UNCONSTRAINED OPTIMIZATION
An inconstrained optimization problem has the form
min
$$f(x)$$

 $x \in \mathbb{R}^{d}$
where $f: \mathbb{R}^{d} \to \mathbb{R}$ is called the objective function.
A point $x^{x} \in \mathbb{R}^{d}$ is called a local minimizer ib
 $\exists r > 0$ such that $f(x^{x}) = f(x)$ $\forall x$
 $satisfying ||x - x^{*}|| < r. x^{x}$ is called a global
minimizer if $f(x) = f(x)$ $\forall x \in \mathbb{R}^{d}$.

First and Second Order Necessary Conditions
Given a function $f:\mathbb{R}^{d} \to \mathbb{R}$, the gradient and Heavier
 $g f at x = [x, \dots, x_{J}]^{T} \in \mathbb{R}^{d}$ are above by
 $\nabla f(x) = \begin{bmatrix} \frac{2f(x)}{2x_{J}} \\ \vdots \\ \frac{2f(x)}{2x_{J}} \end{bmatrix}$ and $\nabla^{2}f(x) = \begin{bmatrix} \frac{2^{2}f(x)}{2x_{J}} \\ \cdots \\ \frac{2^{2}f(x)}{2x_{J}} \\ \cdots \\ \frac{2^{2}f(x)}{2x_{J}} \end{bmatrix}$.

Lecture Notes Page 1

We say f is differentiable if
$$\nabla f(x)$$
 exists $\forall x \in \mathbb{R}^d$, and
twice differentiable if $\nabla^2 f(x)$ exists $\forall x \in \mathbb{R}^d$. We say
f is twice continuously differentiable if it is twice differentiable
and all b the second derivatives are continuous. If f is
twice continuously differentiable, then $\nabla^2 f(x)$ is symmetric $\forall x$,
i.e.,
 $\frac{\partial f(x)}{\partial \tau_i \partial r_j} = \frac{\partial f(r)}{\partial \tau_j \partial r_i}$ $\forall x \in \mathbb{R}^d$,
 $\forall ij = 1,..., d$
Property 1 If f is differentiable and x^* is a local
minimizer of f, then $\nabla f(x^*) = 0$.
 $\int f(x)$
 x^*
Proof Define the scalar values function $p(t) = f(x^* + yt)$,
use ye \mathbb{R}^d is existing. Then
 $q'(0) = \lim_{t \to 0} \frac{f(x^* + yt) - f(x^*)}{t}$ and d is differentiable
 d is differentiable for the scalar values function $p(t) = f(x^* + yt)$,
 d is existence in $f(x^* + yt) - f(x^*)$ and d is differentiable

Lecture Notes Page 2

$$= \langle \nabla f(\mathbf{x}^{\mathbf{x}}), \mathbf{y} \rangle \qquad [abain rule]$$

Since $\mathbf{x}^{\mathbf{x}}$ is a local min, we know
 $f(\mathbf{x}^{\mathbf{x}} + \mathbf{y}^{\mathbf{y}}) \ge f(\mathbf{x}^{\mathbf{x}})$
for t sufficiently small. Therefore $\langle \nabla f(\mathbf{x}^{\mathbf{x}}), \mathbf{y} \rangle \ge 0$.
Now choose $\mathbf{y} = -\nabla f(\mathbf{x}^{\mathbf{x}})$. Then
 $0 \le \langle \nabla f(\mathbf{x}^{\mathbf{x}}), -\nabla f(\mathbf{x}^{\mathbf{x}}) \rangle = - \| \nabla f(\mathbf{x}) \|^{2} \le 0$,
so we must have $\nabla f(\mathbf{x}^{\mathbf{x}}) = 0$.
Property 2] If f is twice continuously differentiable and
 $\mathbf{x}^{\mathbf{x}}$ is a local min, then $\nabla^{2}f(\mathbf{x})$ is positive semi-definite,
i.e., $\mathbf{z}^{\mathrm{T}} \nabla^{2}f(\mathbf{x}^{\mathbf{x}}) \mathbf{z} \ge 0$ $\forall \mathbf{z} \in \mathbb{R}^{d}$.
Prove the problem
This result generalizes the result from single-variable calculus that
the second derivative is moregeneric at a local min.

A ll-les a local missil

com't be a local min!

Exercise Give an example of a function f such that $\nabla^2 f(x^*)$ is positive semi-definite at some x^* , but x^* is not a local minimizer.

$$\begin{array}{c} \hline Convexity \\ \hline \\ We say f is convex if \\ f(tx + (1-t)y) &= tf(x) + (1-t)f(y) \\ \forall x, y \in \mathbb{R}^d \text{ and } t \in \mathbb{D}_{\mathbb{P}^2}. \quad We say f is strictly \\ \hline \\ convex if \\ f(tx + (1-t)y) &< tf(x) + (1-t)f(y) \\ \forall x \neq y \text{ and } t \in (0,1). \end{array}$$

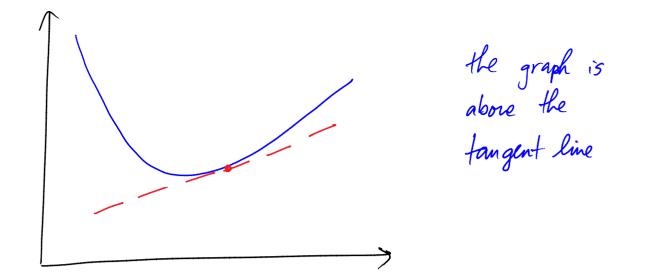
$$\begin{array}{c} \\ f(x) = - f(y) & \text{is above} \\ f(x) = - f(y) & \text{graph} \end{array}$$

$$\frac{f(x)}{x} = \frac{f(x)}{y}$$

Exercise Give an example of a function that is convex but not strictly convex.
If f is convex, the problem of minimizing f becomes easier to understand. Let's look at some basic properties.
Property 3 | If f is convex, then every local min is a global min.
Proof Suppose x^{+} is a local min but not a global men.
Then $\exists y^{+} \in \mathbb{R}^{d}$ s.t. $f(y^{+}) = f(x^{+})$. By convexity,
 $\forall + c [D_{1})$ we have
 $f(tx^{+} + (1-t)y^{+}) = tf(x^{+}) + (1-t)f(y^{+})$
 $= tf(x^{+}) + (1-t)f(x^{+})$

Taking t = 1, the above strict inequality contradicts local minimality of x^* . Thus x^* is a global min.

Property 4 If f is strictly convex, then f has at most
one global min.
Proof Homework
Exercise Give an example of f that is
• convex and has more than one global min
• strictly convex and has no global min
The following is a first-order characterization of convexity.
Property 5 Suppose
$$f: \mathbb{R}^d \longrightarrow \mathbb{R}$$
 is differentiable.
Then f is convex iff $\forall x, y \in \mathbb{R}^d$,
 $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$.
Similarly, f is strictly convex iff $\forall x \ne y$,
 $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$.



 $\frac{\operatorname{Proof}}{\operatorname{First}}, \text{ assume } x \text{ is convex. For any } x, y \in \mathbb{R}^d, t \in \mathbb{D}, \mathbb{I},$ $f(ty + (1-t)x) \leq tf(y) + (1-t)f(x)$ = f(x) + t(f(y) - f(x)).

Rearranging, $\frac{f(x + t(y-x)) - f(x)}{t} \leq f(y) - f(x).$ The limit of the LHS is a directional derivative and equal to $\langle \nabla f(x), y-x \rangle$ by the chain rule. Therefore $f(y) \geq f(x) + \langle \nabla f(x), y-x \rangle$. Now suppose conversely that $\forall x, y$

Now suppose conversely that
$$vx_{i}y$$

 $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$.
Let $x_{i}y \in \mathbb{R}^{d}$ and $t \in [a, i]$. Denote $z = tx + (i - t)g$.
Applying \oint twice, we have
 $f(x) \ge f(z) + \langle \nabla f(z), x - z \rangle$
 $f(y) \ge f(z) + \langle \nabla f(z), y - 2 \rangle$.
Now multiply \bigotimes by t , \bigotimes by $1 - t$, and add:

 $f(x) + (1-t)f(y) \ge f(z) + \langle \nabla f(z), tx + (1-t)y - z \rangle$

= f(tx + (1-t)y).This establishes convexity. The proof of the second statement (strict convexity) 15 similar. VIL For convex and differentiable f, the first order necessary condition is also sufficient. Property 6 Let f be convex and continuously differentiable.

Then
$$x^*$$
 is a global min iff $\nabla f(x^*) = 0$.
Prod The forward implication follows from Property 1.
The reverse implication follows immediately from Property 5.
There is also a second-order characterization of convexity.
Property 7 Let f be twice continuously differentiable. Then
(a) f is convex $\iff \nabla^2 f(x)$ is positive
semi-definite $\forall x \in \mathbb{R}^d$
(b) f is strictly convex $\iff \nabla^2 f(x)$ is positive
definite $\forall x \in \mathbb{R}^d$
Prof Part (a) is a homework problem. Part (b) follows
similarly:
Exercise Give an example of an f that is strictly convex
but for which $\nabla^2 f(x)$ is not positive-definite $\forall x$.