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1 Introduction

Rademacher complexity is a measure of the richness of a class of real-valued functions. In this sense, it is
similar to the VC dimension. In fact, we will establish a uniform deviation bound in terms of Rademacher
complexity, and then use this result to prove the VC inequality. Unlike VC dimension, however, Rademacher
complexity is not restricted to binary functions, and will also prove useful later in the analysis of other learning
algorithms such as kernel-based algorithms.

2 Rademacher Complexity

Let G ⊆ [a, b]Z be a set of functions Z → [a, b] where a, b ∈ R, a < b. Let Z1, . . . , Zn be i.i.d. random
variables on Z following some distribution P . Denote the sample S = (Z1, . . . , Zn).

The empirical Rademacher complexity of G with respect to the sample S is

R̂S(G) := Eσ

[
sup
g∈G

1
n

n∑

i=1

σig(Zi)

]

where σ = (σ1, . . . , σn)> with σi
iid∼ unif{−1, 1}. Here σ1, . . . , σn are known as Rademacher random variables.

The complexity R̂S(G) is random because of the randomness of S.
The Rademacher complexity of G is

Rn(G) = ES [R̂S(G)].

Rademacher complexity is sometimes called “Rademacher average.”
An interpretation in the context of binary classification is that G is rich, equivalently, R̂S(G) or Rn(G)

is high, if we can choose functions g to accurately match different random sign combinations reflected by σ.
Note that the complexity is bounded, since elements of G are bounded within the interval [a, b].

Theorem 1 (One-sided Rademacher complexity bound). Let Z,Z1, . . . , Zn be iid random variables taking
values in a set Z. Consider a set of functions G ⊆ [a, b]Z . ∀δ > 0, with probability ≥ 1 − δ, we have with
respect to the draw of sample S that:

∀g ∈ G, E[g(Z)] ≤ 1
n

n∑

i=1

g(Zi) + 2Rn(G) + (b− a)

√
log 1/δ

2n
. (1)

In addition, ∀δ > 0, with probability ≥ 1− δ, we have with respect to the draw of S that:

∀g ∈ G, E[g(Z)] ≤ 1
n

n∑

i=1

g(Zi) + 2R̂S(G) + 3(b− a)

√
log 2/δ

2n
. (2)
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The final term in both (1) and (2) is typically much smaller than the Rademacher complexity. Note that
(1) and (2) are one-sided uniform deviation bounds, and that (2) is a data-dependent bound.

Before proving the theorem, we first review the following useful facts.

Fact 1: For any real-valued functions f1, f2 : X → R, supx f1(x)− supx f2(x) ≤ supx(f1(x)− f2(x)).

To see this, let ε > 0 and let x1 be such that f1(x1) ≥ supx f1(x)− ε. Then,

sup
x

f1(x)− sup
x

f2(x) ≤ sup
x

f1(x)− f2(x1) ≤ f1(x1)− f2(x1) + ε ≤ sup
x

(f1(x)− f2(x)) + ε.

ε > 0 was arbitrary, so the result follows.

Fact 2: For any real-valued functions f1, f2 : X → R, supx(f1(x) + f2(x)) ≤ supx f1(x) + supx f2(x).

Fact 3: sup(·) is a convex function, i.e., if (xλ)λ∈Λ and (x′λ)λ∈Λ are two sequences (where Λ is possibly
uncountable), then ∀α ∈ [0, 1],

sup
λ∈Λ

(αxλ + (1− α)x′λ) ≤ α sup
λ∈Λ

xλ + (1− α) sup
λ∈Λ

x′λ

This is an immediate consequence of Fact 2.

Fact 4: Jensen’s inequality, i.e., if f is convex, then f(E[U ]) ≤ E[f(U)].

Now, we are ready to prove Theorem 1.

Proof. For notational brevity, denote E[g] = E[g(Z)] and ÊS [g] = 1
n

∑n
i=1 g(Zi). The idea is to apply the

bounded difference inequality (BDI) to

φ(S) = sup
g∈G

(
E[g]− ÊS [g]

)
.

First, we verify the bounded difference assumption. Denoting S′i = (Z1, . . . , Zi−1, Z
′
i, Z

′
i+1, . . . , Zn), we have

φ(S)− φ(S′i) = sup
g∈G

(
E[g]− ÊS [g]

)
− sup

g∈G

(
E[g]− ÊS′ [g]

)

≤ sup
g∈G

(
ÊS′ [g]− ÊS [g]

)
(by Fact 1)

= sup
g∈G

1
n

(g(Z ′i)− g(Zi)) ≤ b− a

n
.

Similarly, we can prove φ(S′)−φ(Si) ≤ (b− a)/n and therefore |φ(S′)−φ(Si)| ≤ (b− a)/n. By the BDI, we
have that with probability ≥ 1− δ,

φ(S)− ES [φ(S)] ≤ (b− a)

√
log(1/δ)

2n
.

To establish (1), it remains to show that ES [φ(S)] ≤ 2Rn(G).
Thus let us introduce another random sample (called a ghost sample) S′ = (Z ′1, . . . , Z

′
n) with Z ′i

iid∼ P ,
independent of S. Then

ES [φ(S)] = ES

[
sup
g∈G

(
E[g]− ÊS [g]

)]

= ES

[
sup
g∈G

(
ES′

[
ÊS′ [g]− ÊS [g]

])]
(by E[g] = ES′ÊS′ [g])
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≤ ES,S′

[
sup
g∈G

(
ÊS′ [g]− ÊS [g]

)]
(by Facts 3 and 4)

= ES,S′

[
sup
g∈G

1
n

n∑

i=1

(g(Z ′i)− g(Zi))

]

= Eσ,S,S′

[
sup
g∈G

1
n

n∑

i=1

σi (g(Z ′i)− g(Zi))

]
(∗)

≤ Eσ,S,S′

[
sup
g∈G

1
n

n∑

i=1

σig(Z ′i) + sup
g∈G

1
n

n∑

i=1

(−σi)g(Zi)

]
(by Fact 2)

= Eσ,S′

[
sup
g∈G

1
n

n∑

i=1

σig(Z ′i)

]
+ Eσ,S

[
sup
g∈G

1
n

n∑

i=1

σig(Zi)

]
(σi is symmetric,∀i)

= 2Rn(G).

The equality (∗) holds because (i) (Zi)n
i=1 and (Z ′i)

n
i=1 are i.i.d. (hence g(Z ′i)− g(Zi) and g(Zi)− g(Z ′i) have

the same distribution), and (ii) σi is symmetric.

To establish (2), we apply the BDI again to φ(S) = R̂S(G). Observe that

φ(S)− φ(S′i) = R̂S(G)− R̂S′(G)

= Eσ


sup

g∈G

1
n

n∑

i=1

σig(Zi)− sup
g∈G


 1

n

∑

j 6=i

σjg(Zj) +
1
n

σig(Z ′i)







≤ Eσ

[
sup
g∈G

1
n

σi(g(Zi)− g(Z ′i))
]
≤ b− a

n
. (by Fact 1).

Similarly, we can prove φ(S′)− φ(Si) ≤ (b− a)/n and thus |φ(S′)− φ(Si)| ≤ (b− a)/n. Applying the BDI,
we have that with probability ≥ 1− δ/2,

Rn(G) ≤ R̂S(G) + (b− a)

√
log 2/δ

2n
. (3)

Combining (1) (with δ replaced by δ/2) and the inequality above, we then establish (2), because

Pr(violating (2)) ≤ Pr(violating (1)) + Pr(violating (3))
≤ δ/2 + δ/2 = δ.

The following two-sided bound also holds.

Theorem 2 (Two-sided Rademacher complexity bound). Consider a set of classifiers G ⊆ [a, b]Z . ∀δ > 0,
with probability ≥ 1− δ, we have with respect to the draw of sample S that:

sup
g∈G

∣∣∣∣∣E[g(Z)]− 1
n

n∑

i=1

g(Zi)

∣∣∣∣∣ ≤ 2Rn(G) + (b− a)

√
log 2/δ

2n
. (4)

In addition, ∀δ > 0, with probability ≥ 1− δ, we have with respect to the draw of S that:

sup
g∈G

∣∣∣∣∣E[g(Z)]− 1
n

n∑

i=1

g(Zi)

∣∣∣∣∣ ≤ 2R̂S(G) + 3(b− a)

√
log 4/δ

2n
. (5)

The proof is left as an exercise.
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3 Bounds for Binary Classification

Consider a set of binary classifiers H ⊂ {−1, 1}X . Let Z = X × {−1, 1}. Define another set G based on
H as G = {(x, y) → 1{h(x)6=y} : h ∈ H}. Let S = {Z1, . . . , Zn} = {(X1, Y1), . . . , (Xn, Yn)}, and also let
T = {X1, . . . , Xn}, which is the projection of S on the domain X . The empirical Rachemacher complexity
of H should be written R̂T (H), however, we will follow convention and write it as R̂S(H). There should
be no confusion since the domain of elements of H is X , so only the Xis in the sample can be used when
evaluating the empirical Rademacher complexity. Thus we have

R̂S(H) = Eσ

[
sup
h∈H

1
n

n∑

i=1

σih(Xi)

]
.

Lemma 1. R̂S(G) = 1
2R̂S(H)

Proof. From the definitions, we have

R̂S (G) = Eσ

[
sup
h∈H

1
n

n∑

i=1

σi1{h(Xi) 6=Yi}

]

= Eσ

[
sup
h∈H

1
n

n∑

i=1

σi
1− Yih (Xi)

2

]

= Eσ

[
1
2n

n∑

i=1

σi +
1
2

sup
h∈H

1
n

n∑

i=1

σi (−Yi)h (Xi)

]

=
1
2
Eσ

[
sup
h∈H

1
n

n∑

i=1

σih (Xi)

]

=
1
2
R̂S (H) ,

where the second to last step follows from the facts that Eσ [σi] = 0 and σi and σi (−Yi) have the same
distribution.

Now observe that E [g] = E
[
1{h(X)6=Y }

]
= R(h) when g ∈ G is defined in terms of h ∈ H. Note also that

1
n

∑n
i=1 g (Zi) = R̂n(h). This gives the following corollary:

Corollary 1. ∀δ > 0, with probability ≥ 1− δ,

sup
h∈H

(
R(h)− R̂n(h)

)
≤ Rn (H) +

√
ln (1/δ)

2n
,

and with probability ≥ 1− δ,

sup
h∈H

(
R(h)− R̂n(h)

)
≤ R̂S(H) + 3

√
ln(2/δ)

2n
.

Remark. A two-sided version of this corollary also holds, with δ → δ/2.

Example. Let Π = {A1, . . . , Ak} be a fixed partition of X , such as a regular partition or a recursive dyadic
partition. Let H = {classifiers that are constant on cells in Π}. Then |H| = 2k. We’ll obtain a bound on the
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empirical Rademacher complexity of H. Let `(A) denote the label assigned to A ∈ Π. Then

R̂S(H) = Eσ

[
sup
h∈H

1
n

n∑

i=1

σih (Xi)

]

=
1
n
Eσ


sup

h∈H

k∑

j=1

∑

i:Xi∈Aj

σih (Xi)




=
1
n
Eσ

[∑

A∈Π

sup
`(A)

∑

i:Xi∈A

σi`(A)

]

=
1
n

∑

A∈Π

Eσ

[
sup
`(A)

∑

i:Xi∈A

σi`(A)

]
.

Manipulating the terms inside the expectation gives

Eσ

[
sup
`(A)

∑

i:Xi∈A

σi`(A)

]
= Eσ

[
sup
`(A)

`(A)
∑

i:Xi∈A

σi

]

= Eσ

[∣∣∣∣∣
∑

i:Xi∈A

σi

∣∣∣∣∣

]
(`(A) ∈ {−1, 1})

= Eσ




√√√√
( ∑

i:Xi∈A

σi

)2



≤

√√√√√Eσ




( ∑

i:Xi∈A

σi

)2

 (Jensen’s inequality)

=
√

#{i : Xi ∈ A},

where the last line follows because Eσ (σiσj) =

{
0, i 6= j,

1, i = j
. If nj = #{i : Xi ∈ Aj}, then

R̂S(H) =
1
n

k∑

j=1

√
nj

=
k∑

j=1

√
P̂ (Aj)

n
,

where P̂ (Aj) = nj

n . The only inequality in the above derivation was Jensen’s inequality, and by the Kintchine-
Kahane inequality the reverse inequality holds if we include a multiplicative factor of

√
2, so the calculation

is tight up to this factor. The Rachemacher complexity in this example can actually be computed exactly
in terms of binomal probabilities. This is left as an exercise.

4 Proof of VC Inequality

To prove the VC inequality, we will focus on bounding R̂n(H) in terms of the shatter coefficient.
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Theorem 3. (Massart’s Lemma) Let A ⊆ Rn, |A| ≤ ∞. Set r = maxu∈A ‖u‖2 . Then

Eσ

[
1
n

sup
u∈A

n∑

i=1

σiui

]
≤ r

√
2 ln |A|
n

,

where u = (u1, . . . , un)T .

Proof. ∀ t ≥ 0, we have that

exp

(
tEσ

[
sup
u∈A

n∑

i=1

σiui

])
= exp

(
Eσ

[
t sup

u∈A

n∑

i=1

σiui

])

≤ Eσ

[
exp

(
t sup

u∈A

n∑

i=1

σiui

)]
(Jensen’s inequality)

= Eσ

[
sup
u∈A

exp

(
t

n∑

i=1

σiui

)]
(exponential is strictly increasing)

≤
∑

u∈A

Eσ

[
exp

(
t

n∑

i=1

σiui

)]
.

The summand is an MGF. Due to independence,

∑

u∈A

Eσ

[
exp

(
t

n∑

i=1

σiui

)]
=

∑

u∈A

n∏

i=1

Eσi [exp (tσiui)]

≤
∑

u∈A

n∏

i=1

exp
(
t2 (2ui)

2
/8

)
,

where the bound comes from the following lemma:

Lemma 2. Let V be a random variable on R with E [V ] = 0 and V ∈ [a, b] with probability one. Then for
all t > 0,

E
[
etV

] ≤ et2(b−a)2/8.

This lemma was given and proved as Lemma 1 in the notes on Hoeffding’s inequality. It was used to
prove Hoeffding’s inequality. In our case, we used V = σiui, a = −ui, and b = ui. Continuing with the proof
of Massart’s lemma,

∑

u∈A

n∏

i=1

exp
(
t2 (2ui)

2
/8

)
=

∑

u∈A

exp

(
t2

2

n∑

i=1

u2
i

)

=
∑

u∈A

exp

(
t2 ‖u‖22

2

)

≤
∑

u∈A

exp
(

t2r2

2

)

= |A| exp
(

t2r2

2

)
.

Taking the log of both sides and dividing by t gives

Eσ

[
sup
u∈A

n∑

i=1

σiui

]
≤ ln |A|

t
+

tr2

2

= r
√

2 ln |A|,
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where the last step follows from choosing t =
√

2 ln |A|
r . Dividing both sides by n completes the proof.

This theorem is the key result that bridges the gap between VC theory and Rademacher complexity. We
first state and prove a one-sided version of the VC inequality.

Theorem 4 (One-sided VC Inequality). For 0 < δ < 1, with probability ≥ 1− δ,

sup
h∈H

(
R(h)− R̂n(h)

)
≤

√
8 (ln SH(n) + ln (1/δ))

n
.

Equivalently, for any ε > 0,

Pr
(

sup
h∈H

(
R(h)− R̂n(h)

)
≥ ε

)
≤ SH(n)e−nε2/8. (6)

Proof. Let H = {−1, 1}X and S = (X1, . . . , Xn) ∈ Xn. Denote H|S = {(h (X1) , . . . , h (Xn)) : h ∈ H} . If
u ∈ H|S , then ‖u‖2 =

√
n. By Massart’s lemma,

Rn(H) = ES

[
Eσ

[
sup

h∈H|S

1
n

n∑

i=1

σih (Xi)

]]

≤ ES

[√
n2 ln |H|S |

n

]

≤
√

2 lnE |H|S |
n

(7)

(Jensen’s inequality)

≤
√

2 ln SH(n)
n

, (8)

where the last step follows from the fact that |H|S | ≤ SH(n). From Corollary 1 we deduce that with
probability ≥ 1− δ,

sup
h∈H

(
R(h)− R̂n(h)

)
≤

√
2 ln SH(n)

n
+

√
ln (1/δ)

2n
.

We now observe that for a, b ≥ 0,
√

a +
√

b ≤ √
a + b +

√
a + b = 2

√
a + b. Therefore, for 0 < δ < 1, with

probability ≥ 1− δ,

sup
h∈H

(
R(h)− R̂n(h)

)
≤

√
8 (ln SH(n) + ln (1/δ) /4)

n
(9)

≤
√

8 (ln SH(n) + ln (1/δ))
n

.

This establishes the first part of the theorem. To establish the second part, set the right-hand side equal to
ε and solve for δ (if no such δ exists, the bound holds trivially).

Remark. Note that step (7) is not necessary. We could have gone directly to (8) using the definition of
the shatter coefficient. However, the intermediate result gives a uniform deviation bounds in terms of the
expected cardinality of H|S , which we used to study monotone layers and convex sets in the lecture on VC
Theory.

Finally, we state the standard two-sided VC inequality, whose proof is left as an exercise.
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Theorem 5 (Two-sided VC Inequality). For 0 < δ < 1, with probability ≥ 1− δ,

sup
h∈H

∣∣∣R(h)− R̂n(h)
∣∣∣ ≤

√
8 (ln SH(n) + ln (2/δ))

n
.

Equivalently, for any ε > 0,

Pr
(

sup
h∈H

∣∣∣R(h)− R̂n(h)
∣∣∣ ≥ ε

)
≤ 2SH(n)e−nε2/8.

Exercises

1. Can you improve the constants in the empirical Rademacher complexity bound (2) through a single,
direct application of the bounded difference inequality?

2. Determine an exact formula for the empirical Rademacher complexity of the set of classifiers based on
a fixed partition (see example above).

3. Let G, G1, G2 denote arbitrary classes of functions Z → [a, b], and let c, d be arbitrary real numbers.
Show

(a) R̂S(cG + d) = |c|R̂(G), where cG + d := {g′(z) = cg(z) + d | g ∈ G}.
(b) R̂S(conv(G)) = R̂S(G), where conv(G) := {∑n

i=1 αigi |n ∈ N, αi ≥ 0,
∑

i αi = 1, gi ∈ G}.
(c) R̂S(G1 + G2) = R̂S(G1) + R̂S(G2), where G1 + G2 := {g(z) = g1(z) + g2(z) | g1 ∈ G1, g2 ∈ G2}.

4. Two-sided uniform deviation bounds.

(a) Prove Theorem 2. Hint: Apply the one-sided Rademacher bound again to −G.

(b) Prove Theorem 5. Hint: Observe that R(−h) = 1−R(h) and similarly for the empirical risk.

(c) Show that if G = −G, then the two-sided Rademacher bound holds with the same constants as the
one-sided version. In particular, the substitution δ → δ/2 is unnecessary.

(d) Show that if H = −H, then the two-sided VC inequality holds with the same constants as the
one-sided version. In particular, the substitution δ → δ/2 is unnecessary.

5. Use inequality (9) to improve the constant in the exponent of (6) at the expense of a larger term in
front of the exponential.


