MULTIDIMENSIONAL SCALING

MDS Tuesday, October 28, 2014 3:39 PM

such that
$$d_{ij} = ||\chi_i - \chi_j||$$
.
Applications of Euclidean embedding include:
1. Dimensionality reduction
2. Visualization
3. Extend algorithms to non-Euclidean data
Euclidean embeddings don't always exist (dissimilarities
well not satisfy the triangle inequality), or the minimum p
might be larger than derived. Therefore, approximate
solutions are also of interest.
Euclidean Distance Matrices
An n x n matrix D is called a Euclidean distance
matrix if these exist p and $\chi_{ij}...,\chi_n \in \mathbb{R}^p$ s.t.
 $d_{ij} = ||\chi_i - \chi_j||$ $\forall ij$.
Theorem Let D be an n x n distinilarity matrix.
Set $B = HAH$ where
 $A = [q_{ij}], \quad q_{ij} = -\frac{1}{2}d_{ij}^2$

$$H = I - \frac{1}{n} I I^{T}$$
Then D is a Euclidean distance matrix iff
B is positive semi-definite. If B is PSD
with positive eigenvalues $\lambda_{1} > \lambda_{2} > \dots > \lambda_{n}$
and corresponding eigenvectors
 $u_{1} = \begin{bmatrix} u_{11} \\ \vdots \\ u_{1n} \end{bmatrix}, \dots, u_{p} = \begin{bmatrix} u_{p1} \\ \vdots \\ u_{pn} \end{bmatrix}$
wrimaliged such that
 $u_{k} u_{k} = \lambda_{k}$,
then the vectors
 $x_{i} = (u_{1i}, \dots, u_{pi})$
satisfy $d_{ij} = [1 \times i - \times j]!$. In addition
 $\overline{X} = \frac{1}{n} \leq \overline{X}_{i} = 0$.

-

Proof See Mardia, Kent, and Bibby, Multianist
Analysis, 1979

Classical MDS
Even if a Euclidean distance matrix does not exist,
the previous result suggests on approximate algorithm
known as classical MDS.

Import: D, desired
$$p \equiv n$$

1. Form B as in the theorem
2. Compute the signwalke decomposition
 $B = VAVT$
where $V = [v_1 - v_n]$, $\Lambda = diag(A_{1}, ..., \lambda_n)$
3. Set $m_k = VA_k v_k$, $U = [m_1 - m_p]$
Return: $\chi_i = ith$ row of U
Note that the algorithm can only be applied of $\lambda_p = 0$.
If the dissimilarities are themselves Euclidean distances

the rank ordering of the interpoint distances.