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1 Introduction

Let’s say we are given training data {(Xi, Yi)}ni=1 which are drawn from X × Y independently from the
distribution PXY , and a set of classifiers H. In the previous lecture, we saw that performance guarantees for
empirical risk minimization over H follow from uniform deviation bounds of the form

Pr
(

sup
h∈H

∣∣∣R̂n(h)−R(h)
∣∣∣ ≥ ε) ≤ δ

where R̂n(h) := 1
n

∑n
i=1 1{h(Xi)6=Yi} is the empirical risk and R(h) is the true risk. We also established

such a bound for finite H. In these notes we turn our attention to the setting where H is infinite, and
possibly uncountable. This will lead us to an interesting notion of the capacity of H known as the Vapnik-
Chervonenkis dimension.

2 VC Theorem

Let H ⊆ {0, 1}X . For x1, x2, . . . , xn ∈ X denote

NH(x1, . . . , xn) := |{(h(x1), . . . , h(xn)) : h ∈ H}|

Clearly NH(x1, . . . , xn) ≤ 2n. The nth shatter coefficient is defined as

SH(n) =: max
x1,...,xn∈X

NH(x1, . . . , xn)

If SH(n) = 2n, then ∃ x1, . . . , xn such that

NH(x1, . . . , xn) = 2n

and we say that H shatters x1, . . . , xn.

Note. The shatter coefficient is sometimes called the growth function in the literature.

The VC dimension of H is defined as

VH := max {n | SH(n) = 2n} .

If SH(n) = 2n ∀n then VH :=∞.

Remark. To show VH = V we must show that there exists at least one set of points x1, . . . , xn that can be
shattered by H, and that no set of n+ 1 points can be shattered by H.

The VC dimension and the shatter coefficient relate to the following uniform deviation bound.
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Theorem 1. For any n ≥ 1 and ε > 0

Pr
(

sup
h∈H

∣∣∣R̂n(h)−R(h)
∣∣∣ ≥ ε) ≤ 8SH(n)e−nε

2/32. (1)

where the probability is with respect to the draw of the training data.

We will show below that SH(n) ≤ (n+1)VH . Therefore if VH is finite then the right hand side of equation
(1) is dominated by the exponential and will go to zero as n→∞. Similar to the case |H| <∞ we also have
a performance guarantee for ERM when VH <∞.

Corollary 1. If ĥn is an empirical risk minimizer (ERM) over H then

Pr
(
R(ĥn)−R∗H ≥ ε

)
≤ 8SH(n)e−nε

2/128,

where the probability is with respect to the draw of the training data. Equivalently, with probability greater
than 1− δ

R(ĥn) ≤ R∗H +

√
128[log( 8SH(n)

δ )]
n

≤ R∗H +

√
128[VH log(n+ 1) + log( 8

δ )]
n

.

Proof. Follows from Theorem 1 using an argument like that when |H| <∞.

Corollary 2. If VH <∞ then H is uniformly learnable by ERM.

The version of the VC inequality given in Theorem 1 is proved in [1]. That reference also contains a
broader discussion of VC theory than is presented here. We will prove the VC inequality later (with perhaps
different constants) after discussing Rademacher complexity.

2.1 VC Classes

A VC class is a set of classifiers H with VH < ∞. We will now consider some examples of H for which VH
can be established or at least bounded.

Example. Consider the set of classifiers

H =

{
1{x∈R}

∣∣∣∣R =
d∏
i=1

[ai, bi], ai < bi

}
.

Let d = 1. Given one point, we can always assign it a one or a zero. Therefore VH > 1. For two
points there are four possible assignments and they can be shattered using H. However, given 3 points, the
following assignment cannot be realized by any h ∈ H. Therefore NH(x1, . . . , xn) < 8, and so VH = 2.

Figure 1: This classification does not belong to NH(x1, . . . , xn) when d=1

For d = 2, the four points in Fig. 2 can be shattered by H. Therefore VH is at least 4. For n = 5,
there is a maximum and minimum point in each dimension. Consider a set of ≤ 4 points achieving these
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Figure 2: Four point shattered
when d = 2

Figure 3: No five points can be
shattered when d = 2

extrema. Now there exists at least 1 point not among these four. If it is in the interior of the bounding
rectangle, it cannot be labeled 0 while the others are labeled 1 (see Figure 3). If it is on the boundary of the
bounding rectangle, it cannot be assigned a different label from the other point achieving the same face of
the boundary. Therefore VH = 4.

In general, for dimension d, H can shatter the 2d points

(±1, 0, . . . , 0)
(0,±1, . . . , 0)

...
(0, 0, . . . ,±1)

and it cannot shatter any 2d+ 1 points by an argument like that when d = 2. Therefore VH = 2d.

Example. Let X = R2. Consider the set of classifiers

H =
{
1{x∈C}

∣∣C is convex in R2
}
.

For any n, consider n points on a circle. Regardless of how these points are labeled, there always exists a
polygon configuration that realizes those labels (see Fig. 4). Therefore VH =∞.

Figure 4: Classifiers based on convex sets can shatter any number of points lying on a circle. Here n = 10.

Example. Consider the case where |H| <∞. Then we have

NH(x1, . . . , xn) = |{(h(x1), . . . , h(xn)) : h ∈ H}| ≤ |H|
=⇒SH(n) ≤ |H|
=⇒VH ≤ log2(|H|).
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As a sanity check, this results in the bound

Pr
(

sup
h∈H

∣∣∣R̂n(h)−R(h)
∣∣∣ ≥ ε) ≤ 8 |H| e−nε

2/32

which is basically the same as what was derived previously except for larger constants.

The following result lets us bound the VC dimension of a broad family of classes.

Lemma 1. Let F be an m-dimensional vector space of real-valued functions. Then,

H =
{
1{f(x)≥0}

∣∣f ∈ F}
has VH ≤ m.

Proof. Suppose H shatters m+ 1 points, say x1, . . . , xm+1. Define the linear mapping L : F → Rm+1,

L(f) = (f(x1), . . . , f(xm+1))T .

Since dim(F) = m we have dim(L(F)) ≤ m where L(F) denotes the image of F . By the projection theorem,

Rm+1 = L(F)⊕ L(F)⊥

where ⊕ denotes the direct sum. Therefore

dim(L(F)⊥) ≥ 1

and so there exits γ 6= 0, γ ∈ Rm+1 such that

γTL(f) = 0 ∀f ∈ F .

Thus, ∀f ∈ F
m+1∑
i=1

γif(xi) = 0

or equivalently, ∑
i:γi≥0

γif(xi) =
∑
i:γi<0

−γif(xi).

We will assume that at least one γi < 0. If not, replace γ by −γ. Since H shatters x1, . . . , xm+1, let
h = 1{f(x)≥0} be such that

h(xi) = 1 ⇐⇒ γi ≥ 0.

For the corresponding f
f(xi) ≥ 0 ⇐⇒ γi ≥ 0.

This implies that
∑
i:γi≥0 γif(xi) ≥ 0 and

∑
i:γi<0−γif(xi) < 0 which is a contradiction. Therefore,

VH ≤ m.

Let’s apply this result to the class of linear classifiers.

Example. Let X = Rd and F =
{
f
∣∣ f(x) = wTx+ b, w ∈ Rd, b ∈ R

}
. Then H is the set of all linear

classifiers,
H =

{
1{wT x+b≥0}

∣∣w ∈ Rd, b ∈ R
}
.

Since dim(F) = d + 1 we deduce from the lemma that VH ≤ d + 1. In fact, this bound is achieved so that
VH = d + 1. For d = 2, H shatters the vertices of any nondegenerate triangle, for d = 3, H shatters the
vertices of a tetrahedron, and for general d, H shatters the zero vector along with the standard basis in Rd.
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3 Sauer’s Lemma

This is a bound on the shatter coefficient that was proved independently by Vapnik and Chervonenkis (1971),
Sauer (1972) and Shelah (1972).

Theorem 2. Let V = VH <∞. For all n ≥ 1,

SH(n) ≤
V∑
i=0

(
n

i

)
.

Before proving this theorem we consider several corollaries:

Corollary 3. If V <∞, then ∀n ≥ 1,
SH(n) ≤ (n+ 1)V .

Proof. By the binomial theorem,

(n+ 1)V =
V∑
i=0

ni
(
V

i

)
=

V∑
i=0

ni
V !

(V − i)!i!

≥
V∑
i=0

ni

i!
≥

V∑
i=0

n!
(n− i)!i!

=
V∑
i=0

(
n

i

)
.

Corollary 4. ∀n ≥ V ,

SH(n) ≤
(ne
V

)V
.

Proof. If
V

n
≤ 1 then

(
V

n

)V V∑
i=0

(
n

i

)
≤

V∑
i=0

(
V

n

)i(
n

i

)
≤

n∑
i=0

(
V

n

)i(
n

i

)
=
(

1 +
V

n

)n
≤ eV

Therefore
V∑
i=0

(
n

i

)
≤
(ne
V

)V
.

Corollary 5. If V > 2, then ∀n ≥ V ,
SH(n) ≤ nV .

Proof. If V > 2, then
e

V
< 1, so the statement holds by Corollary 4.

Proof of Sauer’s Lemma. For n ≤ V ,

V∑
i=0

(
n

i

)
≥

n∑
i=0

(
n

i

)
= (1 + 1)n = 2n = SH(n)
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Assume n > V . We will show ∀x1, x2, ..., xn

NH(x1, x2, ..., xn) ≤
V∑
i=0

(
n

i

)
.

So fix x1, x2, ..., xn ∈ X . Define the matrixB0 to have rows consisting of all possible values of (h(x1), ..., h(xn)).
B0 has dimension NH × n. Define Bi, i = 1, ..., n by the following iterative procedure:

• For each row in column i of Bi−1 replace each 1 by a 0 unless it produces another row of Bi−1.

Example. Let X = R and H = {1{x∈[a,b]|a, b ∈ R, a < b}. Then V = 2. Let’s take n = 4. Then

B0 =



x1 x2 x3 x4

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 1 1 0
0 1 1 1
1 1 1 1


, B4 =



x1 x2 x3 x4

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 1


.

The following three properties hold in general for this construction. For the third property, we say a
binary matrix B with n columns shatters an index set I ⊆ {1, ..., n}, |I| = m, if B|I contains all elements of
{0, 1}m.

1. |B0| = |Bn|; rows remain distinct.

2. In Bn, replacing any 1 with a 0 produces another row of Bn.

3. If Bn shatters an index set, then so does B0.

The first two proporties follow from the construction. To show the third property, it suffices to show
that if Bi shatters I, then so does Bi−1. Without loss of generality take i = 1. Suppose B1 shatters
I ⊆ {1, ..., n}, |I| = m. If 1 /∈ I, then clearly B0 shatters I. Suppose 1 ∈ I. Let I = {i1, ..., im}, i1 = 1.
Let (bi1 , bi2 , ..., bim) ∈ {0, 1}m. Since B1 shatters I, we know (1, bi2 , ...bim) is a row of B1|I . Then both
(0, bi2, ..., bim) and (1, bi2, ..., bim) are rows of B0|I by definition of B1. Thus B0 shatters I.

By 2) and 3), Bn cannot have > V 1s in any row. If it did, Bn would shatter those points, and hence so

would B0. By 1), NH(x1, ..., xn) = |B0| = |Bn| ≤
∑V
i=0

(
n

i

)
. The last term is a bound on the number ways

the 1s can occur in the rows.

4 VC Theory for Sets

Let G ⊂ 2X . We can define

NG(x1, ..., xn) = |{G ∩ {x1, ..., xn} : G ∈ G}|
SG(n) = max

x1,...,xn
NG(x1, ..., xn)

VG = max{n : SG(n) = 2n}
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in analogy to our definitions for classifiers. Indeed, sets and binary classifiers are equivalent via

G 7→ hG(x) = 1{x∈G}
h 7→ Gh = {x : h(x) = 1}.

This gives a VC theorem for sets.

Corollary 6. If X1, ..., Xn
iid∼ Q, then for any G, n ≥ 0, ε > 0,

Pr
(

sup
G∈G
|Q̂(G)−Q(G)| ≥ ε

)
≤ 8SG(n)e−nε

2/32

where Q̂(G) =
1
n

∑n
i=1 1{Xi∈G}.

Proof. Define PXY on X × {0, 1} s.t. PXY (Y = 0) = 1,PX|Y=0 = Q, and PX|Y=1 is arbitrary. Then

R(h) = PXY (h(X) 6= Y )
= PXY (Y = 1)PX|Y=1(h(X) = 0) + PXY (Y = 0)PX|Y=0(h(X) = 1)
= Q(Gh)

Similarly, R̂n(h) = Q̂(Gh), and so

sup
h∈H
|R̂n(h)−R(h)| = sup

G∈G
|Q̂(G)−Q(G)|

where H is defined in terms of G via G 7→ hG = 1{x∈G}. Finally, not that SG(n) = SH(n).

As an application, consider X ∈ R and G = {(−∞, t] : t ∈ R}. Then SG(n) = n+ 1 (see Fig. 4).

(          ]
(                 ]
(                         ]
(                                 ]
(                                         ]

Figure 5: Different ways to intersect sets with points.

Let X ∼ Q. Denote Gt = (−∞, t]. Then

Q(Gt) = Pr(X ≤ t) =: F (t) (CDF)

Q̂(Gt) =
1
n

n∑
i=1

1{xi≤t} =: F̂ (t) (empirical CDF)

Corollary 7. For all Q, n ≥ 1, ε > 0,

Pr(sup
t∈R
|F̂n(t)− F (t)|︸ ︷︷ ︸
|| bFn−F ||∞

≥ ε) ≤ 8(n+ 1)e−nε
2/32.

This is known as the Dvoretzky-Kiefer-Wolfowitz inequality. Tighter versions exist [3, 2].
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5 Monotone Layers and Convex Sets

Earlier, we obtained convergence guarantees for an empirical risk minimizing classifier when the VC dimen-
sion of the classifier set H was finite. The purpose of this section is to obtain such guarantees also in cases
of infinite VC dimension. This requires assumptions about the underlying distribution. In other words the
result will not be distribution free, as was possible before. In particular, we will assume that the samples
are drawn from a distribution that has a bounded density with compact support. This material is based on
a similar result in Chapter 13 of [1], where a weaker assumption on the distribuiton of X is made.

In the following, we consider the feature space X = R2 and the following two families of classifiers:

C =
{
1{x∈C} | C is convex

}
,

L =
{
1{x∈L} | L = {(x1, x2) ∈ R : x2 ≤ ψ(x1)} for non-increasing ψ : R→ R

}
.

The classifiers in L are called monotone layers. Both families have infinite VC dimension. The fact that
the VC dimension of C is infinity has been shown earlier. To see that L also has infinite VC dimension, it
suffices to see that any set of points placed decreasingly can be shattered by L, as shown in Figure 6.

Figure 6: A non-increasing function shatters a set of non-increasingly placed points.

In the proof of the VC theorem, it is shown in an intermediate step that

Pr
(

sup
h∈H

∣∣∣R̂n(h)−R(h)
∣∣∣ ≥ ε) ≤ 8E {NH(X1, . . . , Xn)} e−nε

2/32.

Here, NH(X1, . . . , Xn) is the number of possible labelings of X1, . . . , Xn by H. We will now bound this
quantity.

Theorem 3. If X has a density f such that ‖f‖∞ ≤ ∞ and supp(f) is bounded, then for H = C or H = L,

E {NH(X1, . . . , Xn)} ≤ ec
√
n

for a constant c.

Remark. In the theorem statement, ‖f‖∞ = supx∈X |f(x)| is the sup norm. The support of a function is
defined as supp(f) = {x ∈ X : f(x) > 0}, where the line denotes the set closure.

Corollary 8. If ĥn is an empirical risk minimizer (ERM) over H = C or H = L, then for all ε > 0,

Pr
(
R(ĥn)−R∗H ≥ ε

)
≤ 8ec

√
n−nε2/128.

Equivalently, with probability at least 1− δ,

R(ĥn)−R∗H ≤
√

128 [c
√
n+ log(8/δ)]
n

= O(n−1/4).
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Figure 7: The domain [−r, r]2 is partitioned into m2 cells, in this case m = 7. The red line denotes the
points where x2 = ψ(x1) and the cells in c(ψ) are marked in red.

Note that the rate of decay is O(n−1/4), whereas when the VC dimension is finite we have a rate of
O(n−1/2). We will prove Theorem 3 for the case H = L; the other case is left as an exercise.

Proof. Fix r ∈ N such that supp(f) ⊆ [−r, r]2. Then divide [−r, r]2 into m2 squares of side length 2r/m, as
shown in Figure 7.

Let C1, . . . , Cm2 denote the cells in the partition, and let

Nj = # {i : Xi ∈ Cj}

be the random variable that counts the number of points in cell j. The random vector (N1, . . . , Nm2) is then
multinomially distributed

(N1, . . . , Nm2) ∼ multinomial(n, p1, . . . , pm2),

where the cell probabilities pj are

pj = PX(Cj) =
∫
Cj

f(x)dx.

For a non-increasing ψ : R→ R, define

L(ψ) = {(x1, x2) : x2 ≤ ψ(x1)}

and
c(ψ) =

{
Cj | Cj intersects both L(ψ) and L(ψ)C

}
.

In other words, c(ψ) consists of all the cells that contain some part of the graph of ψ, as shown in Figure 7.
Using these definitions, we can bound the number of possible labelings as

NL(X1, . . . , Xn) ≤
∑

all possible c(ψ)

 ∏
Ci∈c(ψ)

2Ni

 .

The sum accounts for all possible non-increasing functions ψ, and the product is an upper bound on the
number of labellings for a given c(ψ) obtained by counting the labellings cell-wise. It is clear that cells
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outside c(ψ) will be uniquely labeled by ψ, therefore only cells in c(ψ) contribute to NL, with obviously at
most 2Ni ways to assign labels to the Ni points in Ci.

We now bound the number of terms in the sum and the product separately.

1. It is possible to encode c(ψ) with 2m bits. One such encoding can be done using a bit vector

(r1, . . . , rm−1, c1, . . . , cm−1, b0, b1) ∈ {0, 1}2m.

Here the bits are defined as follows:

• ri = 1 iff the path turns right at row i, i = 1, . . . ,m− 1.

• ci = 1 iff the path turns down at column i, i = 1, . . . ,m− 1.

• b0 = 1 iff the first turn is right (as opposed to down).

• b1 = 1 iff the last turn is right (as opposed to down).

This suffices because paths must alternate down and right turn. Consequently, there are at most 22m

possible c(ψ).

2. We bound the expected value of
∏
Ci∈c(ψ) 2Ni using the moment-generating function (MGF) of a

multinomial:

E

 ∏
Ci∈c(ψ)

2Ni

 = E
{

2
P
Ci∈c(ψ)Ni

}
= E

exp

ln(2)
∑

Ci∈c(ψ)

Ni


=

1 +
∑

Ci∈c(ψ)

pi

n

≤ exp

n ∑
Ci∈c(ψ)

pi

 .

The last equality follows from the formula for the multinomial MGF, while the last bound follows from(
1 +

x

n

)n
=

n∑
i=0

(
n

i

)(x
n

)i
≤

n∑
i=0

n!
i!(n− i)!

(x
n

)i
≤

n∑
i=0

x!
i!
≤ ex.

Now, since the volume of each cell is (2r/m)2 and there are at most 2m cells in a path,

∑
Ci∈c(ψ)

pi =
∑

Ci∈c(ψ)

∫
Ci

f(x) dx ≤ 2m× ‖f‖∞
(

2r
m

)2

=
8r2

m
‖f‖∞.

By combining 1 and 2, it follows that

E {NL(X1, . . . , Xn)} ≤ 22me8nr
2‖f‖∞/m,

a bound which holds for all choices of m. By tuning this parameter as m ∼
√
n, the final bound becomes

E {NL(X1, . . . , Xn)} ≤ ec
√
n

for a constant c depending only on r and ‖f‖∞.
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Exercises

1. Determine the sample complexity N(ε, δ) for ERM over a class H with VC dimension VH <∞.

2. Show that the VC Theorem for sets implies the VC Theorem for classifiers. Hint: Consider sets of the
form G′ = G× {0} ∪Gc × {1} ⊂ X × Y, where Gc denotes the complement.

3. Let G1 and G2 denote two classes of sets.

(a) For G1 ∩ G2 := {G1 ∩G2 |G1 ∈ G1, G2 ∈ G2}, show SG1∩G2(n) ≤ SG1(n)SG2(n).

(b) For G1 ∪ G2 := {G1 ∪G2 |G1 ∈ G1, G2 ∈ G2}, show SG1∪G2(n) ≤ SG1(n)SG2(n).

4. Show that the following classes have finite VC dimension by exhibiting an explicit upper bound on the
VC dimension.

(a) X = Rd, H = {1{f(x)≥0} | f is an inhomogeneous quadratic polynomial}.
(b) X = Rd, H = {1{x∈C} |C is a sphere (including boundary and interior)}.
(c) X = R2, H = {1{x∈Pk} |Pk is a convex polygon containing at most k sides}.
(d) X = Rd, H = {1{x∈Rk} |Rk is a union of at most k rectangles}.

5. Prove Theorem 3 for H = C.
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