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1 Introduction

Let (Xi, Yi), i = 1, . . . , n be i.i.d. with distribution PXY . Recall that PXY is a distribution on X × Y. Let
Y = {0, 1} and define a set of classifiers H ⊂ {0, 1}X . A natural choice for a learning algorithm is empirical
risk minimization (ERM)

ĥn = arg min
h∈H

R̂n(h)

where R̂n(h) := 1
n

∑n
i=1 1{h(Xi) 6=Yi}. An important question is how close is R(ĥn) to R∗H := infh∈HR(h).

This will be explored in the following sections.

2 Uniform Deviation Bounds

Previously we saw that for any fixed h (not dependent on data)

Pr
(
|R̂n(h)−R(h)| ≥ ε

)
≤ δ

where δ = 2e−2nε2 . Since we don’t know ĥn a priori, we will look for a uniform deviation bound (UDB),
which has the form

Pr
(

sup
h∈H
|R̂n(h)−R(h)| ≥ ε

)
≤ δ. (1)

Note that in this case the random quantity is the training data. Consider as a first example the case where
|H| <∞.

Proposition 1. Assume |H| <∞. Then

Pr
(

sup
h∈H
|R̂n(h)−R(h)| ≥ ε

)
≤ 2|H|e−2nε2 .

Proof. Let Ωε(h) ⊆ (X × Y)n be the event that |R̂n(h)−R(h)| ≥ ε. Let Ωε = ∪h∈HΩε(h). Then

Pr
(

sup
h∈H
|R̂n(h)−R(h)| ≥ ε

)
= Pr(Ωε)

≤
∑
h∈H

Pr(Ωε(h))

≤
∑
h∈H

2e−2nε2

= 2|H|e−2nε2 .
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A key point is that the result is distribution free, i.e., it requires no assumptions on PXY . A UDB let’s
us bound the performance of ERM.

Proposition 2. Suppose H satisfies (1). Then with probability at least 1− δ

R(ĥn) ≤ R∗H + 2ε.

Proof. Let Ωε be the event that suph∈H |R̂n(h)−R(h)| ≥ ε. By assumption, Pr(Ωε) ≤ δ. Let h ∈ H be any
classifier. Then on Ωcε we have

R(ĥn) ≤ R̂n(ĥn) + ε

≤ R̂n(h) + ε

≤ R(h) + 2ε,

where the second step follows from the definition of ERM. Note that the choice of h ∈ H was arbitrary, so
R(ĥn) ≤ R∗H + 2ε.

Remark. Note that the above proof assumes the existence of an empirical risk minimizer. For finite H, this
is guaranteed. For infinite H, however, the existence of an empirical risk minimizer needs to be checked. If
a minimizer does not exist, one can modify the above argument by taking ĥn to come within τ > 0 of the
infimum of the empirical risk, where τ may be arbitrarily small.

Remark. Note that as an intermediate result we established the non-probabilistic statment

R(ĥn)−R∗H ≤ 2 sup
h∈H
|R̂n(h)−R(h)|.

Corollary 1. If H is finite, then

Pr
(
R(ĥn) ≥ R∗H + ε

)
≤ 2|H|e−nε

2/2︸ ︷︷ ︸
δ

.

(Note that the term 2ε was replaced by ε.) Equivalently, with probability at least 1− δ

R(ĥn) ≤ R∗H +

√
2 [log |H|+ log(2/δ)]

n
.

3 Histogram Classifier

Let X = [0, 1]d, k ≥ 1, k ∈ Z. Let Hk be the set of classifiers that are piecewise constant on regular partitions
of X into hypercubes of sidelength 1/k. Note that ĥn(x) is the majority vote in each cell. An example of
one such classifier can be seen in Figure 1. With the given parameters, we have

|Hk| = 2k
d

.

Then with probability at least 1− δ

R(ĥn) ≤ R∗H +

√
2 [kd log(2) + log(2/δ)]

n
.
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Figure 1: Example histogram classifier where the white squares represent class 0 and the red squares class
1. In this case, d = 2 and k = 6. ERM assigns labels to cells by a majority vote of data points Xi in each
cell.

4 PAC Learning & Sample Complexity

Definition 1. We say ĥn is an (ε, δ)-learning algorithm for H if there exists a function N(ε, δ) such that
∀ε, δ > 0

n ≥ N(ε, δ)⇒ Pr
(
R(ĥn)−R∗H ≥ ε

)
≤ δ.

Terminology:

• N(ε, δ) is called the sample complexity

• H is said to be uniformly learnable

• ĥn is probably approximately correct (PAC)

For finite H, we have δ = 2|H|e−nε2/2. Solving for n,

N(ε, δ) =
2 log 2|H|

δ

ε2
.

Therefore H is uniformly learnable and ERM is PAC.

5 Zero Error Case

If R̂n(ĥn) = 0, we can obtain a tighter bound.

Proposition 3. Let |H| <∞. Then

Pr
(
∃h ∈ H : R̂n(h) = 0, R(h) ≥ ε

)
≤ |H|e−nε︸ ︷︷ ︸

δ

i.e., with probability at least 1− δ, if R̂n(h) = 0, then R(h) ≤ log |H|+log(1/δ)
n .

Proof. Let Ω0(h) = {R̂n(h) = 0} and Ωε = ∪h:R(h)≥ε Ω0(h). Then for any h such that R(h) ≥ ε

Pr (Ω0(h)) ≤ (1− ε)n

= en log(1−ε)

≤ e−nε
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where we used log(1− ε) ≤ −ε. Therefore

Pr (Ωε) ≤
∑

h:R(h)≥ε

e−nε

≤ |H|e−nε.

Exercises

1. The probability of error is not the only performance measure for binary classification. Indeed, the
probability of error depends on the prior probability of the class label Y , and it may be that the
frequency of the classes changes from training to testing data. In such cases, it is desirable to have
a performance measure that does not require knowledge of the prior class probability. Let Py be the
class conditional distribution of class y, y = 0, 1. For y = 0, 1 define Ry(h) := Py(h(X) 6= y). Also let
α ∈ (0, 1). For H ⊂ {0, 1}X define

R∗H,1 = inf
h∈H

R1(h)

s.t. R0(h) ≤ α.

In this problem you will investigate a discrimination rule that is probably approximately correct with
respect to the above criterion, which is sometimes called the Neyman-Pearson criterion based on
connections to the Neyman-Pearson lemma in hypothesis testing.

Suppose we observe Xy
1 , . . . , X

y
ny

iid∼ Py for y = 0, 1. Define the empirical errors

R̂y(h) =
1
ny

ny∑
i=1

1{h(Xy
i )6=y}.

Fix ε > 0 and consider the discrimination rule

ĥn = arg min
h∈H

R̂1(h)

s.t. R̂0(h) ≤ α+
ε

2
.

Suppose H is finite. Show that with high probability

R0(ĥn) ≤ α+ ε and R1(ĥn) ≤ R∗H,1 + ε.


