
02/20/03
11:07:07 1supplementary-memory-notes

Initial address space:
 * pages for code and globals
 * a few (empty) heap pages
 * a page for the initial stack frame

The stack is extended down automatically

The heap is extended only when the process asks for more pages
 * standard allocators (malloc/new) do this for you

How are freelists on the heap organized?

How are objects allocated?

02/20/03
11:07:07 2supplementary-memory-notes

How are objects deallocated?

What happens if the free list is empty?

Most OSes provide other mechanisms to manipulate virtual address
spaces

 * mmap(filename, addr, pages)

 * mprotect(addr, pages, protection)

02/20/03
11:07:07 3supplementary-memory-notes

You can use this to find dynamic storage bugs!

Most common bugs:
 * write off end of object
 * use-after-free
 * double-free

Less common bugs:
 * random pointer dereference
 * write off beginning of object

How can you use mmap/mprotect to detect all common bugs and many less
common ones?

* malloc

* free

* what happens for each of these?

 * write-off-end

 * use-after-free

 * double-free

What are the performance implications of this scheme?

