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1 Introduction

Exact inference on networks is often intractable due to the exponential complexity of up-
dating the posterior probabilities. Dynamic Bayesian Networks (DBNs) allow for a compact
representation of discrete time, finite state, Markov processes. However, DBNs are subject
to the inherent complexity of exact inference. Particle filtering (PF) [1] is a Sequential
Monte-Carlo based method for approximate online inference and has the desirable prop-
erty that it tends to the true distribution in the limit of infinite number of samples. While
particle filtering itself is a powerful method for online approximate inference, the variance
associated with approximating the posterior distributions is large for high-dimensional
models. Factored particle filtering (FPF) [2] aims at mitigating such high variance by
imposing a factorization of the joint distribution. The factorizations should coincide with
the natural decomposition of the physical system by exploiting weak interactions between
different random variables in the network.

In our study, this inference engine will perform monitoring against a predictive disease
surveillance application; a spatio-temporal process that makes active predictions in a pop-
ulation of individuals by tracking a particular trajectory of infectious disease diffusion
across the social network encoded by the interactions in this population. We will refer
to this predictive disease surveillance application as predictive health and disease (PHD).
Because it may be unrealistic to continuously monitor each individuals’ hidden states we
will be presented with partial observations on only a subset of individuals and must rely
on understanding the physics of disease transmission in order to make accurate predictions
under this additional uncertainty. We propose using FPF as a means to exploit the highly
observed community structure in social networks for tractable online inference. Various
structurally inspired factorizations will be explored and the accuracy of the approximate
inference will be evaluated based upon the root mean squared deviation metric. The pur-
pose of this investigation is three fold: 1 - extending PF and FPF to monitoring a particular
path of disease diffusion on a social network and 2 -exploring the effect of imposing physical



system decomposition constraints on the Bayesian Updating (Boyen-Koller factorizations),
and 3-fuse the Factored Frontier (FF) and the Boyen-Koller (BK) algorithms [2, 3| so that
the marginal posterior distributions are propagated forward in time instead of directly
updating the joint distribution.

2 Preliminaries

2.1 Dynamic Bayesian Networks (DBN)

In this report, we are interested in making online predictions of individuals’ hidden disease
state in a loosely monitored social network. Here, we will assume a state-space repre-
sentation of this discrete time, finite state, Markov Process where Z; = {Ztlk7 e ngv
and Y, = {Y;i, e ,Y;iv } represent the joint hidden and observed states, respectively, at
discrete time t;, and N is the number of individuals (we will reserve the index ¢ for contin-
uous time processes). Here, Ztik € {S,1, R}, where S represents susceptible, I represents
infected, and R represents recovered. This description of the hidden disease state Z;, is
the commonly used SIR compartmental model from epidemiology. There have been many
proposed variations on this low dimensional model of disease progression to model the
appropriate resolution of a particular disease state. Here we will allow the recovered indi-
vidual to transition back to a susceptible state, thus yielding the standard STRS model of
infectious disease state progression. The observation variables in our state-space represen-
tation, Ytl — Yik, can be vectors of various observations of an individuals’ health state,
with elements in either R? and/or Z. An example of an observation vector could be some
realization of some d dimensional continuous valued gene expression signature vector or
some clinical response categorical variable represented as an indicator function.

In this project, we will use a DBN representation of our state-space model. A DBN can
be fully specified by its two slice temporal Bayesian network (2TBN) representation. The
structure of the 2TBN includes directed edges between the nodes that may be within and
between the two time slices. A prior distribution must be assigned to the nodes in the
first slice. The priors for the observations variables are conditioned on their corresponding
hidden state, P(Y;. |Z] ), while the hidden states in slice one can either have conditional or
marginal prior distributions, 7(Z}, ), pending on any within time slice dependencies (edges)
between the hidden variables or not, respectively. The Markovian dynamic are represented
by specifying the incoming directed edges from slice one to slice two. This topology of
"between time slice” communication encodes the causal structure of the physical process
modeled by the DBN. By specifying these cross time dependencies, we must explicitly
assign a stationary transition distribution to each of the hidden nodes, P(Z; [Pa(Z] )).
Here, the parent set of Z} is Pa(Z] ) = {n(Z] ) U Z; _}, where n(Z;,) are the hidden
states, at time ?,_;, of the "neighbor” (adjacent) nodes of i in the social network. We
are now in a position to use our DBN to perform online inference. The joint transition



distribution may be written compactly as:
N
P(Z,,|2,_,) = [| P(Z],[Pa(Z})). 1)
i=1
The goal will be to use this distribution for online Bayesian updating via the Chapman-
Kolmogorov equations (predicting forward from ¢;_; and conditioning on current evidence
at tk)

P(Y,,|Z4,)
W/P(Zthtkl)ptk1(Ztk1>dztk1 (2>

and find sufficient approximations to computing the high-dimensional integrals in eq (2)
to allow for tractable online inference. We will refer to py, (Zy,) = P(Zy, [Y$*) as the joint
belief state or filtered joint distribution. It is worth noting that given the belief state
pt.(Zy, ) and the transition distribution P(Z;ys|Z¢,) (0 > 0), we can make predictions into
the future regarding the hidden infectious disease states of the individuals within our social
network via the Chapman-Kolmogorov equations.

P(Zy,|Yy5) =

2.2 The Boyen-Koller Algorithm

One well known parametric approximation to representing the filtered posterior is known
as the Boyen-Koller (BK) algorithm [4, 5]. This approximation is motivated by the idea
that some variables/sets of variables in the physical system interact weakly with each other.
The BK algorithm factorizes the joint distribution by assuming the variables form various
clusters, or subsets of variables. Denote the set of clusters, C' = {¢y,...,ck}, where each
¢; corresponds to a particular cluster. Each node i is assigned to the j cluster via the
mapping c(i) — ¢;. Therefore, the joint filtered distribution is represented as a product of
the marginals over the clusters via

® 1k ® t
P(Z,|Yi) = [] P(Zi,1Y3). (3)
ceC
By inducing factorizations indexed by ¢;, the BK algorithm is indeed a parametric approach
to inference and is sensitive to the employed clustering assignment.

At each time iteration, the filtered posterior is obtained by performing one step of Bayesian
updating, prediction and conditioning on current evidence. The BK approximation occurs
by using the current filtered posterior to perform the next round of Bayesian updating.
The prediction step is computed using an exact inference method, such as the junction
tree algorithm, and utilizes the complete structure of the DBN for updating the posterior.
Because exact inference is a subroutine of the BK algorithm, this step is subject to the
same complexity issues as any other exact inference method and therefore, becomes in-
tractable complex, interconnected models. Because exact inference is performed over the
entire structure, the resulting distribution will need to be projected down onto the clusters.
Boyen-Koller have shown that the expected error induced by continuously applying this
projection is in fact bound.



2.3 Particle Filtering

Particle filtering [1] is a sequential monte carlo based method for estimating the posterior
distribution by generating sets of particles. Like any monte carlo method, the approxima-
tion converges to the true distribution in the limit of an infinite number of samples. So
problems that have slower rate constants can accommodate more time for approximating
the true distribution.

At each time t;, a set of M particles {zgi), . zt,c } where each z is some complete
realization of the hidden variables Z,, . The ﬁltered posterior d1str1but10n is approximated
by an empirical weighted sum of these particles

P(Z| Y = Z(s Zi, —2.)) (4)

Here, §(-) is the Dirac mass function. The algorithm for employing PF on DBNs is as
follows:

1. Initialization at t, = tq:
Form =1,..., M, traverse the first slice of the 2TBN in topological order and sample
each node Z;, according to it’s prior distribution, w(Z} ) (possibly conditional if 7 has
parents in same time slice).

2. For t, > tg:

(a) Importance Sampling Step:
(m)

For m =1,..., M, initialize w;,~ = 1, traverse the 2T'BN in topological order.
For each node Zt’k,

. If Z} is unobserved, generate a sample (Z; )™ according to P(Z; |pa(Z; )™).
ii. If Z} is observed, set (z; )™equal to z{ . wgk ™ wt(k ™). (ztk|pa( ) ™).

(b) Resampling Step: Resample with replacement M particles, {zgi), . ztk } with

probability proportional to their weights wgf).

2.4 Factored Particles

As mentioned above, one drawback of employing PF for inference is the resulting high vari-
ance associated with sampling a finite number of particles in high dimensional space. Ng et
al [2] have proposed factored particles (FP) as a means of addressing this issue. FP works
on the basis of factorizing the joint distribution as in the BK algorithm so that samples
of particles are generated from lower dimensional individual clusters and therefore, have a
lower variance than representing the entire joint distribution as one cluster (as in normal
PF). The bias induced in FP is similar to that induced in the BK method. By introducing



the factorization, the resulting distribution has a difficult time capturing inter-cluster de-
pendencies. One important note is that in the limit of an infinite number of particles, FP
converges to the BK algorithm.

Let the set of K clusters be denoted by C' = {cy,...,cx} where the set of nodes associated
with the j™ cluster with N, members is Z;/ = {Zc’ ™. ZC](NC

o } For each cluster c;,

the corresponding set of M. number of partlcles is {zc o L tk } The filtered joint

posterior distribution can now be written in factored form via:

Ztk |Y?S H Z 6 oty citk) (5>

ceC Cz 1

Ng et al. have proposed three different implementations of the FP algorithm, FP1, FP2,
and FP3. FP1 and FP2 aggregate the particles via an equijoin and importance sampling
method, respectively, while FP3 propagates the factored particles forward using junction
tree, never forming complete particles. For this study, we will mainly concern ourselves

with FP2 [2].

2.5 Community Structure in Networks

Since social networks have been highly observed to exhibit strong community structure,
we would like to observe the effect of imposing these communities as factorizations in our
BK-FPF algorithm framework for tractable online inferernce. For the dialog below, we will
use the term graph and network interchangeably.

2.5.1 Modularity Based Clustering

Let G = {V,E, W} denote a weighted graph which is specified by set of nodes V, set of
edges [E and non-negative and symmetric matrix of edge weights W. Here, W the weighted
adjacency matrix that defines the topology of the graph as well as the edge weights. We
aim at finding the the decomposition of V into k disjoint sets Vy,..., Vg, i.e., V = Ule Vi
and V;NV; =0, Vi # j.

Let A, B C V. Let links(A, B) denote the total weight of edges between A and B:

links(A, B) Z Wi (6)

i€A,jEB

The links(A, B) term is also referred to in the literature as assoc(A, B) or cut(A, B), al-
though the later term is usually reserved to the case where A and B are disjoint.

The degree (or volume) of a set is simply the total weight of edges from all nodes in the set
to all nodes in the graph:
degree(A) = links(A,V). (7)



Using the degree as a normalization term one can define the linkratio by

links(A, B)

This is the proportion of edges with B among those A has. One can see that linkratio( A, A)
measures how many links remain within A itself, i.e., connection within A, and linkratio( A, V\ A)
measures how many links escape from A, connection of A with other parts of V.

Our goal is to partition the network into clusters that are highly connected sets while
minimizing the number of edges between these clusters (as in multi-class spectral clustering
[6]). A recently proposed method of clustering aims at minimizing the expected number of
edges between clusters (relative to some null graph) which is captured by the modularity,
@ [7]. This proposal leads to maximization of the k-way modularity function

links(V;, V (degree(%))Q (9)

= kmodularity(Vy, ...
Q = kmodularity(Vi, ... "k Z degree(V)

degree(V

We will obtain the clustering configuration that maximizes the modularity and use this for
our factorizations in the FPF algorithm.

2.6 Percolation Disease Dynamics

Here we propose a commonly accepted means of modeling infectious disease dynamics on
a particular contact network (e.g., social network) which is motivated from the field of
statistical physics [10]. The fundamental parameter of disease transmission from node i to
J is the per unit time probability of transmission given that ¢ is in the infectious state, ;.
If we assume that our time steps are discrete (as in our DBN framework), then if we define
the duration of infection for a node ¢ to be 7;, then the probability of disease transmission
from i to j is given by T;; = 1 — (1 — r;;)™. Likewise, for continuous time, we obtain
T;; = 1 —e7"47. The quantity r;; is a function of the strength of interaction between ¢ and
J as well as the pathogen under investigation, v. We will assume that r;; = p,w;;, where
0 < py < 1 is the propensity of transmission for pathogen v and w;;, 0 < w;; < 1, is the
strength of social interaction between i and j as defined by the weighted adjacency matrix
characterizing the degree social contact.

Assuming that percolation is a reasonably accurate model to infectious disease dynam-
ics, we should attempt to align our DBN parameters (transition distributions) with the
transmission parameters given by percolation. There are two ways for which the ;™ in-
dividual at discrete time ¢; to be infected (i.e., thk = I). The first is that the ;%
dividual has remained infected according to his/her’s individual transition distribution,
P(Z]|Z] ), or j has became infected via transmission of the virus from one of j’s neigh-
bors ’I’](j) to j. Therefore, the conditions for becoming infected via transmission may be



given by the union of events of UiEn(j){ZZk_l = I}. We can represent our previously de-
fined transmission probability between ¢ and j (i # j) in terms of a transition distribution,
. ) . I, _
P(Z1Z;, ) =Ty(Z ) =1—(1—ry) Y17 where the duration of infection, 7, has
been absorbed into I;z;  _py. This allows us to construct the transition distribution for
k—1

the 7% individual,

: . 1 o Lz —n

PZLIPa(Z))) = 5-(PUZIZE )+ 3 Ty (1= (1 =ry) ™) (10)
J ien(4)

where ®; is the partition function for this distribution and the individual disease progression

term is given by

o 1 0 0
P(Zi1Zi )=10 1-=p p
g 0 1-g¢q

We will interpret the duration of infection term, 7 (see section on percolation), to be the
the expected time to transition from I to R, i.e., E[r] = 117 (transitioning from I to R is a
geometric distribution). Equation 10 allows us to fold in the physics of disease transmission
via percolation theory to individual Markovian progression through the SIR states. This
fusion of disease transmission and progression allows us to perform online inference of the

hidden disease states of all N individuals in the network using our DBN framework.

M. E.J Newman [10] has derived a critical threshold for epidemics based upon the average
transmission probability of the disease, T, given via

7 B (11)

E[k?] — E[k]

where the the terms in the numerator and denominator are the first and second moments
of the degree distribution for the network under investigation. For average transmission
probabilities below the threshold, " < T, (T' = E[I};]) diseases outbreaks are usually
confined to local clusters on the network, whereas if T' > T, large-scale epidemics can occur
but are not necessarily guaranteed. Because the disease trajectories across the network
will potentially evolve differently for various epidemic regimes, different T’s, below, at, or
above T,., we will explore this effect on prediction accuracy and other useful metrics for
active disease prediction.

3 Implementation

3.1 Divergence Criterion

Implementation of different clustering configurations using FP, relative to the gold standard
distribution generated using PF with a large number of particles, will use a heavily modified



version of Kevin Murphy’s Bayes Net Toolbox for (BNT, http://bnt.sourceforge.net/)
8], written in MATLAB. Our metric of comparison between the gold standard and ap-
proximate filtered distributions will be the root mean squared deviation under the s
factorization, ¢f = P(Ztk|Y§§,s), relative to the gold standard, p, = P(Z,|Y{) as a
function of time, t;. The deviation from the gold standard, exact, distribution allows us
to explore a variety of approximations for an ensemble of physical processes that we will
perform online filtering against. Our factorizations will include the community structure
configuration that maximizes the modularity for our chosen matrix as well as the extreme
approximation of each node lying within a distinct cluster, i.e., fully factorized. These two
approximations will be compared against the gold standard.

3.2 Ground Truth Dynamics

The underlying infectious disease dynamics on our network (ground-truth) will be simu-
lated using a percolation model of infection coupled with a Markovian model of disease
progression (see section on percolation infectious disease dynamics). In order to explore
the effectiveness of our approximate inference algorithms to propagate information across
the network regarding disease transmission, we will observe a random m sample of individ-
uals at each iteration. Sampling all individuals will yield accurate predictions of everyone
with miniscule error divergence and neglects the realistic constraints of PHD. For deviation
studies, the different inference schemes will face the same nodes sampled, the same per-
colation dynamics, and the same random edge weights on the social network. This avoids
any bias introduced into the mean squared deviation results.

3.3 Network Under Investigation

To begin exploring the effect of using community structure as a means of factorization
for approximation inference we have decided to initially focus on one network. Since a
training set does not yet exist for the PHD application, we chose a simulated network. The
chosen network is a 35 node, random, small-world network obtained using the algorithm
defined in [9] (See figure 1). Real social networks have been shown to exhibit a structural
phenomenon known as the 'small-world effect’. This can be interpreted as relatively tight
groups of individuals that communicate to other clusters via a few individuals.



Figure 1: 35 node, random, small-world network obtained using the
Wattz and Strogatz algorithm

4 Results and Discussion

4.1 Divergence of Proposed Distributions

Here, we present the results of the mean squared deviation (mean squared error) between
the gold-standard distribution p;, and the two approximate distributions qtlk and qtzk, fac-
torizations from modularity based clustering and fully-factorized clustering, respectively
(Figure 2). The gold standard distribution, p;, , was computed using PF with 10,000 par-
ticles per time slice with 5 re-runs of these 10,000 particles, resulting in an average over
these 5 re-runs (further sampling of state-space). The modularity clustering factorization
distribution, qtlk, was computed using 1,000 particles per cluster averaged over 5 re-runs
per time slice while the fully-factorized distribution qfk was determined using 100 particles
per cluster with the same number of re-runs. All three of these distributions tracked the
same ground truth percolation trajectory for a period of 35 time iterations.

At each time slice there were 15 randomly observed nodes that were the same for these
three distributions. The propensity of disease transmission, p., was taken to be equal to
0.7 (see percolation section). This resulted in the same probability rate of transmission, r;;
across the three distributions. Our expected 7 (expected time to transition from infectious
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Figure 2: Root Mean Square Deviation, fully factorized modularity based

to recovered) was set to be 4. The critical average transmission probability, T, for this
particular network was 0.2651 whereas the average transmission probability, given the pa-
rameters specified above, was 0.7150, well above the epidemic threshold. This was designed
to produce a non-trivial (global) epidemic that affected majority of the population.

4.2 Prediction Error Surface

Fiaw Prediction Accuracy Data for 35 Node Nebwork Under Fully-Factored Clustering
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Figure 3: Prediction Error Surface, sample subset size 10, fully factorized



11

Baw Prediction Accuracy Data for 35 Mode Mebwork Under Mo dulanty Clustering

Leae,

0.8 -]

c

a i

2 :

2 e

ED.S-, ;

: o

- Vo oawE 3

E 04 e

5 z

5

z 02 .

ey + raw prediction data
+ average prediction data | ...-770

0.4

Fraction of Individuals Infected Ayerage Transmission Probahilty, T

Figure 4: Prediction Error Surface, sample subset size 15, modularity

based
Raw Prediction Accuracy Data for 35 Node Metwork Under Fully-Factored Clusteing
j
0.8

c
a
2
R
B 0.6 -
o
T
04
2
2
g .
Tpr e

+  raw prediction data

+  average prediction data | .

Fraction of Individuals Infected

Average Transmission Probability, T

Figure 5: Prediction Error Surface, sample subset size 20, fully factorized

Here, we present prediction error surfaces for fully-factorized clustering and optimal-
modularity based clustering methods. These surfaces are made using the raw prediction
accuracy data for the 35-node network, given the clustering method. Prediction accuracy
is plotted against fraction of individuals infected and average transmission probability.
Figure 3, 5, and 7 show prediction error surfaces for varying sample subset sizes of fully
factorized clustering. We see in these figures that prediction accuracy increases with in-
creasing transmission probability, but tends to decrease with increasing fraction of infected
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Figure 7: Prediction Error Surface, sample subset size 30, fully factorized

individuals. This pattern is apparent in all three graphs based on fully-factorized cluster-
ing. However, as we increase the sample subset size, the sample variance inherent in the
data increases while bias is observed to decrese.

Using average prediction data (denoted in red), as opposed to the raw prediction data
(denoted in blue) results in an attenuation effect. The trends apparent in the data are
lost because of the general stability of the averages across both the fraction of infividuals
affected and the average transmission probability.
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As seen in Figure 4 and 6, prediction accuracies are not drastically different for optimal-
modularity based clustering. However, we observe a tighter distribution meaning a smaller
sample variance. Average prediction data, again, fails to represent the overall patterns in
the surface.

5 Future Work

Given that the inference algorithms explained throughout this report have been written
in matlab, we would like to extend these algorithms into C++4 for its greater speed and
low-level memory allocation features. This will allow much faster inference which will result
in gathering better statistics and extracting useful insight to this problem. By migrating
to C++, we will be able to transition to much larger social networks, i.e., on the order of
hundreds to thousands of nodes. At this scale, true community structure becomes apparent
whereas in 35 individuals, it may simply be a fully-connected graph. We would have much
rather explored the former, but under the constraints of matlab, were confined to smaller
models. Given a larger model, we anticipate having the ability to implement control and
intervention strategies that aim at suppressing a particular epidemic by taking action, i.e.,
quarantining individuals, vaccinating them, or other possible strategies. Also, when scaling
the size of the population, we are confronted with the problem of having to sample a very
small subset of the population. This leads us to the problem of adaptive, of information
driven, sampling strategies (given a current belief of the state at time t;, who(m) to sample
at time fx,1). These issues will be addressed in future work.
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