K-MEANS

[Clustering]

Let $x_1,...,x_n \in \mathbb{R}^d$. Clustering is the following problem: Partition $\{x_1,...,x_n\}$ into disjoint subsets called <u>clusters</u> such that points in the same cluster are more similar to each other than to points in other clusters.

A dustering can be represented by a cluster map, which is a function

 $C: \{1,2,...,n\} \longrightarrow \{1,2,...,k\}$ where k is the number of clusters.

k-Means Criterion

The k-means criterion is to choose C to minimize $W(c) = \sum_{l=1}^{k} \sum_{i: C(t)=l} \|x_i - \overline{x}_{\ell}\|^2$

where

$$\bar{x}_{\ell} = \int_{N_{\ell}} \sum_{j: C(j) = \ell} x_{j}$$

$$n_{\ell} = \# \{i : C(i) = \ell \}$$

Note that I is assumed fixed and known.

W(c) is sometimes called the within class scatter, because it can be shown that

 $W(c) = \frac{1}{2} \sum_{l=1}^{k} \sum_{i: C(i)=l} \left[\frac{1}{n_l} \sum_{j: C(j)=l} \|x_i - x_j\|^2 \right]$

Average dissimilarity to points in same cluster

Most clustering algorithms can be viewed as optimizing some measure of (dis) similarity.

Establishing & is an exercise in algebra. First observe that for any I

 $\begin{aligned} \| \chi_{i} - \chi_{j} \|^{2} &= \| (\chi_{i} - \overline{\chi}_{k}) - (\chi_{j} - \overline{\chi}_{k}) \|^{2} \\ &= \langle (\chi_{i} - \overline{\chi}_{k}) - (\chi_{j} - \overline{\chi}_{k}), (\chi_{i} - \overline{\chi}_{k}) - (\chi_{j} - \overline{\chi}_{k}) \rangle \\ &= \| \chi_{i} - \overline{\chi}_{k} \|^{2} - 2 \langle \chi_{i} - \overline{\chi}_{k}, \chi_{j} - \overline{\chi}_{k} \rangle \\ &+ \| \chi_{i} - \overline{\chi}_{k} \|^{2}. \end{aligned}$

$$\frac{1}{2} \sum_{i:(li)=k} \sum_{k} \left[\frac{1}{n_{k}} \sum_{j:(lj)=k} \|x_{i} - x_{j}\|^{2} \right] \\
= \frac{1}{2} \sum_{k=1}^{k} \frac{1}{n_{k}} \left[\sum_{i:(li)=k} \sum_{j:(lj)=k} \|x_{i} - \bar{x}_{k}\|^{2} \\
-2 \sum_{i:(li)=k} \sum_{j:(lj)=k} (x_{i} - \bar{x}_{k})^{T} (x_{j} - \bar{x}_{k}) \right] \\
= \frac{1}{2} \sum_{k=1}^{k} \frac{1}{n_{k}} \left[\sum_{i:(li)=k} \|x_{i} - \bar{x}_{k}\|^{2} \right] \\
= \frac{1}{2} \sum_{k=1}^{k} \frac{1}{n_{k}} \left[\sum_{i:(li)=k} \|x_{i} - \bar{x}_{k}\|^{2} \right] \\
+ \sum_{j:(li)=k} \|x_{j} - \bar{x}_{k}\|^{2} \\
= W(c).$$

K-Means Algorithm

Minimizing the k-means criterion is a combinatorial optimization problem. The number of possible cluster maps C is

There is no known effecient search strategy for this space of functions. Therefore we must resort to an iterative, suboptimal algorithm.

Recall we need to some
$$C^* = \underset{C}{\text{arg min}} \sum_{l=1}^{K} \sum_{i:C(i)=l} \|x_i - \overline{x}_l\|^2$$

Now notice that

$$\overline{\chi}_{l} = \underset{M_{Q} \in |\mathbb{R}^{d}}{\text{arg min}} \quad \sum_{\substack{||\chi_{i} - M_{Q}||^{2}, \\ ||\chi_{i} - M_{Q}||^{2}, \\ ||\chi_{i} - M_{Q}||^{2}}} \|\chi_{i} - M_{Q}\|_{2}^{2},$$
which can be seen by writing
$$\sum_{i} ||\chi_{i} - M_{Q}||^{2} = \sum_{i} ||\chi_{i} - \overline{\chi}_{Q}| + |\overline{\chi}_{Q} - M_{Q}||^{2}$$

$$= \sum_{i} ||\chi_{i} - \overline{\chi}_{Q}||^{2} + 2 \sum_{i} (|\chi_{i} - \overline{\chi}_{Q}|)^{T} (|\overline{\chi}_{Q} - M_{Q}|)$$

independent of Me = 0

+
$$\sum_{i} || \bar{\chi}_{\ell} - m_{k}||^{2}$$

optimized by choosing $m_{\ell} = \bar{\chi}_{\ell}$

Therefore, if we define

$$W(C, \{m_{\ell}\}_{\ell=1}^{k}) = \sum_{\ell=1}^{k} \sum_{i: C(i)=\ell} ||\chi_{i} - m_{\ell}||^{2},$$

ne have

$$C^* = arg min W(C, \{m_k\}_{k=1}^k).$$

$$C, \{m_k\}_{k=1}^k$$

This suggests an iterative, alternating algorithm:

- · Given C, aptimize W(C, 8m23) wirt. Sme 3
- · Given {mk3, optimize W(C, {mx3) w.r.t C

This is the k-means algorithm:

Initialize $M_{1,...,M_{k}} \in \mathbb{R}^{d}$

Repeat

For
$$i = 1,...,n$$

$$C(i) = \underset{\ell}{\text{arg min}} \| \chi_i - M_{\ell} \|$$

0

End

For l=1,...,k

 $M_{\ell} = \frac{1}{\left| \left\{ i : C(i) = 1 \right\} \right| i : C(i) = \ell} \chi_{i}$

End

Until clusters don't change

This algorithm is also known as Lloyd's algorithm or the Lloyd-Max algorithm. The same algorithm is used in the problem of quantization.

Initialization

The k-means algorithm is highly dependent on initialization. One common strategy is to initialize M1,..., mk to be randomly chosen data points. It is also common to run the algorithm several times with different initializations, and take the run with smallest W(C).

Unfortunately, random initialization has some problems.

. The number of iterations can be quite large in the worst case

. 11 . 0 0.0 0 1.1/1 22 he amile

for from the optimal one.

A better idea is to choose the initial M1,..., Mx to be for apart. A particular implementation of this idea, with guaranteed performance relative to the optimum, is called k-means ++:

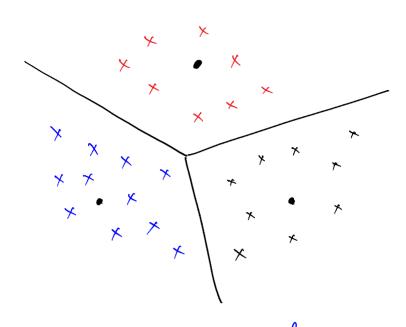
- 1. Choose the first cluster center m, at random from among $x_1,...,x_n$
 - 2. For each $x \in \{x_1, ..., x_n\}$, compute D(x), the distance from x to the nearest cluster center that has been selected.
 - 3. Choose one new data point x at random as a new cluster certer, with probability proportional to $D(x)^2$.
 - 4. Repent steps 2-3 until k centes have been selected

For more on k-means++, see the original paper by Arthur and Vassilvitskii (2007).

Cluster Geometry

Clusters are "nement neighbor" regions or Voronoi cells

defined with respect to the cluster centers. Therefore the cluster boundaries are piecewise linear, and the cluster are convex sets.



k-means will fail to identify the true clusters if at least one of them is nonconvex. k-means can be kernelized to accommodate nonconvex clusters.

Model Selection

from should k be chosen? Let \hat{C}_k denote the output of k-means. One simple heuristic is to plot $W(\hat{C}_k)$ as a function of k. $V(\hat{C}_k)$.

The basic idea is that if k* is the ideal cluster number, then

· If $k < k^*$, $W(\hat{c}_k) - W(\hat{c}_{kn})$ will be relatively large

. If $k \ge k^*$, $W(\hat{C}_k) - W(\hat{C}_{k+1})$ will be relatively small

This suggests aboving k near the "knee" of the curve.

A more systematic wethood was developed by Kulis and Jordan in their paper "Revisiting k-means" (2007).

They ruggest optimizing the following objective with respect to both C and k:

 $\sum_{l=1}^{k} \sum_{i: C(i)=l} ||\chi_i - \overline{\chi_l}||^2 + \lambda k.$

where I is a tradeaff parameter. This criterion

is derived from a nonparametric Bayesian perspective, and can be optimized (suboptimally) by a variant of the k-means algorithm.