads.

All the other above-mentioned systems use either an ordinary JVM [LY97], or a

slightly modified JVM to run Java programs. Unfortunately, ordinary JVMs are

not optimized for the kind of workloads that are common in distributed persistent

object systems. For example, ordinary JVMs are not built to efficiently handle a large

collection of objects that do not all fit in main memory, or a large number of clients

simultaneously accessing the object store.

Good performance for a distributed object storage system requires good solutions

for client cache management, storage management at servers, and concurrency con-

trol for transactions. Since JPS is built on top of Thor, it offers efficient solutions

to the above problems. Various performance studies have shown that these solu-

tions consistently outperform other techniques—sometimes by more than an order of

magnitude – on a wide variety of common workloads [LAC+96, CALM97, AGLM95,

Gru97, Ghe95].

1.1 Research Approach

The goal of this thesis is to design and implement persistence for Java using Thor as

a basis. To achieve this goal, we need to solve two key problems.

The first problem is to define the programming model provided by JPS. A key issue

here is understanding what it means to make Java objects persistent. For example,

it is unclear what it means to store objects that represent, say, a thread or an open

file descriptor persistently, or what it means to restore these objects when they are

accessed later, potentially by a different application, and potentially on a different

client machine. Therefore, we need to either provide an answer to this question, or we

need to have a way of preventing such objects from being made persistent. And if we

follow the latter approach, our solution must not impose any unnecessary restrictions

on the natural way of programming in Java.

The second problem is to provide an implementation for JPS that has good per-

formance just like the original Thor system. Since Thor’s runtime system is optimized

for good performance, we did not want to replace it with the runtime system of a

standard Java interpreter. Consequently, we do not use a standard Java interpreter

to run Java programs in JPS.

Our basic approach for running Java programs is as follows. We first translate

9

Java bytecodes into C code that interfaces appropriately with the Thor runtime envi-

ronment. We then run an optimizing C compiler on the generated C code to produce

native machine code.

Instead of writing a bytecodes-to-C translator from scratch, we made use of Toba

[PTB+97], an existing Java bytecodes-to-C translator developed at the University of

Arizona. We modified the Toba translator appropriately to make it work with our

system.

The original Thor/Theta system has been extensively compared to other OODBs

and is shown to consistently outperform other systems under a wide variety of com-

monly used workloads [LAC+96, CALM97, AGLM95, Gru97, Ghe95]. Our experi-

mental results indicate that JPS performs almost as well as the Theta-based system.

1.2 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides some back-

ground on Thor. Chapter 3 describes the JPS programming model. Chapter 4 gives

an overview of the JPS implementation. Chapter 5 presents the programming in-

terface that JPS provides to users. Chapter 6 describes the performance evaluation

of JPS. Chapter 7 describes related work on other persistent Java systems. Finally,

chapter 8 summarizes this thesis and describes ways this work could be extended.

10

Chapter 2

A Sketch of Thor

This chapter presents an overview of the Thor object-oriented database (OODB).

Section 2.1 describes the semantics of the Thor system and the interface presented

by Thor to the outside world. Section 2.2 briefly describes the implementation of

the Thor OODB, emphasizing the important techniques that Thor incorporates to

enhance performance.

2.1 Thor Interface

2.1.1 Object Universe and Transactions

Thor provides a universe of persistent objects. It is intended to be used in a dis-

tributed system consisting of many clients and many servers. Objects are stored on

server machines. They contain references to other objects, which may reside at any

server. Thor maintains a set of persistent roots, one per server. All objects reach-

able from any persistent root are defined to be persistent—the rest of the objects are

garbage.

Applications run on client machines and interact with Thor by calling methods on

objects. These calls are made within atomic transactions. If a transaction commits,

Thor guarantees that the transaction is serialized with respect to all other transac-

tions, and that its modifications to the persistent universe are recorded reliably. If a

transaction aborts (say, because of using stale data), any modifications it performed

are undone at the client and it has no effect on the persistent state of Thor.

11

2.1.2 Theta: The Database Programming Language

To preserve the integrity of the database, Thor guarantees type-safe sharing of ob-

jects. Type-safe sharing requires that the database programming language have two

properties: (1) type correct calls—every method call goes to an object with the called

method and signature, and (2) encapsulation—only code that implements an object

can manipulate its representation. To ensure type-safety, the original implementa-

tions of Thor required that the method code for implementing persistent objects be

written in Theta [LCD+94], a statically typed programming language that enforces

strict encapsulation.

But Java is also a type-safe object-oriented programming language and can be

used equally well as the database programming language in Thor. To this end, we

have modified Thor to replace Theta with Java.

2.1.3 Writing Applications in Unsafe Languages

Thor allows application code to be written non-type-safe languages like C++ without

compromising the integrity of the database. Thor runs the unsafe code in a separate

protection domain on the client machines. Every call to Thor from the application

code is type-checked dynamically to ensure that the object being called does exist

and has the called method, and that method invoked has a compatible signature.

The application code refers to the database objects only via opaque handles, and

communicates with the rest of the Thor code through a thin interface called the

veneer. This architecture is shown in figure 2-1.

As illustrated, the interface is very simple. In addition to method calls and trans-

action commits and aborts, there is a way to obtain the root directory associated

with a particular server. (Servers are named by their IP addresses, which can be

obtained by looking them up in the DNS [TPRZ84].) The ability to access the root

allows an application to shut down a session with Thor and then start a session later

and retrieve its objects. Access to roots is the only way an application can retrieve

objects later; handles are valid only for the duration of a session. This restriction is

what allows us to do garbage collection, since it provides a set of well-defined roots

(the persistent roots and the handles of active sessions).

12

Get Root

Thor

Handle

Invoke Method

Handle / Value

Commit / Abort

Response

Application

Figure 2-1: Application interface in Thor

2.2 Thor Implementation

2.2.1 Client-Server Architecture

Thor has a client-server architecture where applications run at the clients and per-

form all accesses on cached copies of database objects. All computation within a

transaction takes place locally at the client. A portion of Thor called the front end

(FE) runs at each client to maintain the client cache and to do concurrency control.

Figure 2-2 provides an illustration. It shows a client with an FE that contains cached

copies of two persistent objects.

Moving both data and computation to the clients has two main advantages. First,

work is offloaded from the servers to the clients, improving the scalability of the

system and allowing it to take advantage of the CPU and memory resources available

at the clients. Second, many object accesses can be performed without contacting

the servers, allowing efficient fine-grained interaction between an application and the

OODB.

Persistent objects are stored at servers called object repositories (ORs). Each

OR stores a subset of the persistent objects. Thor provides a highly reliable and

highly available storage for persistent objects. To achieve high availability, each OR

is replicated at a number of server machines. Thor currently uses a primary/backup

replication scheme [LGG+91, Par98].

13

Persistent root

Persistent object

Garbage

Cached copy

w
FE

r2x

y

w

u v

Server

Server

z

r1

x

Client Machine

Application

Figure 2-2: The Thor architecture

2.2.2 Storage Management at Servers

Servers store objects on disks in pages and maintain a page cache in main memory to

speed up client fetch requests. When a transaction commits, its FE sends information

about its modifications to the servers in the commit request. If the commit succeeds,

the changes become visible to later transactions. Thor uses object-shipping and does

not ship the containing pages to the servers; moreover, at commit time, it ships only

new versions of the modified objects. This approach reduces communication costs if

the size of an object is much smaller than the size of a page, which is what we expect

in the common case.

Object shipping could lead to poor performance if the objects’ pages were read

immediately from the disk to install the objects in the database. Thor avoids this

cost by using the modified object buffer (MOB) architecture [Ghe95]. The server

maintains an in-memory MOB that holds the latest versions of objects modified by

recent transactions. New versions are written to the MOB when transactions commit;

when the MOB fills up, versions are written to their disk pages in the background.

The use of a MOB does not compromise the reliability of the system. This is be-

14

cause Thor maintains a stable transaction log in which it records information about

committed transactions before sending the commit reply. This log is replicated on

backup machines. Every OR sends the modifications it receives to backup ORs run-

ning on other machines at commit time.

Experimental results show that for typical object-oriented database access pat-

terns, the MOB architecture out-performs the traditional page-based organization of

server memory that is used in most databases.

2.2.3 Object References

Keeping objects small both at servers and clients is important because it has a large

impact on performance [WD94, MBMS95]. Objects in Thor are small primarily be-

cause object references (or orefs) are only 32 bits. Orefs refer to objects at the same

OR; objects point to objects at other ORs indirectly via surrogates. A surrogate is a

small object that contains the identifier of the target object’s OR and its oref within

that OR [DLMM94]. Surrogates do not impose much penalty in either space or time

because the database can usually be partitioned among servers so that inter-server

references are rare and followed rarely.

It is not practical to represent object pointers as orefs in the client cache because

each pointer dereference would require a table lookup to translate the name into

the object’s memory location. Therefore, many systems perform pointer swizzling

[WD92, KK90]; they replace the orefs in objects’ instance variables by virtual memory

pointers to speed up pointer traversals. Thor uses indirect pointer swizzling [KK90];

the oref is translated to a pointer to an entry in an indirection table and the entry

points to the target object. Indirection allows the Thor FE to move and evict objects

from the client cache with low overhead.

In-cache pointers in Thor are 32 bits, which is the pointer size on most machines.

Thor uses 32-bit pointers even on 64-bit machines—it simply ensures that the cache

and the indirection table are located in the lower 232 bytes of the address space.

Consequently, every time an object reference is fetched from or stored into an object

instance field, it has to be cast appropriately. Our initial implementation was done

on machines with 64-bit pointers.

15

2.2.4 Client Cache Management

Thor uses hybrid adaptive caching (HAC) [CALM97] for managing its client cache.

HAC is a combination of page caching and object caching that combines the virtues

of both while avoiding their disadvantages. HAC partitions the client cache into page

frames and fetches entire pages from the server. To make room for an incoming page,

HAC does the following:

• selects some page frames for compaction,

• discards the cold objects in these frames,

• compacts the hot objects to free one of the frames.

HAC achieves the low miss penalties of a page-caching system, but is able to perform

well even when locality is poor, since it can discard pages while retaining their hot

objects. It realizes the potentially lower miss rates of object-caching systems, yet

avoids their problems of fragmentation and high overheads. Furthermore, HAC is

adaptive: when locality is good it behaves like a page-caching system, while if locality

is poor it behaves like an object-caching system.

Experimental results indicate that HAC outperforms other object storage systems

across a wide range of cache sizes and workloads; it performs substantially better—by

more than an order of magnitude—on common workloads that have low to moderate

locality.

2.2.5 Concurrency Control

Thor uses adaptive optimistic concurrency control (AOCC) [AGLM95, Gru97] to sup-

port transactions. This allows applications to run at clients without the need to com-

municate with servers for concurrency control purposes (eg, to obtain locks). AOCC

provides both serializability and external consistency for committed transactions.

AOCC uses loosely synchronized clocks to achieve global serialization.

Like all other optimistic schemes, AOCC synchronizes transactions at the commit

point, aborting transactions when synchronization fails. When a transaction T com-

mits, the servers also send invalidation messages to all clients that have old copies

of objects installed by T in their local caches. These messages are not required for

correctness, but they improve the efficiency of the system.

16

Results of simulation experiments [Gru97] show that AOCC outperforms adaptive

callback locking (ACBL) [CFZ94], which was the best known concurrency control

scheme in earlier studies, across a wide range of system and workload settings. In

addition to having better performance, AOCC is simpler than ACBL, and scales

better with respect to the number of clients using shared data.

A recent study describes a new technique called Asynchronous Avoidance-based

Cache Consistency (AACC) [OVU98] that outperforms AOCC on some workloads.

However, this study concentrates on a system configuration where part of the method

code is run on the servers, which is different from the architecture of Thor.

17

Chapter 3

Programming Model

This chapter describes the system interface of JPS as seen by an application pro-

grammer, along with the motivation for our design choices. JPS is built on top of the

Thor OODB described in chapter 2. Hence, it has similar semantics for transactions

and persistence as in Thor. However, there are a number of new issues that arise as

a result of using Java. This chapter identifies and discusses these issues.

The rest of this chapter is organized as follows. Section 3.1 explains why we think

persistence by reachability is the right persistence model for a persistent object store.

Section 3.2 describes the issues that arise because of some Java classes like Threads

whose objects cannot automatically be made persistent. We refer to such classes as

transient classes. Section 3.3 discusses ways to deal with transient classes in Java.

Section 3.4 talks about issues relating to persistence of static variables in Java.

3.1 Persistence by Reachability

There are two fundamentally different ways for doing storage management in a per-

sistent system:

1. Explicit storage management, where application programmers, based on their

knowledge of object semantics and usage, explicitly store or delete objects from

a persistent store.

2. Persistence by reachability, where the underlying runtime environment decides

to store or delete objects based on their reachability from active applications

and from a set of persistent roots. Such systems typically use garbage collection

to reclaim space from objects that are no longer reachable.

18

Explicit storage management is used in many systems and programming lan-

guages. For example, in file systems users manage their own storage. This approach

has less runtime overhead since these systems do not have to implement garbage

collection. Programmers can exploit program semantics to decide exactly when an

object is useful and when it is not.

However, explicit storage management is a burden on programmers and is prone

to errors. For example, if a programmer forgets to store a live object or deletes a live

object from the storage by mistake, an application may attempt to use the object

and fail. On the other hand, if a programmer forgets to delete a garbage object, its

storage will be lost.

Explicit storage management becomes even more problematic in persistent stores

for the following reasons. Objects may be shared by many applications and there may

be many different ways of accessing them. Hence, it is very difficult for a programmer

to decide when to store or delete an object. Furthermore, objects are persistent,

so the effects of deleting live objects or retaining garbage objects will last for ever.

Therefore, persistence by reachability is the appropriate model for persistent object

systems.

3.2 Transient Classes in Java

In the original design of Thor, the database programming language Theta was meant

to be used to implement only those classes whose objects would be stored persistently

in the database. Consequently, Theta did not provide language support for certain

features like I/O and threads.

But in a persistent object system that uses Java as the programming language,

new issues arise because of certain Java classes that support features like I/O and

threads. This is because the objects of those classes store state that is part of the

execution environment of the system. We will refer to such classes as transient classes.

It is unclear what persistence services should be provided to objects of transient

classes. For example, it is unclear what it means to store objects that represent, say, a

thread or an open file descriptor persistently, or what it means to restore these objects

when they are accessed later, potentially by a different application, and potentially

on a different client machine.

This section presents more details about the uses of transient classes in Java. Sec-

19

tion 3.2.1 explains how the use of native methods in Java makes some Java classes

transient and why it does not make sense to provide automatic persistence to ob-

jects of transient classes. Section 3.2.2 discusses ways of identifying transient classes.

Though our system does not allow objects of transient classes to be made persistent,

it is possible to design a system that would allow these objects to be stored persis-

tently. Section 3.2.3 describes this alternate design and explains why we decided not

to use it in our system.

3.2.1 Transient Classes and Native Methods in Java

Applications occasionally require access to underlying system features or devices for

which using Java code is cumbersome at best, or impossible at worst. Because of this,

Java allows programmers to write parts of their code in another language and call this

code from Java. Such code is called native code. Programmers also use native code

to improve the speed of certain performance-critical portions of their applications.

There are numerous examples of uses of native methods in Java class libraries that

form part of the Java core API specification.

Native methods sometimes need to store references to native data structures in

objects. For example, in the java.lang.Thread class, native methods needs to store a

reference to the current execution environment in the Thread object. But Java has

no provision for this, since every instance variable in a Java object must either be of a

primitive type (like int, boolean, etc.) or must be a reference to another Java object.

Hence, native methods often use Java ints as place holders to store such references

to native data structures. For example, the java.lang.Thread class has an instance

variable named eetop of type int. Native methods in java.lang.Thread use eetop not

as a Java int but as a pointer to struct execenv, a C struct that captures the current

state of the execution environment of this thread. Figure 3-1 provides an illustration.

Obviously, it does not make sense to store eetop persistently as a Java int and

restore it later when the object is accessed again. This is because there is a hidden

state (in the form of a native data structure) associated with each Thread object that

is not visible to a JVM that treats eetop as a Java int. (Other examples of classes

in the Java API with hidden states include java.io.FileDescriptor, java.awt.Color,

java.awt.Font, etc.) It is not possible for a JVM by looking at Java bytecodes to

track all this hidden data. Hence, objects of such classes should not be allowed to be

made persistent.

20

Primitive Value

Object Pointer
Instance Variables

Java Objects
Native

Data Structures

Figure 3-1: Hidden state maintained by native methods

3.2.2 Identifying Transient Classes

Any Java variable that is accessed by native code could potentially contain a reference

to hidden data. There is no way for a JVM to automatically identify all the Java

variables that are used in violation of their declared types by native methods. Hence,

there has to be some way for programmers to convey this information explicitly to

the underlying system.

One possible way would be to introduce a new data type in Java, say native. All

variables that are used to store references to native data would be of type native.

Another way would be by using a keyword like transient as a class modifier. All

transient classes would be explicitly declared to be transient by this keyword.

In fact, Java already has a keyword transient reserved for future use. According

to the Java language specifications [GJS96], variables may be marked transient to

indicate that they are not part of the persistent state of an object. In our case, all

variables that are used to store references to native data could be marked transient.

This solution is similar to the solution of introducing a new data type called native

described above.

Incorporating any of the above solutions would involve changing a lot of existing

21

Java code, including code in Java class libraries that form part of the Java core API

specifications. So our solution is to identify the transient classes using some extra-

language mechanism. In JPS, we do this by listing all these classes in a file and

passing this file to the underlying system.

3.2.3 A Design for Storing Transient Objects Persistently

It is possible to design a system that would enable objects of otherwise transient

classes to be made persistent. For example, each of these classes could have two

additional programmer-defined static methods called persist and unpersist. The sig-

natures of these methods for a hypothetical class T are shown below. Class pT is a

class T {
...
static pT persist(T obj);
// Requires: pT is a class with no hidden state, ie, it has no
// references to native data structures.
// Effects: Constructs and returns an object p obj of class pT such that
// unpersist(p obj) and obj are identical.

static T unpersist(pT p obj);
// Requires: p obj has no hidden state.
// Effects: Constructs and returns an object obj of class T such that
// if persist(obj 1) and p obj are identical, then obj and obj 1
// are also identical.

}

Figure 3-2: Specifications of possible persist and unpersist methods

non-transient version of class T , that captures both the visible state and hidden state

represented by T .

The system automatically calls the persist method and stores the returned object

in the persistent store instead of the original object. When a client tries to access

this object later, the system fetches the pT object and calls the unpersist method

with it. The unpersist method reconstructs the T object including its hidden state

by exploiting the knowledge of the application semantics.

While such a mechanism can be made to work, it adds additional complexity to

the system, and it is not clear that it will be very useful in practice. For one thing,

22

it might not be possible to implement the persist and unpersist methods for certain

classes. Besides, it is not clear why one would want to store objects like Threads or

FileDescriptors persistently. Because of these reasons, we decided not to include this

feature in our system.

3.3 Handling Objects of Transient Classes

JPS has a persistence model based on reachability. Consequently, any Java object

can be made persistent in JPS by making it reachable from a persistent root. But as

discussed in section 3.2, it does not make sense to store transient objects persistently.

Therefore, we need a compile-time or runtime mechanism to prevent such objects

from being stored persistently. This section discusses ways of addressing this issue.

One possible way to prevent transient objects from being stored persistently is

to define a set of rules that would prevent these objects from ever being reachable

from a persistent root. These rules would be enforced at compile time. In fact, this

is exactly the programming model that was used in the original Thor/Theta system.

We will refer to this model as the static model. Section 3.3.1 discusses how this model

can be extended to a Java-based system like JPS. The static model however turns

out to be overly restrictive in case of applications written wholly in Java. Section

3.3.2 then describes the persistent programming model, which provides a much more

flexible programming environment. This is the model we adopted for JPS.

3.3.1 Static Model

The static model was used in the original version of Thor [LAC+96]. This model was

designed to allow code written in a non-type-safe languages like C++ to use Thor

without compromising the integrity of the database. The basic idea is as follows.

The method code for all objects that are to be stored in the database is written in

a type-safe language called Theta. Application code that uses these database objects

by calling methods on them is allowed to be written in any unsafe language. The

application code refers to the database objects only via opaque handles. Thor runs

the unsafe code in a separate protection domain on the client machines.

All the types defined and implemented in Theta form a closed type system. A

Theta type can only be a subtype of other Theta types. Any variable used in a Theta

class has to be of a Theta type. Furthermore, no type implemented in the application

23

language can be a subtype of a Theta type.

An immediate consequence of using this model is that there is no way for a

database object implemented in Theta to contain a pointer to an object implemented

in the application language. As a result, since the persistent root itself is a Theta

object, and since none of the Theta classes is transient, this model guarantees that

none of the objects reachable from a persistent root belong to transient classes.

Problems with the Static Model

The static model is based on a set of static rules that prevent objects of transient

classes from ever being made reachable from any persistent root. Though the static

model works fine when the database types and the application are written in different

languages, it leads to awkward situations when both the database types and the

application code are written in Java. This is because there is no natural way to

separate the Java type system into two independent sets.

The type system in the static model of Thor/Theta has the following characteris-

tics.

1. The classes implemented in Theta form a closed type system. All object be-

longing to these classes can be made persistent. We will refer to these classes

as persistent classes.

2. The classes implemented in the application language can use the persistent

classes, but cannot be subtypes of persistent classes. All these classes are tran-

sient classes.

These rules were the result of a design whose goal was to keep objects of persistent

and transient classes in separate address spaces and to not let objects of persistent

classes have references to objects of transient classes. But extending these rules to a

Java-based system directly leads to many problems.

Firstly, a strict interpretation of rule 1 above means that even local variables of

methods in persistent classes cannot be of transient types. This rule was enforced

in the original Thor system to ensure that transient classes are kept in a separate

address space. Clearly, this restriction is unnecessary in our system.

Secondly, a programmer might want to instantiate a transient object of a persistent

class, and store references to other transient objects in it. For example, Vector would

be a persistent class, but one might want to instantiate a Vector of Threads. There is

24

no good reason to disallow this as long as one does not attempt to store this Vector

of Threads persistently. Some systems like O2 [D+90] tried to solve this problem by

allowing every class to have two versions—a transient version and a persistent version.

For example, the transient version of Vector would be used to store transient objects,

while the persistent version of Vector would store persistent objects. But by adopting

this approach, one would soon end up with two versions of most classes. It is easy to

image how awkward it would be to program in such an environment.

In addition, according to the Java language specifications, all Java classes, includ-

ing transient classes, must be subtypes of java.lang.Object. But it is not possible for

both persistent and transient classes to have a common root in the type hierarchy

if neither persistent classes nor transient classes are allowed to be subtypes of each

other.

Allowing persistent classes to be subtypes of transient classes seems to be bad idea

since transient classes usually contain a hidden state and a persistent subclass of such

a class would also inherit the hidden state. On the other hand, if we allow transient

classes to be subtypes of persistent Java classes, then an object whose declared type

is a persistent type, but whose real type is a transient type, could be made reachable

from a persistent root. Compile-time checking alone cannot detect such an attempt

and only runtime checking can prevent this from happening.

One can imagine designing other solutions to address this particular subtyping

problem. For example, Object can be treated as a transient class even though it

has no hidden state. Furthermore, as a special case, persistent classes would be

allowed to be subtypes of Object. But then, given that Java does not have parametric

polymorphism [MBL97], one would never be able to store a Vector persistently since

the declared type of the elements of a Vector is Object.

These reasons lead us to the conclusion that runtime checks, to ensure that all

objects being made persistent are indeed of persistent classes, are inevitable. And

any additional restrictions could disallow otherwise perfectly legal and well-written

programs.

The persistent programming language model described below was designed to

address the above problems.

25

3.3.2 Persistent Programming Language Model

In contrast to the static model which forces a rigid separation of the type system,

the persistent programming language model imposes no such restrictions on a Java

programmer. Any Java class can be implemented using any other Java class, as in

normal Java programs. The system only requires that the programmer should not

attempt to make objects of transient classes persistent. The system ensures this by

performing runtime checks.

Since JPS is a system based on transaction semantics, the commit point serves

as a convenient time to do these runtime checks. Just before sending the commit

request to the server, the JPS code running on a client machine (in the FE) checks

whether all the objects that were newly made reachable from a persistent root by

this transaction are instantiations of persistent classes. If not, the transaction is

aborted and the system throws a Java runtime exception. For example, if a Vector

object reachable from a root contained references to transient objects, this would be

detected at commit time and the transaction would be aborted.

Interaction of Persistence Issues with Transaction Semantics

An important question that needs to be answered is how the persistence issues interact

with the transaction semantics of JPS. In particular, if a transaction aborts, which

are the objects whose states are restored and which are the ones whose states are not

restored?

For objects of persistent classes, restoring the object state on an abort seems to be

the only reasonable choice. Transient classes are a little complicated. This is because

these classes contain hidden data that the JVM does not keep track of. Consequently,

the system cannot restore the state of this hidden data. JPS does however restore

the JVM-visible part of the data in these objects.

3.4 Persistence of Java Static Variables

Static variables in Java are per-class variables, unlike normal instance variables for

which there is a copy of the variable for every object. Since static variables are not

part of any object, they would not be stored persistently in the normal process of

making all objects reachable from the root persistent.

Some systems including JPS create a special class object for every Java class and

26

treat static variables as part of these class objects. But since these class objects are

not exposed as first-class objects in the Java language, these objects will still never

be reachable from any persistent root.

One way to handle static variables in a distributed Java system would be to store

all the special class objects (and hence all the static variables) persistently, even

though they are not reachable from any persistent root. In this case, there would be

one copy of each static variable for the entire system.

Another way to handle static variables is to not store them persistently at all and

initialize them separately on every client machine every time an application is run.

Whichever of the above options we pick, one can easily imagine usages of static

variables where our choice would be the wrong one. We finally decided not to store

static variables persistently because a programmer can always change his program

slightly to store the information in the static variables persistently, if really he wanted

to. This can be accomplished by storing the information meant to be persistent in

instance variables of objects.

We do provide transaction semantics to static variables though.

27

Chapter 4

Implementation

This chapter gives an overview of the implementation of JPS. The full JPS imple-

mentation includes all of Thor, which is the result of many years of on-going research.

This chapter mainly focuses on the issues relating to the implementation of a Java

interface to Thor.

Our basic approach for running Java programs in JPS is as follows. We first

translate Java bytecodes into C code that interfaces appropriately with the Thor

runtime environment. We then compile the C code into native code. Section 4.1

explains why we choose this approach.

Section 4.2 describes the runtime system of JPS. One of the nice features of

the JPS implementation is that for all object operations, there is a clean functional

interface between the JPS runtime system and the code produced by the bytecodes-

to-C translator. This section also gives a flavor of this interface.

Instead of writing a bytecodes-to-C translator from scratch, we made use of the

Toba translator [PTB+97] and modified it for our purpose. Section 4.3 presents an

overview of Toba and describes how Toba was modified to work with JPS. It also

describes other Java-to-C translators.

Section 4.4 describes some extensions made to the runtime system of the original

Thor/Theta system because of the differences between the object models of Java and

Theta.

Section 4.5 describes the limitations of our JPS implementation.

28

4.1 Basic Approach

Building a persistent Java system on top of Thor primarily involves building a runtime

system for Java that interfaces appropriately with Thor.

One of the main advantages of using Thor as the base for building a persistent

Java system is that Thor achieves good performance in a distributed environment by

using a combination of optimizing techniques. Consequently, we wanted to integrate

Java into Thor in a way that is compatible with these techniques.

This ruled out the option of using a standard Java interpreter inside Thor because

doing that would have meant replacing Thor’s runtime system with the runtime

system of a standard Java interpreter. One of the things that makes Thor very

efficient is that it manages its client cache very effectively when the database does

not entirely fit in main memory. Previous experimental studies have shown that the

techniques used can improve performance over page-based system by more than an

order of magnitude on memory-bound workloads [CALM97]. By replacing Thor’s

runtime system with the runtime system of a standard Java interpreter, we would

instead have to depend on the paging mechanism of underlying operating system to

manage the cache.

One possible approach to integrate Java into Thor was to appropriately modify

a standard Java interpreter and incorporate it into the client side of Thor. This

is similar to the approach taken by the PJama [AJDS96] project. However, since

interpreted code runs one to two orders of magnitude slower than compiled code

[PTB+97, MMBC97], we abandoned this path.

Another option was to build a Just-In-Time (JIT) compiler [JIT] into Thor’s

client side. Though this might have been the ideal solution in the long run keeping

in mind the portability goals of Java, implementing an efficient JIT compiler inside

Thor requires a tremendous amount of work.

The third option was to compile Java into native machine code off-line, perhaps

by first converting it into some intermediate language like C. Doing an off-line compi-

lation into native code has the advantage that aggressive compiler optimizations can

be performed, unlike in JITs. This is the option we chose for our system.

29

Why we read in Bytecodes

An interesting characteristic of Java is that the bytecodes contain nearly the same

amount of information as the Java source itself. This has even been demonstrated by

constructing decompilers that decompile bytecodes and produce a Java source that

is similar to the original program [Vli96, For96].

We chose to read in bytecodes rather than the Java source itself mainly because

Java programs are usually distributed in the form of bytecodes. Writing a translator

for bytecodes is also simpler than writing a translator for the Java source itself.

Moreover, bytecodes form a convenient intermediate language and programs written

in any source language can be compiled into bytecodes.

Why we produce C Code

The choice of C as the intermediate language has at least two advantages. It makes

our system portable. Also, it permits reuse of the extensive compiler technology that

is already deployed everywhere.

Instead of writing a bytecodes-to-C translator from scratch, we made use of Toba

[PTB+97], an existing Java bytecodes-to-C translator developed at the University of

Arizona.

4.2 JPS Runtime System

This section gives a brief overview of the runtime system of JPS. It mainly focuses

on the part of the runtime system that is exposed to the Java-to-C translator.

Section 4.2.1 describes the object layout in JPS.

Since JPS is a persistent object system, the runtime system of JPS is different from

the runtime system of standard Java implementations in many ways. For example, in

a standard JVM, all the objects reside in the program’s virtual address space. But in

JPS, the persistent object store resides on servers. Objects are automatically fetched

from the servers by the underlying runtime system when they are accessed for the

first time. Section 4.2.2 describes some of these basic differences.

One of the nice features of the JPS implementation is that for all object opera-

tions, there is a clean functional interface between the JPS runtime system and the

code produced by the bytecodes-to-C translator. Section 4.2.3 gives a flavor of this

interface.

30

4.2.1 Object Layout

This section gives an overview of the object layout in JPS. Objects in JPS refer to

each other via an indirection. This is because JPS manages its own client cache and

this indirection is necessary to allow objects to be moved and evicted from the client

cache with low overhead.

Every object that is installed in the client cache has an entry in the indirection

table. An object’s entry consists of a pointer to the dispatch vector of the object’s

class, a pointer to the fields of the object, and some header information consisting

of the object’s oref and some garbage collection information. Figure 4-1 provides an

illustration.

4.2.2 Differences with a Standard Java Runtime System

Since JPS is a client-server persistent Java system, it has to do some additional book-

keeping in the normal process of invoking methods and accessing instance variables.

Below, we describe some of these book-keeping overheads.

Swizzling and Checking if an Object Exists in the Client Cache

Since JPS is a persistent object system, all its objects may not reside in the program’s

virtual address space. Objects are automatically fetched from the servers when they

are accessed for the first time.

Whenever an object is accessed in JPS, the system has to first ensure that the

reference to the object has been swizzled (that is, it points to a valid entry in the

indirection table). Then, the system has to check if the object is present in the client

cache. If not, the system has to fetch the object from the server and install it in the

cache before proceeding with the object access.

Maintaining Object Usage Statistics

Since JPS maintains its own client cache, it has to be able to identify cold objects that

can be evicted from the cache. JPS maintains usage statistics on a per-object basis.

Whenever an object is accessed in JPS, these usage statistics have to be updated.

31

������������

�������� ��������	�	�	
�

������

Field 1

Object Fields

Method 1
Method 2
...

Field n
Field 2

Method n

Object i

Object 2

Object 1

Object n

Indirection Table

Dispatch Vector
(A per-class structure)(A per-object structure)

Fields Header
DV Header

Obj Header

Figure 4-1: Object layout in JPS

32

Marking Objects as Read or Written for Concurrency Control

Whenever an instance variable of an object is read or written in JPS, the object has

to be explicitly marked as read or written. JPS has to maintain the ROS (read object

set) and MOS (modified object set) during a transaction. This information is used

at the end of every transaction to determine whether the transaction is serializable

with respect to all other committed transactions, and for sending changes made to

the objects in the MOS to the server so that they can be recorded in the stable store.

4.2.3 The Translator-Runtime System Interface

JPS provides a clean functional interface between its runtime system and the code

produced by the bytecodes-to-C translator. The translator-generated code uses this

interface, while the JPS runtime system implements this interface with a set of C

macros. Because of this interface, many details of the underlying runtime system are

hidden from the generated code. For example, the generated code does not have to

know how to check whether an object is resident in the cache or how to fetch the

object from the server if it is not resident. All this is handled by the appropriate

macros.

Java code Operation Generated C code

Vector v;
v = new Vector();

Allocate new object ALLOC OBJ(v, Vector);
Call the default constructor

x = v.elementCount;
Mark object as read MARK READ(v);
Read object field (Assuming GET VAL S(x, v, elementCount, Vector);
v is swizzled, but not
necessarily resident in cache)

v.elementAt(i)
Invoke virtual method DISPATCH(v, elementAt, Vector)(v, i)

x = v.elementCount;
Mark object as read MARK READ(v);
Read object field (Assuming GET VAL R(x, v, elementCount, Vector);
v is resident in the cache)

Figure 4-2: Examples illustrating the translator-runtime system interface

Figure 4-2 gives a flavor of this interface. For each object operation, it shows a

Java code fragment that requires the operation and the part of the generated code

33

that actually performs the operation. The symbol names in the generated code have

been modified for ease of understanding.

The implementation of the GET VAL S macro above involves many things. First,

the system has to check if the object is resident in the client cache. If not, it has to

fetch the object from the server. Then the fields of the object have to be obtained

from the object’s entry in the indirection table. Finally, the required field of the

object is read.

On the other hand, the implementation of the GET VAL R macro assumes that

the object is resident in the cache. The translator can use this macro in the generated

code if it knows that the corresponding object has already been fetched from the server

and has been made resident in the client cache.

4.3 Bytecodes-to-C Translation

This section describes the bytecodes-to-C translation process in JPS.

As we mentioned before, we made use of the Toba translator [PTB+97] and mod-

ified it for our purpose. Section 4.3.1 presents an overview of Toba and describes how

the Toba translator was modified to work with JPS.

There are many other freely available Java-to-C translators today. One of the main

reasons we chose to use Toba over the other translators is that the Toba translator is

written entirely in Java and its code is easy to understand and modify. Section 4.3.2

gives an overview of some of the other translators.

4.3.1 Toba

Toba [PTB+97] is a system for running Java programs. Like JPS, Toba first translates

Java class files into C code, and then compiles C into machine code. The resulting

object files are linked with the Toba runtime system to create traditional executable

files.

The Toba system consists of two main components—a bytecodes-to-C translator,

and a runtime system.

Since Toba is not a persistent object system, Toba’s runtime system is not designed

to be used in a system like JPS. Section 4.2.2 gives some reasons why this is so. As a

result, we do not use Toba’s runtime system in JPS. We only use a modified version

of Toba’s translator in JPS.

34

Toba Translator

The Java Virtual Machine (JVM) [LY97] defines a stack-based virtual machine that

executes Java class files. Each Java class compiles into a separate class file containing

information describing the class’s inheritance, fields, methods, etc., as well as nearly

all of the compile-time type information. The Java bytecodes form the machine’s

instruction set, and include simple arithmetic and control-flow operators along with

instructions for manipulating objects like those for accessing static and instance vari-

ables, and those for invoking static, virtual, non-virtual and interface methods. The

JVM also includes an exception mechanism for handling abnormal conditions that

arise during execution.

Toba translates one class file at a time into a C file and a header file. To translate

a class file, Toba requires the class files for all of the class’s supertypes. To compile

a class’s resulting C file, header files are necessary from itself, its supertypes, and all

imported classes.

To suppress one of the main sources of inefficiencies in Java bytecodes, Toba

statically evaluates the stack by abstractly interpreting the bytecodes and replaces

stack management with variables. Figure 4-3 shows an example. i1 and i2 refer to

the first and second elements of the stack, while iv1, iv2, and iv3 refer to the first

three JVM local variables.

Java code Bytecodes Generated C code

a = b + c; iload 2 i1 = iv2;
iload 3 i2 = iv3;
iadd i1 = i1 + i2;
istore 1 iv1 = i1;

Figure 4-3: Replacing stack management with local variables

The C code produced by Toba is not very optimized. For example, as one can

see in figure 4-3, Toba does not do copy propagation. The generated C code in the

figure can be replaced by an optimized version that just does iv1 = iv2 + iv3. Toba

assumes the existence of optimizing C compilers to do these optimizations.

Adopting the Toba Translator to work with JPS

The Toba translator can be thought of as consisting of two main components—a

bytecodes parser, and a code generator. The code generator in turn is made up of

35

two components—one that generates code for the simple arithmetic and control-flow

operations, and the other that generates code for operations that manipulate objects

like those invoking methods or accessing instance variables.

We used Toba’s bytecodes parser and the code generator for simple operations

almost unchanged in JPS.

The code generated for object operations has to be compatible with the underlying

runtime system. Since the runtime system of JPS is different from the runtime system

of Toba, we had to rewrite the portions of the Toba translator that generated code

for object operations.

4.3.2 Other Java-to-C Translators

There are several systems available today that translate Java code to C code like

Toba. Below, we discuss a few of the more prominent ones.

J2C

Like Toba, J2C [And] also translates Java bytecodes into C, which can then be com-

piled to native code. J2C is written in C and has absolutely no documentation; hence

we decided not to use it for our purpose. J2C also has some limitations—for example,

it does not support exceptions fully.

Jolt

Jolt [Sri] is another system that converts Java bytecodes to C code. But unlike Toba

and J2C, it uses a very different approach.

The basic idea is as follows. The translator reads a Java class file and generates

equivalent C code for methods in the Java class file. It also generates a new Java class

file that marks all the converted code as native. Thus, Jolt still uses the standard

Java interpreter, but runs native code through it. But since we wanted to use our own

runtime system inside JPS instead of a standard JVM’s runtime system, we decided

not to use Jolt in JPS.

The Jolt approach also has many drawbacks. For example, overloaded methods

cannot be translated. The native code interface, in its current implementation, does

not handle methods that have the same name since the dynamic linker maps method

names in class files to symbol names in shared libraries without using the argument

36

information.

In addition, instance and class initializers apparently cannot be native methods

(at least in the Sun implementation), so that is another set of methods that are not

translated.

Harissa

Harissa [MMBC97] is another compiler that translates Java bytecodes to C. Harissa

incorporates many the optimizations techniques to enhance performance. But it is

distributed only in binary format. Hence we could not use it in our system.

JCC

JCC [Sha] is another Java-to-C converter. But unlike other systems described so far,

JCC processes Java source code directly to generate C code. Also, JCC is available

only for WIN32 platforms.

4.4 Extensions made to the Thor/Theta Runtime

System

4.4.1 Interface Methods

In the original Thor/Theta system, any object with multiple supertypes had multiple

entries in the indirection table for multiple dispatch vectors. Figure 4-4 shows an

illustration. Every object reference pointed to one of the object’s dispatch vectors,

which was determined by the declared type of the object. If the object was cast to a

different type, the object reference had to be changed to point to a different dispatch

vector; the new object reference was computed by adding a compiler-generated offset

to the old object reference.

The main advantage of this scheme was that the address of every method was

always at a pre-determined offset in the object’s current dispatch vector. Hence,

invoking an interface method was identical to invoking a virtual method—there was

very little overhead [Mye95].

One of the requirements for this scheme to work is that whenever an object is

cast to a different type, the object reference had to be changed to point to a different

dispatch vector; this is true even if the object is being cast into a type that is known

37

������������

������ ������	�	
�

������

Method 2m

Object Fields

Field n
Field 2

Object 1

Indirection Table

Fields Header

Obj Header

Field 1
...

DV Header

Dispatch Vector 1
Object 2

Object reference

(Before typecast)

...

DV Header

Dispatch Vector 2

Object Fields

Field n
Field 2

Object 1

Indirection Table

Fields Header

Obj Header

Field 1
...

DV Header

Dispatch Vector 1
Object 2

Object reference

(After typecast)

...

DV Header

Dispatch Vector 2

Method 11
Method 12

Method 1n

Method 21
Method 22

Method 2m

Method 11
Method 12

Method 1n

Method 21
Method 22

Figure 4-4: Reseting an object reference during a type cast

38

to be a super-type of the object’s current declared type. However, the problem with

Java bytecodes is that when an object is cast up in the Java code, this is not explicitly

reflected in the bytecodes. Figure 4-5 illustrates this. In the figure Foo is a supertype

of Bar. When a variable of type Bar is assigned to a variable of type Foo, there is no

explicit type cast in the bytecodes.

Java code Bytecodes Generated C code

interface Foo {...}
class Bar implements Foo {...}
Foo f; Bar b;
...
f = b; aload 2 a1 = av2;

astore 1 av1 = a1;

Figure 4-5: Casting up is implicit in Java bytecodes

Because of this, we could not use the multiple dispatch vectors scheme in JPS.

Instead, we had to employ the technique used by the Toba translator, which involves

doing a runtime lookup to find the address of an interface method. Consequently,

interface calls (method calls made when the declared type of an object is an interface)

are slower in JPS compared to virtual method calls.

4.4.2 Exception Handling

Toba translates Java exceptions into C as follows. For every Java method that might

catch an exception, Toba creates a small prologue in the C code that calls setjmp

to initialize a per-thread jmpbuf. The prologue saves the previous jmpbuf in a local

structure; the epilogue code restores the old value of the jmpbuf before the function

returns.

Toba translates exception throwing into longjmp calls that use the jmpbuf. Such

calls transfer control to the prologue of the nearest function that might handle the

exception. This prologue code simply checks a table to determine if, given the type

of the exception and the currently active program counter, whether this method can

handle the exception. If so, the execution transfers to the exception handling code.

If not, the prologue restores the previous jmpbuf, and executes a longjmp with this

jmpbuf.

The main problem with this approach is that setjmp is an expensive operation.

For example, on a DEC 3000/400 workstation running Digital Unix 4.0, a setjmp

39

operation saves 84 long values into the jmpbuf. As a result, this might tend to

discourage programmers from using exceptions.

The exception model in Theta is different from that in Java. All the exceptions

in Theta are declared exceptions—a method is required to declare the exceptions

it throws in its throws clause. This is unlike the case in Java, where subclasses of

java.lang.RuntimeException and java.lang.Error need not be declared.

The way a Theta compiler translates exceptions into C code is as follows. On

encountering an exception, a method sets a per-thread exception flag, stores the

exception in a per-thread structure, and returns. On the caller side of the code, the

exception flag is checked after returning from every method call. If it is not set, it

implies that the method returned normally. If it is set, it implies that the method

returned by throwing an exception. (Theta also has a special failure exception. It is

an undeclared exception and it translated into C using setjmp and longjmp, similar

to the way Toba translates all exceptions.)

The advantage with Theta is that the exception flag had to be checked only in

case of methods that declared that they could throw exceptions. But since Java has

undeclared exceptions, any Java method could potentially throw an exception; hence,

adapting this technique to Java means that the exception flag has to be checked upon

returning from every method call.

Though the second approach adds a small overhead for every method call, we chose

to use it in our system. This is primarily because we did not want to discourage the

use of exceptions; we strongly believe that the use of exceptions leads to cleaner

programs.

4.4.3 Static Variables and Methods

The Theta language did not have a notion of static variables and static methods. JPS

handles them in the following way.

JPS creates a special class object for every Java class and treats the static variables

of that Java class as instance variables of the class object. Also, all the static methods

of the Java class are treated as methods of the class object.

Since these objects are not exposed as first-class objects in the Java language, no

other object can contain a reference to them. Hence, to prevent these objects from

being garbage-collected, JPS pins these objects in the client cache.

JPS does not store these class objects persistently.

40

4.5 Limitations

This section discusses the limitations of our current JPS implementation.

4.5.1 Threads

JPS does not support multi-threaded Java programs yet. This is because Thor was

not designed to allow multiple threads running simultaneously in the FE. However,

with some careful re-writing of code, it would be possible to make the FE thread-safe.

4.5.2 Native Code in Class Libraries

There are a number of class libraries that are part of the Java core API specifications.

Though most of the methods in these class libraries are implemented in Java itself,

there are quite a few native methods in them too. For example, figure 4-6 shows the

native methods in java.lang.Object.

public final native Class getClass();
public native int hashCode();
protected native Object clone() throws CloneNotSupportedException;
public final native void notify();
public final native void notifyAll();
public final native void wait(long timeout) throws InterruptedException;

Figure 4-6: Native methods in java.lang.Object

Usually, these native methods are implemented by the JVM. But since JPS es-

sentially replaces a JVM, these methods have to be provided by JPS. Unfortunately,

there is an ever-growing set of class libraries and Java 1.1.6 already has more than 500

native methods—implementing all of them requires a tremendous amount of mostly

routine work. Our current implementation supports only a small subset of the Java

class libraries. Chapter 5 describes how this limitation can be overcome.

41

Chapter 5

Programming Interface

This chapter describes the programming interface that JPS provides to users.

5.1 JPS API

Adding reachability-based persistence to a programming language only requires the

following additions to the language API: a function to access the persistent roots,

and a function to commit changes to the persistent store. There should also be a

directory class to represent the roots. We provide all this functionality in a separate

jps package.

Accessing Persistent Roots

The persistent store in JPS is partitioned into a number of servers called ORs (object

repositories). Each OR has a persistent root. An OR can be identified by its unique

id. Hence, accessing any persistent root just involves calling the static method getRoot

with the appropriate OR id. Figure 5-1 shows the specifications of this method.

Committing Transactions

Committing the changes made in the current transaction simply involves calling the

static method commit. The system keeps track of which objects are read and which

objects are modified during the transaction. When the transaction finishes, this

information is used to check whether all the reachable objects are of persistent classes,

and whether the transaction can be serialized with respect to all other committed

transactions. If so, the transaction commits successfully and the modifications to the

42

persistent store are recorded reliably. If not, the transaction aborts, and the JVM-

visible state of all objects in the local heap is restored to whatever it was before the

beginning of this transaction. JPS also provides an abort method to abort the current

transaction, which also rolls back the JVM-visible states of all objects.

Figure 5-1 shows the specifications of the commit and abort methods. JPS auto-

matically starts a new transaction at the end of every transaction.

Adding, Looking-Up and Deleting Objects from a Persistent Root

A persistent root is essentially a directory of objects. Objects stored in such a di-

rectory are given String names to conveniently identify them. We provide a simple

directory abstraction to represent a root directory. Its specifications are shown in

figure 5-2.

5.2 Use of RMI in JPS

As discussed in section 4.5.2, we do not support all the class libraries to run inside JPS

yet. JPS provides a way to overcome this limitation by the use of Java RMI (Remote

Method Invocation). Part of the Java code that uses class libraries not supported by

JPS can run outside JPS and communicate with the rest of the Java code running

inside JPS via RMI. This approach is similar to the original Thor design where part

of the client application runs outside Thor and communicates with the Thor code

through a veneer.

43

package jps;

public class JPS {

// Overview: This class provides procedural abstractions to access
// persistent roots and to commit transactions.

public native static Directory getRoot(int OR id) throws NoSuchORException;
// Effects: Returns the persistent root of the OR with id OR id.
// Throws NoSuchORException if no such OR exists.

public native static boolean commit() throws TransientObjectException;
// Modifies: The local object heap and the persistent store.
// Effects: If any object reachable from a persistent root is
// of a transient class, aborts the transaction and throws
// TransientObjectException.
// Else, if the transaction cannot be serialized with respect to all
// other committed transactions, aborts the transaction and
// returns false.
// Else, commits the transaction and returns true.
// In either case, starts a new transaction when the current transaction ends

public native static boolean abort();
// Modifies: The local object heap
// Effects: Aborts the current transaction and starts a new transaction

}

public class NoSuchORException extends RuntimeException {...}

public class TransientObjectException extends RuntimeException {...}

Figure 5-1: Specifications of the jps.JPS class

44

package jps;

public class Directory {

// Overview: A Directory is a mutable data abstraction that maps
// String names to Objects.

public Directory();
// Create an empty Directory

public void insert(String name, Object obj) throws DuplicateException;
// Modifies: this
// Effects: Inserts the object obj and its specified name into this.
// If another object with the same name already exists in this,
// throws DuplicateException.

public Object lookup(String name) throws NoSuchElementException;
// Effects: Returns the object with the specified name in this. If no
// such object is found, throws NoSuchElementException.

public Object remove(String name) throws NoSuchElementException;
// Modifies: this
// Effects: Removes the specified name and its associated object from this.
// If no object in this has the specified name, throws NoSuchElementException.

public Enumeration names();
// Effects: Returns an Enumeration object that will produce all the
// names in this.
// Requires: this is not modified while the enumerator is in use

public Enumeration objects();
// Effects: Returns an Enumeration object that will produce all the
// objects in this.
// Requires: this is not modified while the enumerator is in use

}

public class DuplicateException extends RuntimeException {...}

Figure 5-2: Specifications of the jps.Directory class

45

Chapter 6

Performance Evaluation

This chapter describes the performance evaluation of JPS.

The original Thor/Theta system has been extensively compared to other OODBs

and is shown to consistently outperform other systems—sometimes by more than an

order of magnitude—under a wide variety of commonly used workloads [LAC+96,

CALM97, AGLM95, Gru97, Ghe95]. In this chapter, we will compare JPS with the

Thor/Theta system. We will show that JPS performs almost as well as the Theta-

based system.

The rest of this chapter is organized as follows. Section 6.1 describes our ex-

perimental setup. Section 6.2 describes the OO7 benchmark [CDN93], which is the

workload we use in our experiments. This benchmark is intended to match the charac-

teristics of many different CAD/CAM/CASE applications, but it does not model any

specific application. Section 6.3 presents the results of our experiments that measure

the performance of JPS relative to the performance of the Thor/Theta system.

6.1 Experimental Setup

The experiments ran both the servers and the clients on a DEC 3000/400 Alpha

workstation, each with a 133 MHz Alpha 21064 processor, 160 MB of memory and

OSF/1 version 4.0B. The machines were connected by a 10Mbit/s switched Ethernet

and had DEC LANCE Ethernet interfaces. The switch was a DEC EtherWORKS

Switch 8T/TX. The database was stored by a server on a Seagate ST-32171N disk

with a peak transfer rate of 15.2 MB/s, an average seek time of 9.4 ms, and an average

rotational latency of 4.17 ms [Sea97].

46

Both the generated C code and the system C code were compiled using GNU’s

gcc with the -O3 option. To reduce noise caused by conflict misses, we used cord and

ftoc, two OSF/1 utilities that reorder procedures in an executable to reduce conflict

misses.

In all our experiments, the database was accessed by a single client. The client

and the server were both run with 64 MB cache, which is sufficient to hold the entire

database.

6.2 OO7 Benchmark

In this section, we describe the OO7 benchmark [CDN93] on which our workloads are

based. OO7 is intended to match the characteristics of many different CAD/CAM/-

CASE applications, but does not model any specific application.

The OO7 database contains a tree of assembly objects, with leaves pointing to

three composite parts chosen randomly from among 500 such objects. Each composite

part contains a graph of atomic parts linked by connection objects. Each atomic part

has 3 outgoing connections. The small database has 20 atomic parts per composite

part, while the medium has 200. In our implementation, the small database takes up

4.2 MB and the medium database takes up 37.8 MB.

Traversals

Our experiments ran several database traversals that the OO7 benchmark defines.

These traversals perform a depth-first traversal of the assembly tree and execute an

operation on the composite parts referenced by the leaves of this tree.

Traversals T1 and T6 are read-only. T1 performs a depth-first traversal of the

entire composite part graph, while T6 reads only its root atomic part. Traversals T2a

and T2b are identical to T1 except that T2a modifies the root atomic part of the

graph, while T2b modifies all the atomic parts. Note that T6 accesses many fewer

objects than the other traversals.

47

6.3 Comparisions with the Thor/Theta System

6.3.1 Overheads in JPS

Section 4.4 discussed some of the overheads introduced in JPS over the original

Thor/Theta system. In this section, we discuss additional overheads introduced be-

cause of using Java bytecodes.

Structured Loops

As mentioned in section 4.3.1, the C code produced by JPS is not very optimized.

JPS assumes the existence of optimizing C compilers to do the optimizations. This

assumption mostly holds true, though some simple tests performed by us revealed

some problems. When converting from Java source code to bytecodes, there is a loss

of information concerning structured loops, which are replaced by goto statements.

This is reflected in the C code generated by JPS. As a result, certain optimizations

like loop-unrolling do not work very well with the generated C code.

Consider the example shown in figure 6-1. We will compare the performance of a

structured loop written in C directly, with that of one written in Java that is compiled

into bytecodes and then translated into C. Again, the symbol names in the generated

code in the example have been edited for ease of understanding.

Original Java/C code Generated C code

j = 1; k = 2; L1: i1=j; i2=k; i1=i1+i2; l=i1;
for (i=0; i< 1000; i++) { i1=l; i2=j; i1=i1+i2; k=i1;

l = j+k; i += 1;
k = l+j; L2: i1=i; i2=1000;

} if (i1 < i2) goto L1;

Figure 6-1: Translating structured loops

In figure 6-2, we give the instruction counts when both the original C code above,

and the generated code are compiled and run. We give the data for the cases with

and without loop unrolling enabled. The compiler used was DEC’s CC on a DEC

3000/400 workstation. Loop unrolling was enabled by using the -O2 option. Only

the instructions that are part of the loop are shown.

As one can see, the loop is executed only 250 times in the case of original C code

because of loop unrolling, thus reducing the dynamic instruction count by almost four

times. But in the case of generated C code, loop unrolling does not have much effect.

48

Without loop unrolling With loop unrolling
Both Original C code Generated C code

Instruction Counts Instruction Counts Instruction Counts
addl v0, 0x1, v0 1000 addl v0, 0x4, v0 250 addl t0, 0x1, t0 1000
ldq ... 1000 ldq ... 250 ldq ... 1000
addl s0, 0x1, s1 1000 addl s0, 0x7, s1 250 cmplt t0, t1, t2 1000
cmplt v0, t0, t1 1000 cmplt v0, t0, t1 250 addl s0, 0x2, s0 1000
addl s1, 0x1, s0 1000 addl s1, 0x1, s0 250 bne t2, ... 1000
bne t1, ... 1000 bne t1, ... 250

Figure 6-2: Instruction counts from running structured loops

6.3.2 Results

As discussed in section 6.3.1, there are overheads introduced in JPS over the Thor-

/Theta system. In this section, we will try to quantify the overheads by presenting

the results of running our experiments.

The only interesting experiments are those that involve hot traversals. This is

because, in the case of cold traversals, the execution time is dominated by the cost of

fetching the objects from the server. This cost is same for both JPS and the original

Thor system, since the code for doing this is the same in both the systems.

Figures 6-3 and 6-4 present the results for a small database, while figures 6-5 and

6-6 present the results for a medium database. The graphs show the elapsed time in

running the traversals. As the results indicate, JPS performs between 1.1 and 1.25

times slower than Thor for hot traversals.

49

T1
0.0

0.5

1.0

1.5

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

T6
0.000

0.005

0.010

0.015

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

Thor/Theta
JPS

�

Figure 6-3: Hot traversals, small database

T2a
0.0

0.5

1.0

1.5

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

T2b
0.0

0.5

1.0

1.5

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

Thor/Theta
JPS

�

Figure 6-4: Hot traversals, small database

T1
0

5

10

15

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

�

T6
0.000

0.005

0.010

0.015

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

Thor/Theta
JPS

�

Figure 6-5: Hot traversals, medium database

T2a
0

5

10

15

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

�

T2b
0

5

10

15

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

� Thor/Theta
JPS

�

Figure 6-6: Hot traversals, medium database

50

Chapter 7

Other Persistent Java Systems

Since Java has no persistence model built into it yet, numerous efforts are under-

way to incorporate persistence into Java. This chapter provides an overview of some

of the more prominent projects. For each of the systems, we will discuss their im-

plementation approach, their persistence model, and their support for concurrency

control.

7.1 PJama

PJama [AJDS96, ADJ+96] is a persistent Java system being built by people at Sun

and the University of Glasgow.

Implementation Approach

PJama uses a modified Java interpreter to run Java programs. Since interpreted

code runs much slower than compiled code, PJama’s performance will be much worse

compared to JPS.

Moreover, PJama is an object-caching system [Ont92, LAC+96]. But as described

in section 2.2.4, JPS uses the hybrid adaptive caching technique which has been shown

to improve the performance of an OODB significantly.

Persistence Model

PJama supports persistence by reachability. It also supports garbage collection of

persistent objects.

The PJama papers do mention the problem of providing automatic persistence to

51

transient classes, which is discussed in chapter 3 of this thesis. However, they talk

about it only in the context of Thread objects. They ignore the fact that there could

be other transient classes and do not discuss any general solutions for dealing with

such classes.

Concurrency Control

PJama has transactions to support atomic updates to the stable store. But it does

not support multiple clients accessing the object store simultaneously.

7.2 Persistence Storage Engine for Java

The Persistent Storage Engine for Java (PSEJ) [PSE] is being developed by Object-

Store.

Implementation Approach

PSEJ has a novel implementation. PSEJ runs a post-processor on Java bytecodes.

This results in bytecodes that provide persistence and that can be run on any JVM.

Persistence Model

PSEJ also supports persistence by reachability. However, PSEJ does not support

garbage collection of persistent objects. Persistent objects are supposed to be explic-

itly deleted, which can lead to serious problems as discussed in section 3.1.

PSEJ classifies Java classes into three types depending on how they are post-

processed: persistence capable classes, persistence aware classes, and default classes.

Persistence capable classes are the ones whose objects can be stored persistently.

Persistence aware classes use persistence capable classes, but are themselves not per-

sistence capable. The rest of the classes, which do not need any post-processing, are

default classes.

During a transaction commit, all objects of persistence capable classes that are

reachable from the root are made persistent. If any object of a class that is not

persistence capable is found to be reachable from the root, the system throws an

exception. This design is similar to that of JPS.

52

Concurrency Control

Concurrency control in PSEJ is weak enough to render it essentially useless. One can

either lock the entire database, or run with no concurrency control at all.

PSEJ does support atomic transactions for single users. But if a transaction

aborts, only the objects that were persistent at the time of the last commit are rolled

back. The rest of the objects retain their current state.

7.3 GemStone/J

GemStone/J [Gem] is developed by GemStone.

Implementation Approach

Like PJama, GemStone/J uses a specially modified version of Sun’s JVM. It is not

clear if their modified JVM supports JIT compilation.

Persistence Model

Like the other persistent Java systems, GemStone/J provides persistence by reacha-

bility. It also supports garbage collection of persistent objects.

But it is not clear how GemStone/J deals with objects of Java classes like Threads

that cannot be made persistent automatically.

Concurrency Control

GemStone/J supports full-fledged concurrency control and transactions. However,

unlike JPS which ships objects to client machines, all objects in GemStone/J reside

only on their server machines. All the method code is executed only on the server

machines. But as discussed in section 2.2.1, the performance of such a system will not

scale well if a large number of clients simultaneously try to run methods on database

objects.

53

Chapter 8

Conclusions

In this thesis, we have presented the design, implementation and performance eval-

uation of a distributed persistent Java system called JPS. This chapter provides a

summary of the thesis. It also suggests directions for future work.

8.1 Summary

JPS is a persistent Java system built on top of the Thor object-oriented database

(OODB). JPS provides several advantages over other persistent Java systems. Un-

like most of other systems, JPS is a distributed system that allows multiple clients

to simultaneously access the object store. JPS is built to be used over a wide area

network and scales well with large databases. JPS also provides a very reliable and

highly available storage. In addition, JPS offers better performance for many impor-

tant types of workloads.

JPS Interface

Chapter 3 describes the programming model provided by JPS. One of the key issues

that arises in designing a persistent Java system is to decide what persistence services

should be provided to objects of certain Java classes like threads. It is unclear what it

means to store such objects persistently, or what it means to restore them when they

are accessed later, potentially by a different application, and potentially on a different

client machine. Therefore, we need to either provide an answer to this question, or we

need to have a way of preventing such objects from being made persistent. We chose

the later approach. However, we provide a programming model that does not impose

54

any unnecessary restrictions on the natural way of writing Java programs. Instead,

we do dynamic checking to prevent such objects from being made persistent.

Another interesting issue here is the persistence of static variables. Since these

variables are not part of any object, they would not be stored persistently in the

normal process of making objects reachable from the root persistent. JPS does not

store static variables persistently. It initialize them separately on every client machine

every time an application is run.

The complete specifications for the JPS API are presented in chapter 5.

JPS Implementation

Chapter 4 discusses the implementation of JPS. Our basic approach for running Java

programs in JPS is as follows. We first translate Java bytecodes into C code that in-

terfaces appropriately with the JPS runtime environment. We then run an optimizing

C compiler on the generated C code to produce native machine code.

Instead of writing a bytecodes-to-C translator from scratch, we made use of Toba

[PTB+97], an existing Java bytecodes-to-C translator developed at the University of

Arizona. We modified the Toba translator appropriately to make it work with our

system.

There are a number of differences between the Java object model and the Theta

object model. For example, Theta does not have static variables. The exception

model in the two languages is different. Because of the differences, the implementation

of JPS also required making some changes to the runtime system of the original

Thor/Theta system.

Performance Evaluation of JPS

Chapter 6 describes the performance evaluation of JPS. We compare JPS with the

original Thor system which has been extensively compared with other systems in

literature. We use the OO7 benchmark as our workload. Our results indicate that

for hot traversals, JPS performs between 1.1 to 1.25 times slower than the original

Thor system. This is due to a number of overheads introduced in JPS because of

using Java bytecodes. For cold traversals, the results are almost identical.

55

8.2 Future Work

8.2.1 Supporting all the Java Class Libraries

There are a number of class libraries that are part of the Java core API specifications.

Though most of the methods in these class libraries are implemented in Java itself,

there are quite a few native methods in them too. Usually, these native methods are

implemented by the JVM. But since JPS essentially replaces a JVM, these methods

have to be provided by JPS.

Unfortunately, there is an ever-growing set of class libraries and Java 1.1.6 already

has more than 500 native methods. Our current implementation supports only a small

subset of the Java class libraries. Supporting all the Java class libraries inside JPS is

left for future work.

8.2.2 Dynamic Class Loading

Currently JPS does not store code along with objects in the repository. Also, JPS

assumes a complete knowledge of the code for all the types of objects stored in the

repository. The JPS executable is created by linking the code for all such types of

objects into a single executable.

But in realistic situations, new types would be defined and added to the repository

over time. When the JPS code running on a client machine encounters such an object,

it should be able to fetch the code for that object and dynamically load it and execute

it. It will be useful to extend JPS to support this feature.

8.2.3 Translator Optimizations

The current bytecodes-to-C translator in JPS does a straight-forward translation of

bytecodes. However, it is possible to improve the translator to generate more op-

timized code. Vortex [DGC96] and Harissa [MMBC97] papers describe many such

optimizations. These optimizations can be incorporated into JPS. It would be es-

pecially interesting to study how these optimizations apply in context of persistent

programming systems.

56

Bibliography

[ADJ+96] M. P. Atkinson, L. Daynes, M. J. Jordan, T. Printezis, and S. Spence. An

orthogonally persistent java. In ACM SiGMOD Record, pages 68–75, Dec

1996. Available at http://www.sunlabs.com/research/forest/COM.Sun-

.Labs.Forest.doc.external www.papers.html.

[AGLM95] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient opti-

mistic concurrency control using loosely synchronized clocks. In ACM

SIGMOD Int. Conf. on Management of Data, 1995. Available at

ftp://ftp.pmg.lcs.mit.edu/pub/thor/occ.ps.

[AJDS96] M. P. Atkinson, M. J. Jordan, L. Daynes, and S. Spence. Design is-

sues for Persistent Java: A type-safe, object-oriented, orthogonally per-

sistent system. In Seventh International Workshop on Persistent Ob-

ject Systems (POS7), Cape May, New Jersey, USA, 1996. Available

at http://www.sunlabs.com/research/forest/COM.Sun.Labs.Forest.doc-

.external www.papers.html.

[And] Yukio Andoh. J2C. Available at ftp://ftp.webcity.co.jp/pub/andoh/java.

[BM92] A. L. Brown and R. Morrison. A generic persistent object store. In Soft-

ware Engineering Journal 7(2), pages 161–168, 1992.

[CALM97] Miguel Castro, Atul Adya, Barbara Liskov, and Andrew C. Myers. HAC:

Hybrid adaptive caching for distributed storage systems. In 16th ACM

Symposium on Operating System Principles (SOSP), Saint Malo, France,

1997. Available at ftp://ftp.pmg.lcs.mit.edu/pub/thor/hac-sosp97.ps.gz.

[CDN93] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The OO7 benchmark. In

ACM SIGMOD Int. Conf. on Management of Data, pages 12–21, Wash-

ington, DC, 1993. Available at ftp://ftp.cs.wisc.edu/OO7.

57

[CFZ94] M. Carey, M. Franklin, and M. Zaharioudakis. Fine-grained sharing in a

page server OODBMS. In ACM SIGMOD Int. Conf. on Management of

Data, Minneapolis, MN, May 1994.

[D+90] O Deux et al. The story of O2. TKDE, 2(1):91–108, March 1990.

[DGC96] J. Dean, D. Grove, and C. Chambers. Vortex: An optimizing compiler for

object-oriented languages. In Proceedings of OOPSLA, San Jose (CA),

USA, 1996. Available at www.cs.washington.edu/research/projects/cecil-

/www/Papers/papers.html.

[DKL+94] D. J. DeWitt, N. Kabra, J. Luo, J. M. Patel, and J. B. Yu. Client-server

paradise. In 20th Intl. Conf. on Very Large Data Bases (VLDB), Santi-

ago, Chile, 1994.

[DLMM94] M. Day, B. Liskov, U. Maheshwari, and A. C. Myers. References to re-

mote mobile objects in Thor. In ACM Letters on Programming Languages

and Systems (LOPLAS), pages 115–126, May 1994.

[For96] D. Ford. Jive: A Java decompiler. Technical report RJ 10022, IBM

Research Center, Yorktown Heights, May 1996.

[Gem] GemStone/J. Available at http://www.gemstone.com/products/j/main-

.html.

[Ghe95] Sanjay Ghemawat. The modified object buffer: A storage management

technique for object-oriented databases. PhD thesis, MIT Lab. for Com-

puter Science, Cambridge, MA, 1995. Available at http://www.research-

.digital.com/SRC/personal/Sanjay Ghemawat/pubs/phd-tr.ps.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Specifi-

cation. Addison-Wesley, 1996. Available at http://java.sun.com/docs-

/books/jls/html/index.html.

[Gru97] Robert Gruber. Optimism vs. Locking: A study of concurrency control

for client-server object-oriented databases. PhD thesis, MIT Lab. for

Computer Science, Cambridge, MA, 1997. Available at ftp://ftp.pmg-

.lcs.mit.edu/pub/gruber/mit-lcs-tr-708.ps.gz.

58

[JIT] The JIT Compiler Interface Specification. Available at http://java.sun-

.com/docs/jit interface.html.

[KK90] T. Kaehler and G. Krasner. LOOM – Large Object-Oriented Memory for

Smalltalk-80 Systems. Morgan Kaufmann, 1990.

[LAC+96] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Ma-

heshwari, A. C. Myers, and L. Shrira. Safe and efficient sharing of

persistent objects in Thor. In ACM SIGMOD Int. Conf. on Manage-

ment of Data, pages 318–329, Montreal, Canada, 1996. Available at

ftp://ftp.pmg.lcs.mit.edu/pub/thor/thor.ps.

[LCD+94] B. Liskov, D. Curtis, M. Day, S. Ghemawat, R. Gruber, P. Johnson, and

A. C. Myers. Theta reference manual. Programming Methodology Group

Memo 88, MIT Lab. for Computer Science, Cambridge, MA, 1994. Avail-

able at http://www.pmg.lcs.mit.edu/papers/thetaref.

[LGG+91] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba

Shrira, and Michael Williams. Replication in the Harp file system. In

13th ACM Symposium on Operating System Principles (SOSP), pages

226–238, Pacific Grove, CA, October 1991.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore

database system. In Communications of the ACM 34(10), October 1991.

[LY97] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specifica-

tion. Addison-Wesley, 1997. Available at http://www.javasoft.com/docs-

/books/vmspec/html/VMSpecTOC.doc.html.

[MBL97] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameterized

types for Java. In 24th ACM Symposium on Principles of Program-

ming Languages (POPL), pages 132–145, January 1997. Available at

ftp://ftp.pmg.lcs.mit.edu/pub/thor/popl97/popl97.html.

[MBMS95] J. C. Mogul, J. F. Barlett, R. N. Mayo, and A. Srivastava. Performance

implications of multiple pointer sizes. In USENIX 1995 Tech. Conf. on

UNIX and Advanced Computing Systems, pages 187–200, New Orleans,

LA, 1995.

59

[MMBC97] Gilles Muller, Barbara Moura, Fabrice Bellard, and Charles Consel.

Harissa: A flexible and efficient Java environment mixing bytecode and

compiled code. In Conference on Object-Oriented Technologies and Sys-

tems (COOTS), 1997. Available at http://www.irisa.fr/compose/harissa-

/coots web.ps.gz.

[Mye95] Andrew C. Myers. Bidirectional object layout for separate compila-

tion. In Proceedings of OOPSLA, pages 124–139, 1995. Available at

ftp://ftp.pmg.lcs.mit.edu/pub/thor/bidirectional/paper.html.

[Ont92] Ontos Inc., Lowell, MA. Ontos Reference Manual, 1992.

[OVU98] M. Tamer Ozsu, Kaladhar Voruganti, and Ronald C. Unrau. An asyn-

chronous avoidance-based cache consistency algorithm for client caching

dbmss. In 24th Intl. Conf. on Very Large Data Bases (VLDB), New York,

USA, 1998.

[Par98] Arvind Parthasarathi. The NetLog: An efficient, highly available, stable

storage abstraction. SM thesis, MIT Lab. for Computer Science, Cam-

bridge, MA, 1998.

[PSE] ObjectStore PSE for Java. Available at http://www.odi.com/products-

/psej.html.

[PTB+97] T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hartman, T. Newsham,

and S. A. Watterson. Toba: Java for applications, a Way Ahead of Time

(WAT) compiler, 1997. Available at http://www.cs.arizona.edu/sumatra-

/toba.

[Sea97] Seagate Technology, Inc., 1997. Available at http://www.seagate.com.

[Sha] Nik Shaylor. JCC - a Java to C converter. Available at http://www-

.geocities.com/CapeCanaveral/Hangar/4040/jcc.html.

[Sri] K. B. Sriram. Jolt. Available at http://www.sbktech.org/jolt.html.

[TPRZ84] Douglas B. Terry, Mark Painter, David W. Riggle, and Songnian Zhou.

The berkeley internet name domain server. In USENIX Association [and]

Software Tools Users Group Summer Conference, pages 23–31, Salt Lake

City, June 1984.

60

[Vli96] H. P. Van Vliet. Mocha – Java decompiler, 1996. Available at http://-

www.oriondevel.com/robraud/classinfo/mocha.html.

[WD92] S. J. White and D. J. DeWitt. A performance study of alternative object

faulting and pointer swizzling strategies. In 18th Intl. Conf. on Very Large

Data Bases (VLDB), pages 419–431, Vancouver, British Columbia, Aug

1992.

[WD94] S. J. White and D. J. DeWitt. QuickStore: A high performance mapped

object store. In ACM SIGMOD Int. Conf. on Management of Data, pages

395–406, Minneapolis, MN, May 1994.

61

