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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Introduction

These notes introduce a new kind of classifier called a dyadic decision tree (DDT). We also introduce a
discrimination rule for learning a DDT that achieves the optimal rate of convergence, ER(ĥn) − R∗ =
O(n−1/d), for the box-counting class, which was defined in the previous set of notes. This improves on the
rate of ER(ĥn)−R∗ = O(n−1/(d+2)) for the histogram sieve estimator from the previous notes.

Dyadic decision trees are based on recursively splitting the input space at the midpoint along some
dimension. This is in contrast to conventional decision trees that allow the splits to occur at any point.
Yet DDTs can still approximate complex decision boundaries, and the restriction to dyadic splits makes
it possible to globally optimize a complexity penalized empirical risk criterion, in contrast to mainstream
methods for decision tree learning that first perform greedy growing followed by pruning. These notes will
not discuss implementation of the discrimination rules, but the interested reader can find algorithms and
computational considerations discussed in [1, 2, 3].

2 Recursive Dyadic Partitions

Assume X = [0, 1]d. A recursive dyadic partition (RDP) is a partition of X obtained by applying the
following two rules:

•
{

[0, 1]d
}

is a RDP.

• If {A1, . . . , Ak} is a RDP, where Ai is a rectangle, then so is
{
A1, . . . , Ai−1, A

1
i , A

2
i , Ai+1, . . . , Ak

}
,

where A1
i , A

2
i are obtained by splitting Ai at its midpoint along some dimension. Note that every

A =
∏d
`=1[a`, b`], where a`, b` are dyadic rational numbers in the form r/2s, 0 ≤ r ≤ 2s.

A simple illustration of a RDP is shown in Fig. 1 in the case d = 2.
A dyadic decision tree (DDT) is a classifier that is constant on a RDP. Let T = {all DDTs}, and

Tm =
{

all DDTs where all cells have side length ≥ 1
m ,
}

, where m is a power of 2. If m = 2J , then J is the
maximum number of splits along any dimension.

Note that a histogram partition is a special case of a recursive dyadic partition, where every cell in the
partition is a hypercube of the same size. By pruning back cells that do not intersect the Bayes decision
boundary, a dyadic decision tree can achieve the same approximation error as a histogram, but since there
are fewer cells in the partition, we can get a tighter bound on the estimation error.

3 Uniform Deviation Bound for DDTs

We will use prefix codes to derive a uniform deviation bound (UDB) for DDTs. Let C = {c1, c2, . . .} be a
set of finite length binary strings. We say C is a prefix code iff no ci is a prefix of another cj . Let `i be the
codeword length of ci. The following fact from information theory will be useful:
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∃ a prefix code C with codeword lengths `i ⇔
∑
i 2−`i ≤ 1.

The inequality on the right-hand side is known as Kraft’s inequality. We will only need the forward impli-
cation: if C is a prefix code, then

∑
i 2−`i ≤ 1.

Suppose C is a prefix code for T . Let `(h) denote the length of the codeword assigned to h.

Proposition 1. Let δ > 0. With probability ≥ 1− δ,

∀h ∈ T
∣∣∣R̂n(h)−R(h)

∣∣∣ ≤√`(h) ln 2 + ln(2/δ)
2n

.

Proof. For a fixed h ∈ T , by Hoeffding’s inequality, for any δh > 0,

Pr

(∣∣∣R̂n(h)−R(h)
∣∣∣ ≥√ ln(2/δh)

2n

)
≤ δh

(
by setting δh = 2e−2nε2h

)
.

Let δh = δ2−`(h). By the union bound,

Pr

(
∃ h

∣∣∣R̂n(h)−R(h)
∣∣∣ ≥√`(h) ln 2 + ln(2/δ)

2n

)
≤
∑
h∈T

δ2−`(h) ≤ δ (by Kraft’s inequality).

Note that the above argument holds for any countable set H of classifiers. When H is finite, we can take
`(h) = log2 |H| for all h ∈ H, in which case we recover the UDB for finite H derived previously.

Now let’s determine a prefix code for T . Let k = |h| := number of leaf nodes in DDT, i.e., the number
of cells in the associated RDP. The total number of nodes is 2k − 1 (the number of internal nodes is k − 1).
A simple illustration is shown in Fig. 2.

• To encode the tree structure, we use 2k − 1 bits. The encoding procedure is implemented as follows.
Staring at the root node, scan through the nodes from left to right and then top to bottom. If a node
is split, assign a 1, otherwise assign a 0. It is easy to verify that by construction this code is a prefix
code for the tree structure. An illustration is shown in Fig. 3.

• To encode the dimension being split at each internal node, we append (k − 1) log2 d bits to the prefix
code for tree structure.

• To encode the class labels of the leaf nodes, we append k bits to the prefix code for tree structure and
splitting dimensions.

Summing up, `(h) = (3k − 1) + (k − 1) log2 d ≤ (3 + log2 d)k = (3 + log2 d)|h|. Denote κ = (3 + log2 d) ln 2.

Corollary 1. With probability ≥ 1− δ,

∀h ∈ T ,
∣∣∣R̂n(h)−R(h)

∣∣∣ ≤√κ|h|+ ln(2/δ)
2n

.

4 Convergence Rates of Dyadic Decision Trees

The above bound motivates the following discrimination rule:

ĥn = arg min
h∈Tm

R̂n(h) + Φn(h) (1)
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Figure 1: Illustration of recursive dyadic partition (RDP) for d = 2. The bounding box is X = [0, 1]d.

Figure 2: Illustration of encoding dyadic decision tree (DDT) structure using prefix code. The number i in
the box indicates partition on ith dimention.

Figure 3: Illustration of encoding tree structure
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(a) h0
m (b) h∗m

Figure 4: Examples of recursive dyadic partitions (RDPs) of (a) a cyclic DDT h0
m and (b) the corresponding

pruned classifier h∗m for a certain Bayes decision boundary (red), with dimension d = 2 and depth m = 6.

where

Φn(h) :=

√
κ|h|+ ln(2/δ)

2n
.

This optimization problem can be interpreted as a form of penalized empirical risk minimization, where Φn(h)
quantifies the complexity of h. ĥn therefore achieves a balance between data fit and model complexity.

As of now, the depth m is a free parameter. We will show that appropriate selection of m will allow ĥn
to achieve better convergence rates than the histogram sieve estimator.

Proposition 2. With probability at least 1− δ,

R(ĥn)−R∗ ≤ inf
h∈Tm

{
R(h)−R∗ + 2Φn(h)

}
. (2)

Proof. Applying the bound of Corollay 1 twice, we obtain w.p. ≥ 1− δ, ∀h ∈ Tm,

R(ĥn) ≤ R̂n(ĥn) + Φn(ĥn)

≤ R̂n(h) + Φn(h)
≤ R(h) + 2Φn(h) , (3)

where in the second inequality, we use the definition of ĥn. As h is arbitrary, we can select h to come
arbitrarily close to the infimum. Subtracting R∗ from both sides gives the desired result.

The following definition is used in our proofs of rates of convergence.

Definition 1. A DDT is cyclic if the dimensions along which its splits are taken in a cyclic order.

Theorem 1. Suppose PXY ∈ B, where B denotes the box-counting class. As n → ∞, allow m to increase
as m ∼ n

1
d+1 . Then ĥn defined as in (1) satisfies

ER(ĥn)−R∗ = O(n−
1

d+1 ) . (4)
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Proof. We find a particular DDT classifier h∗m whose approximation and estimation errors achieve the claimed
convergence rate. Then the infimum will achieve the rate as well.

Let h0
m ∈ Tm be a cyclic DDT where every leaf node is a cube with side length 1

m . Then every leaf node
is at maximum depth d log2m. Assume labels are assigned to minimize R(h0

m). Let h∗m be obtained by
“pruning” alls cells of h0

m whose parents do not intersect the Bayes decision boundary (BDB), i.e., all cells
such that neither the cell nor its sibling intersect the BDB. Examples of an h0

m and the corresponding h∗m
for a specific Bayes decision boundary are given in Fig. 4.

Observe that although h∗m has significantly fewer splits than h0
m, it suffers no loss in resolution as compared

to h0
m around the Bayes decision boundary. Indeed,

R(h∗m)−R∗ = R(h0
m)−R∗,

and by the same argument as for a histogram classifier, we have

R(h0
m)−R∗ = O

(
1
m

)
.

Furthermore, while h0
m has md leaf nodes, we can show that h∗m has O(md−1) leaf nodes. We state this

result, and a useful intermediate result, in the following lemma.

Lemma 1. The number of nodes in h∗m at depth j, including internal nodes, that intersect the Bayes decision
boundary, is that most C2dj/de(d−1). Furthermore, |h∗m| ≤ 4dCmd−1 where C is the constant from condition
(B) in the definition of the box-counting class.

Proof. Write j = (p − 1)d + q where 1 ≤ p ≤ log2m and 1 ≤ q ≤ d. Let Nj denote the number of nodes
at depth j in h∗m intersecting the BDB. Clearly, if a node at depth j intersects the BDB, then it contains a
descendent at depth pd that also intersects the BDB, and therefore Nj ≤ Npd. Note that all nodes at depth
pd are hypercubes with side length 2−p. By the box-counting assumption,

Npd ≤ C(2p)d−1 = C2dj/de(d−1).

This establishes the first part of the lemma. Applying this result, the total number of nodes of h∗m at any
depth that intersect the BDB is at most

d log2m∑
j=1

C2dj/de(d−1) ≤
log2m∑
p=1

dC2p(d−1) ≤ 2dC2(d−1) log2m = 2dCmd−1.

Now, to establish the second part of the lemma, notice that every leaf node of h∗m either intersects the Bayes
decision boundary, or its sibling intersects the Bayes decision boundary. Therefore |h∗m| ≤ 4dCmd−1.

Take Ω to be the event in Prop. 2 that holds with high probability. For δ = 1
n , we have by the law of

total expectation,

ER(ĥn)−R∗ = Pr (Ω)︸ ︷︷ ︸
≤1

E
[
R(ĥn)−R∗|Ω

]
︸ ︷︷ ︸
≤R(h∗m)−R∗+2Φn(h∗m)

+ Pr (ΩC)︸ ︷︷ ︸
≤ 1

n

E
[
R(ĥn)−R∗|ΩC

]
︸ ︷︷ ︸

≤1

≤ R(h∗m)−R∗ + 2Φn(h∗m) +
1
n
.

= O

(
1
m

+

√
1
n

(md−1 + lnn) +
1
n

)
= O

(
1
m

+

√
md−1

n

)
. (5)

If m grows as m ∼ n
1

d+1 , then both terms in the last expression decay as O(n−
1

d+1 ), completing the proof.
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5 A Spatially Adaptive Penalty

The previous result suggests that a penalty based only on tree size is not sufficient for attaining the optimal
rate of convergence. We now develop an alternative penalty that leads to the optimal rate.

Recall that every h ∈ T is associated with a RDP of X = [0, 1]d. Let us denote the partition associated
to h by Π(h) = {A1, . . . , Ak}. These are just the leaf nodes of h. Note that Π is a many-to-one mapping:
different DDTs can have the same RDP. Observe that

R(h)− R̂n(h) =
∑

A∈Π(h)

R(h,A)− R̂n(h,A) (6)

where

R(h,A) := PXY
(
{h(X) 6= Y } ∩ {X ∈ A}

)
, and

R̂n(h,A) :=
1
n

n∑
i=1

1{{h(Xi)6=Yi}∩{Xi∈A}} .

Because nR̂n(h,A) ∼ binom(n,R(h,A)), we could use Hoeffding’s inequality to obtain a convergence rate,
but this will not lead to the desired rate. We instead use the relative Chernoff bound:

Lemma 2 (Relative Chernoff Bound). Let Z1, . . . , Zn
i.i.d.∼ Ber(p) and p̂ = 1

n

∑n
i=1 Zi. Then ∀ε ∈ [0, 1],

Pr
(
p̂ ≤ (1− ε)p

)
≤ e−npε

2/2 . (7)

Equivalently, taking δ := e−npε
2/2 and thus ε =

√
2 ln(1/δ)

np , we have that with probability at least 1− δ,

p ≤ p̂+

√
2p ln(1/δ)

n
. (8)

Proof. Refer to [5].

By combining the relative Chernoff bound with the decomposition in (6), we can arrive at the following
uniform deviation bound. To state the next result, let A be the set of all cells that belong to some RDP, let
`(A) be the length of a codeword for A in a prefix code for A, and denote pA := PX(A) for any A ∈ A.

Proposition 3. With probability at least 1− 1
n , ∀h ∈ T ,

|R(h)− R̂n(h)| ≤
∑

A∈Π(h)

√
2pA[`(A) ln 2 + lnn]

n
. (9)

Proof. By the Relative Chernoff Bound, we know that for each A ∈ A, with probability at least 1− δA,

R(h,A)− R̂n(h,A) ≤
√

2R(h,A) ln(1/δA)
n

. (10)

Taking δA := 1
n2−`(A), we know by Kraft’s inequality that

∑
A∈A δA ≤

1
n . Thus, by the union bound, and

noting that R(h,A) ≤ pA, we have that with probability at least 1− 1
n , ∀h ∈ T ,

R(h)− R̂n(h) =
∑

A∈Π(h)

R(h,A)− R̂n(h,A)

≤
∑

A∈Π(h)

√
2R(h,A)[`(A) ln 2 + lnn]

n

≤
∑

A∈Π(h)

√
2pA[`(A) ln 2 + lnn]

n
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To establish the absolute value in the bound, consider the complementary classifier hC(x) = 1− h(x). Then
on the same event that the previous bound holds on,

R̂n(h)−R(h) =
[
1− R̂n(hC)

]
−
[
1−R(hC)

]
= R(hC)− R̂n(hC)

≤
∑

A∈Π(hC)

√
2pA[`(A) ln 2 + lnn]

n

≤
∑

A∈Π(h)

√
2pA[`(A) ln 2 + lnn]

n
. (11)

Note that the last line follows because Π(h) and Π(hC) are the same partition.

The result in Proposition 3 does not quite yet give us a useful penalty:

1. In practice, pA is unknown. For the box-counting class, PX has a density f such that ∀x, f(x) ≤ B,
where B is a constant. We will assume B is known. Now the volume λ(A) of a cell at depth j is just
2−j . Thus, pA can be bounded as

pA = PX(A) =
∫
A

f(x) dx ≤ Bλ(A) = B2−j(A) , (12)

where j(A) denotes the depth of A. (It is not necessary to assume B is known. One can upper bound
pA by its empirical counterpart to obtain a data-dependent penalty, and the following analysis carries
through in a similar way. The details are relatively straightforward, but are omitted in the interest of
brevity. The interested reader may refer to [2].)

2. We also need to design a prefix code for A. The following code suffices: Use

• j + 1 bits to encode the depth of A: j 0s followed by a 1;

• j log2 d bits to encode the dimension along with splits are taken; and

• j bits to encode whether the ancestors of A split “left” or “right.”

This scheme produces codewords of length `(A) = (2j + 1) + j log2 d ≤ (3 + log2 d)j. Denote κ =
(3 + log2 d) ln 2 as before.

We can combine these bounds with Proposition 3 to finally conclude:

Corollary 2. With probability at least 1− 1
n ,

|R(h)− R̂n(h)| ≤
∑

A∈Π(h)

√
2B2−j(A)[κj(A) + lnn]

n
=: Φ′n(h) . (13)

We now define a new discrimination rule based on the above penalty:

ĥn = arg min
h∈Tm

R̂n(h) + Φ′n(h) . (14)

As before, we have the following performance guarantee.

Proposition 4. With probability at least 1− 1
n , the rule in (14) satisfies

R(ĥn)−R∗ ≤ inf
h∈Tm

{
R(h)−R∗ + 2Φ′n(h)

}
. (15)
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Figure 5: The penality Φn penalizes both trees above the same, whereas Φ′n favors the partition on the right.

Proof. The argument follows that of Proposition 2, replacing Φn(h) with the new Φ′n(h) penalty.

Observe that this new penalty Φ′n(h) has a different structure compared to the previous penalty Φn(h).
Whereas Φn(h) depended on h only through |h|, the new penalty depends also on the depth (equivalently,
volume) of the cells. While Φn will not distinguish between the two trees shown in Figure 5, the new penalty
Φ′n will prefer the tree on the right. More generally, the new penalty prefers unbalanced trees to balanced
trees. Since unbalanced trees are sufficient for accurately approximating decision boundaries in the box-
counting class, the spatially adaptive penalty provides a tighter bound on the estimation error for the same
approximation error. This intuition is made precise in the following, the main result of this section.

Theorem 2. Suppose PXY ∈ B, where B denotes the box-counting class. As n → ∞, allow m to increase
as m ∼ (n/ log n)1/d. The discrimination rule ĥn in (14) satisfies

ER(ĥn)−R∗ = O

((
log n
n

) 1
d
)
. (16)

Proof. Let h∗m be as in the proof of Thm. 1. It suffices to show that the approximation and estimation errors
corresponding to h∗m achieve the claimed convergence rate. Then the infimum must also achieve this rate.

We previously argued that the approximation error R(h∗m) − R∗ = O( 1
m ). When m ∼

(
n

logn

) 1
d

, this

becomes O
((

logn
n

) 1
d

)
. This part of the argument is unchanged except for the rate at which m grows.

Henceforth we focus on bounding Φ′n(h∗m).
Observe that because j(A) ≤ d log2m = O(log n),

Φ′n(h∗m) = O

( ∑
A∈Π(h∗m)

√
2−j(A)

log n
n

)
= O

(√
log n
n

∑
A∈Π(h∗m)

√
2−j(A)

)
. (17)

To bound the interior summation, note that there exist unique p ∈ {1, . . . , log2(m)} and q ∈ {1, . . . , d}
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such that j(A) = (p− 1)d+ q. Let Πp,q(h) = {A ∈ Π(h) | j(A) = (p− 1)d+ q}. Then,

Φ′n(h∗m) = O

(√
log n
n

∑
A∈Π(h∗m)

√
2−j(A)

)

= O

(√
log n
n

log2m∑
p=1

d∑
q=1

∑
A∈Πp,q(h∗m)

√
2−(p−1)d−q

)

= O

(√
log n
n

log2m∑
p=1

d∑
q=1

C2p(d−1)
√

2−(p−1)d−q
)

(18)

= O

(√
log n
n

log2m∑
p=1

Cd2p(d−1)
√

2−(p−1)d

)

= O

(√
log n
n

log2m∑
p=1

2p(
d
2−1)

)

= O

(√
log n
n

2( d
2−1) log2m

)
= O

(√
log n
n

m( d
2−1)

)
= O

([
log n
n

] 1
d
)
.

Eqn. (18) follows from Lemma 1. The final line follows by allowing m to grow as m ∼
(

n
logn

) 1
d

. Thus,

both the approximation and estimation errors are of order O
( (

logn
n

) 1
d )

, completing the proof.

Exercises

1. We have not yet leveraged the full flexibility of DDTs (we will do so in the next lecture).

(a) Let T cyc ⊆ T denote the set of all cyclic dyadic decision trees. Design a prefix code for T cyc that
is more concise than the one we designed for T . State an analogue to Corollary 1 for cyclic DDTs,
and briefly explain why penalized empirical risk minimization over T cyc

m := T cyc ∩ Tm can also
achieve the rate of convergence in Theorem 1.

(b) Let Acyc ⊆ A denote the set of all cells in partitions associated with cyclic dyadic decision trees.
Design a prefix code forAcyc that is more concise than the one we designed forA. State an analogue
to Corollary 2 for cyclic DDTs, and briefly explain why penalized empirical risk minimization over
T cyc
m := T cyc ∩ Tm can also achieve the rate of convergence in Theorem 2.

2. We have not yet harnessed the full power of penalized empirical risk minimization as an algorithm for
learning DDTs (we will do so in the next lecture). In particular, the rates of convergence in Theorems
1 and 2 can be obtained with sieve estimators. Thus, define Tm,k = {h ∈ Tm : |h| ≤ k}. Let us view
m = m(n) and k = k(n), and define the sieve estimator

ĥn = arg min
h∈Tm(n),k(n)

R̂n(h).

For simplicity, assume the empirical risk minimizer exists. Give sufficient conditions on m(n) and k(n)
such that the above sieve estimator achieves the rate of convergence in Theorem 2. Hint: It’s not
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necessary to do any additional analysis. Just combine properties of sieve estimators with the analysis
in these notes.
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