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Kernels
Lecturer: Clayton Scott Scribe: Jun Guo, Soumik Chatterjee

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Introduction

These notes will introduce kernels which are the building blocks of modern kernel methods in machine
learning.

2 Review of Hilbert Spaces

Definition 1. A real inner product space (IPS) is a pair (V, 〈· , · 〉), where V is a real vector space and
〈· , · 〉 : V × V → R satisfies

(a) 〈u, u〉 > 0,∀u ∈ V and 〈u, u〉 = 0 =⇒ u = 0

(b) 〈u, v〉 = 〈v, u〉,∀u, v ∈ V .

(c) ∀a1, a2 ∈ R, u1, u2, v ∈ V , 〈a1u1 + a2u2, v〉 = a1〈u1, v〉+ a2〈u2, v〉.

Inner product spaces satisfy the Cauchy-Schwarz inequality:

Proposition 1. Suppose (V, 〈· , · 〉) is an IPS. Then ∀u, v ∈ V ,

|〈u, v〉| 6 ‖u‖ ‖v‖ .

where ‖u‖ ,
√
〈u, u〉.

Proof. Consider

G =
[
〈u, u〉 〈u, v〉
〈v, u〉 〈v, v〉

]
.

Now

G is a Gram matrix⇒ G is PSD
⇒ det(G) > 0

⇒ ‖u‖2 · ‖v‖2 − 〈u, v〉2 > 0
⇒ |〈u, v〉| 6 ‖u‖ ‖v‖ .

To show that G is a PSD matrix, observe that ∀
[
a
b

]
∈ R2,

[
a b

]
G

[
a
b

]
=
[
a b

] [ a〈u, u〉+ b〈u, v〉
a〈v, u〉+ b〈v, v〉

]
= 〈au+ bv, au+ bv〉
> 0.
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Observation: The proof of the Cauchy-Schwarz inequality used all properties of inner products except
definiteness: 〈u, u〉 = 0 =⇒ u = 0. This will be important below.

Definition 2. A metric space is a pair (M,d) where M is a set and d : M ×M → R satisfies:

(a) d(x, y) > 0 ∀x, y ∈M and d(x, y) = 0 ⇐⇒ x = y

(b) ∀x, y ∈M,d(x, y) = d(y, x)

(c) ∀x, y, z ∈M,d(x, z) 6 d(x, y) + d(y, z).

An IPS is a metric space with induced metric d(u, v) := ‖u− v‖ :=
√
〈u− v, u− v〉. Verification of (a)

and (b) is straightforward. To verify (c), it suffices to show

∀u, v ∈ V, ‖u+ v‖ 6 ‖u‖+ ‖v‖ , (1)

for then d(x, z) = ‖x− z‖ = ‖x− y + y − z‖ 6 ‖x− y‖+ ‖y − z‖. To see (1), observe

(‖w‖ − ‖v‖)2 = ‖w‖2 − 2 ‖w‖ ‖v‖+ ‖v‖2

6 ‖w‖2 − 2〈w, v〉+ ‖v‖2

= 〈w − v, w − v〉

= ‖w − v‖2 .

So,
|‖u‖ − ‖v‖| 6 ‖w − v‖ .

Letting w − v = u, we have ‖u+ v‖ 6 ‖u‖+ ‖v‖ .
Metric spaces allow us to study convergence sequences and continuity. We make the following definitions.

Definition 3. Let (M,d) be a metric space.

• We say a sequence (xn) converges iff ∃x∗ ∈M such that d(xn, x∗)→ 0 as n→∞.

• Suppose (M̃, d̃) is another metric space, and f : M → M̃ . We say f is continuous at x ∈ M iff
∀ sequences (xn) in M converging to x, the sequence (f(xn)) converges to f(x) in M̃ . We say f is
continuous if it is continuous at all x ∈M .

• A sequence (xn) is a Cauchy sequence iff ∀ε > 0, ∃N ∈ N (m,n > N =⇒ d(xm, xn) < ε).

• A metric space (M,d) is said to be complete iff every Cauchy sequence of points in M converges to a
point in M .

Remark. Every convergent sequence is a Cauchy sequence, but not conversely. This is easy to check.

Inner products are continuous in one argument when the other argument is held fixed.

Lemma 1. Let (V, 〈· , · 〉) be an IPS. Suppose un → u ∈ V , i.e., limn→∞ ‖un − u‖ = 0, and let v ∈ V . Then,

lim
n→∞

〈un, v〉 = 〈u, v〉,

i.e., the inner product is continuous in its first argument.

Proof. We need to show:
lim
n→∞

|〈un, v〉 − 〈u, v〉| = 0.

This follows from Cauchy-Schwarz: |〈un, v〉 − 〈u, v〉| = |〈un − u, v〉| 6 ‖un − u‖ · ‖v‖ → 0, as n → ∞, since
‖un − u‖ → 0.



3

Every metric space (M,d) has a completion (M∗, d∗), which is a complete metric space for which there
exists ϕ : M →M∗ satisfying:

(a) ϕ(M) is dense in M∗.

(b) ϕ is an isometry, i.e., ϕ is injective and ∀x, y ∈M,d∗(ϕ(x), ϕ(y)) = d(x, y).

Furthermore, any two completions of (M,d) are isometric, i.e., there exists a bijective, distance preserving
map between them. There is a standard construction of a completion. It is well worth understanding [1].

In the standard completion, it is not true that M ⊂ M∗, since M∗ consists of equivalence classes of
Cauchy sequences of points in M . However, in many cases there is a completion such that M ⊆M∗.

Example. Consider (Q, |· |), the rational numbers with the natural metric. This is not complete since one
can take a sequence of decimal expansions of some irrational number, e.g., 3, 3.1, 3.14, 3.141, 3.1419, . . .. Such
a sequence is Cauchy, but does not coverge to a point in Q. (R, |· |) is a completion of (Q, |· |), and in this
case ϕ is just the identity map.

Definition 4. A Hilbert space is a complete inner product space, where completeness is with respect to the
induced metric.

Hilbert spaces satisfy nice properties like the projection theorem and the Riesz representation theorem.
We’ll use these later.

3 Kernels

Let X be a set.

Definition 5. Let k : X × X → R. We say k is symmetric if and only if k(x, x′) = k(x′, x),∀x, x′ ∈ X .
We say k is positive definite (PD) if and only if ∀n ∈ N,∀x1, ..., xn ∈ X , the n× n matrix [k(xi, xj)]ni,j=1 is
positive semi-definite (PSD).

Theorem 1. Let k : X × X → R. The following are equivalent:

(a) k is positive definite and symmetric.

(b) ∃ a Hilbert space (F , 〈· , · 〉) and a function Φ : X → F s.t. ∀x, x′ ∈ X , k(x, x′) = 〈Φ(x),Φ(x′)〉

Definition 6. If k satisfies the conditions of the previous theorem, we say k is a kernel on X .

Remarks and terminology. Kernels are some times called positive definite symmetric kernels or inner
product kernels depending on which condition is being emphasized. Φ is called a feature map and F is called
the feature space (we’ll refer to X as the input space to avoid confusion). The feature map/space is not
unique.

Proof of Theorem 1. ((b) ⇒ (a)): Suppose (b) holds. Clearly k is symmetric because 〈· , · 〉 is. Furthermore,
for x1, ..., xn ∈ X , [k(xi, xj)]ni,j=1=[〈Φ(xi),Φ(xj)〉]ni,j=1, which is a Gram matrix, and therefore PSD. So k is
PD.

((a) ⇒ (b)): Assume k is positive definite and symmetric. Define

F0 =

{
n∑
i=1

αik(· , xi)

∣∣∣∣∣n ∈ N, x1, ..., xn ∈ X , α1, ..., αn ∈ R

}
.

For f =
∑n
i=1 αik(· , xi) and g =

∑m
j=1 βjk(· , x′j) in F0, define 〈f, g〉 =

∑
(i,j) αiβjk(xi, x′j).
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To check that this inner product is well-defined, i.e., independent of the particular representations of f
and g, observe

∑
(i,j)

αiβjk(xi, x′j) =
m∑
j=1

βjf(x′j)

=
n∑
i=1

αig(xi)

So 〈· , · 〉 only depends on the functions f and g, and not on their representations.
Next, we show that the properties of an inner product are satisfied.

• Symmetry: 〈f, g〉 =
∑
i,j αiβjk(xi, x′j) =

∑
j,i βjαik(x′j , xi) = 〈g, f〉, by symmetry of k.

• Linearity in first variable: Also an easy exercise.

• Nonnegativity: 〈f, f〉 =
∑
i,j αiαjk(xi, xj) > 0, because k is PD.

Therefore the Cauchy-Schwarz inequality holds. To establish definiteness, suppose 〈f, f〉 = 0. Then ∀x ∈ X ,

|f(x)| =

∣∣∣∣∣
n∑
i=1

αik(xi, x)

∣∣∣∣∣ ,
= |〈f, k(· , x)〉| , (since k(· , x) ∈ F0)

6
√
〈f, f〉· 〈k(· , x), k(· , x)〉 (Cauchy-Schwarz)

= 0.

Thus f(x) = 0,∀x ∈ X , i.e., f is the zero function. The axioms of an inner product are established.
Let (F , 〈·, ·〉F ) be a completion of F0 with ϕ : F0 → F the completion isometry. Define Φ : X → F by

Φ(x) = ϕ(k(· , x)). Then 〈Φ(x),Φ(x′)〉F = 〈k(· , x), k(· , x′)〉F0 = k(x, x′). This completes the proof.

4 Examples and properties of kernels

Let (F , 〈·, ·〉) be any Hilbert space. Then k(x, x′) = 〈x, x′〉 is a kernel on F , which can be seen by taking Φ
to be the identity map.

Example. k(x, x′) = xTx′ (dot product) is a kernel in Rd.

Lemma 2. If k1, k2 are kernels on X and α ≥ 0 , then αk and k1 + k2 are kernels.

Proof. The proof is left as an exercise.

Lemma 3. If k1 is a kernel on X1 and k2 is a kernel on X2, then k1 · k2 is a kernel on X1 × X2, where
(k1 · k2)((x1, x2), (x′1, x

′
2)) := k1(x1, x2)k2(x′1, x

′
2)

Proof sketch. Denote k = k1 · k2. Let Fi,Φi be Hilbert spaces and the feature maps corresponding to
ki, i = 1, 2. Let F1 ⊗ F2 be the tensor product of F1 and F2. This is an inner product space whose
underlying set is F1 ×F2, but the vector space structure is different from the usual one given by the direct
sum. The inner product on the tensor product is such that 〈(f1, f2), (f ′1, f

′
2)〉F1⊗F2 = 〈f1, f

′
1〉F1〈f2, f

′
2〉F2 .

Let F be a completion of F1 ⊗ F2, and ϕ : F1 × F2 → F an associated completion embedding. Define
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Φ : X1 ×X2 → F by Φ(x1, x2) = ϕ(Φ1(x1),Φ2(x2)). Denoting x = (x1, x2), x′ = (x′1, x
′
2),

k(x, x′) = k1(x1, x
′
1)k2(x2, x

′
2)

= 〈Φ1(x1),Φ1(x′1)〉F1〈Φ2(x2),Φ2(x′2)〉F2

= 〈(Φ1(x1),Φ2(x2)), (Φ1(x′1),Φ2(x′2))〉F1⊗F2

= 〈ϕ(Φ1(x1),Φ2(x2)), ϕ(Φ1(x′1),Φ2(x′2))〉F
= 〈Φ(x1, x2),Φ(x′1, x

′
2)〉F

= 〈Φ(x),Φ(x′)〉F

Lemma 4. If A : X̃ → X and k is a kernel on X , then k̃ defined by k̃(x, x′) = k(A(x), A(x′)) is a kernel on
X̃ .

Proof. The proof is left as an exercise.

Corollary 1. If k is a kernel on X , then so is k2 where k2(x, x′) := k(x, x′)2.

Proof. By Lemma 2, k · k is a kernel on X̃ × X̃ . Let A : X → X ×X be defined by A(x) = (x, x) .
By Lemma 3, (k · k)(A(x), A(x′)) defines a kernel on X as

(k · k)(A(x), A(x′)) = (k · k)((x, x), (x′, x′))
= k(x, x′)k(x, x′)

= k(x, x′)2

Example. Let p(t) =
n∑
j=1

αjt
j , αj ≥ 0. Then k(x, x′) = p(〈x, x′〉) is a kernel on Rd. Taking p(t) =

(t+c)m, c ≥ 0 gives the inhomogeneous polynomial kernel. An explicit feature map for k(x, x′) = (〈x, x′〉+c)m
can be derived via

k(x, x′) = (〈x, x′〉+ c)m

= (x1x
′
1 + x2x

′
2 + · · ·+ xdx

′
d + c)m

=
∑

(j1,··· ,jd)∈J(m)

(
m

j1, · · · , jd

)
(x1x

′
1)j1 · · · (xdx′d)jdcm−

P
ji

= 〈Φ(x),Φ(x′)〉

where J(m) = {(j1, · · · , jd) | ji ≥ 0,
∑
ji ≤ m} and Φ(x) is the finite dimensional vector

Φ(x) =

(√(
m

j1, · · · , jd

)
cm−

P
jixj11 · · ·x

jd
d c

m−
P
jixj11 · · ·x

jd
d

)
(j1,··· ,jd)∈J(m)

.

Lemma 5. Suppose the series f(z) =
∞∑
n=0

anz
n converges for z ∈ (−r, r) where r ∈ (0,∞]. If an ≥ 0 ∀n,

then

k(x, x′) :=
∞∑
n=0

an〈x, x′〉n

is a kernel on X = {x ∈ Rd | ‖x‖2 <
√
r}
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Example. For an β > 0, eβz =
∞∑
n=0

anz
n with an = βn

n! , and this holds for all z ∈ R (r = ∞). Therefore,

eβ〈x,x
′〉 is a kernel on Rd.

Proof. If ‖x‖ <
√
r, ‖x′‖ <

√
r then |〈x, x′〉| < ‖x‖‖x′‖ < r and so

∞∑
n=0

an〈x, x′〉n converges, meaning k is

well-defined. Since f(z) converges on (−r, r), it converges absolutely. Hence we can rearrange terms without
affecting the limit.

k(x, x′) =
∞∑
n=0

an〈x, x′〉n

=
∞∑
n=0

an(x1x
′
1 + · · ·+ xdx

′
d)
n

=
∞∑
n=0

an
∑

(j1,··· ,jd):ji≥0,
P
ji=n

(
n

j1, · · · , jd

) d∏
i=1

(xix′i)
ji

=
∑

(j1,··· ,jd):ji≥0

aj1+···+jd
(
∑
ji)!∏
ji!

d∏
i=1

(xix′i)
ji

= 〈Φ(x),Φ(x′)〉

where

Φ(x) =

(√
aj1+···+jd

(
∑
ji)!∏
ji!

∏
xjii

)
(j1,··· ,jd):ji≥0

and the Hilbert space is `2 := {(c1, c2, · · · )|
∑
c2i <∞}.

Lemma 6 (Normalized kernels). If k is a kernel on X such that k(x, x) > 0 for all x, then k̃ is also a kernel
on X , where k̃(x, x′) := k(x,x′)√

k(x,x)k(x′.x′)
.

You are asked to remove the positivity condition in an exercise.

Proof. Let Φ : X → F be a feature map for k. Define Φ̃(x) = Φ(x)
‖Φ(x)‖ . Then

k̃(x, x′) =
〈Φ(x),Φ(x′)〉√

〈Φ(x),Φ(x)〉〈Φ(x′),Φ(x′)〉
= 〈Φ̃(x), Φ̃(x′)〉,

so k̃ is a kernel.

Example. If k(x, x′) = e2γ〈x,x′〉, γ > 0, then

k̃(x, x′) =
e2γ〈x,x′〉

eγ〈x,x〉eγ〈x′,x′〉

= e−γ(‖x‖2−2〈x,x′〉+‖x′‖2)

= e−γ‖x−x
′‖2

is the well known Gaussian kernel.

The above arguments emphasize the inner product characterization of kernels. For proofs of the above
properties that leverage the positive definite symmetric characterization, see [2]. A good reference for
additional theoretical properties of kernels is [4].
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Exercises

1. Verify the linearity in the first argument axiom for the inner product defined in the proof of Theorem
1.

2. Properties of kernels

(a) Prove Lemma 2
(b) Prove Lemma 4
(c) Suppose (kn) is a sequence of kernels on X that converges pointwise to the function k, i.e., for all

x, x′ ∈ X , limn→∞ kn(x, x′) = k(x, x′). Show that k is a kernel on X .
(d) Use the previous property to generalize Lemma 5 by replacing the dot product with an arbitrary

kernel. Provide a revised theorem statement.
(e) When we introduced normalized kernels above, we assumed k(x, x′) > 0 ∀x, x′. Let’s remove this

restriction. Show that if k is a kernel, then so is

k̃(x, x′) :=

{
k(x,x′)√

k(x,x)k(x′,x′)
, if k(x, x) > 0 and k(x′, x′) > 0,

0, otherwise.

(f) Give an alternate proof that the Gaussian kernel is a kernel without invoking normalized kernels.

3. A radial kernel on Rd is a kernel of the form k(x, x′) = g(‖x − x′‖) for some function g, where the
norm is Euclidean norm.

(a) Show that if p ≥ 0, then

k(x, x′) =
∫ ∞

0

e−u‖x−x
′‖2p(u)du

is a radial kernel. Note: It can be shown that if g(‖x− x′‖) is a kernel for every dimension d ≥ 1,
then it must have the above form, where p(u)du is generalized to dµ where µ is a finite measure
[3].

(b) (Laplacian kernel) Show that for α > 0,

k(x, x′) = e−α‖x−x
′‖

is a kernel. Major hint:

e−α
√
s =

∫ ∞
0

e−su
α

2
√
πu3

e−
α2
4u du.

(c) (Multivariate Student-type kernel) Show that for α, β > 0,

k(x, x′) =
(

1 +
‖x− x′‖2

β

)−α
is a kernel. Hint: Consider the MGF of a gamma distribution.

(d) Show that
k(x, x′) = e−α‖x−x

′‖1

is a kernel, where ‖ · ‖1 is the 1-norm. This kernel could be considered “radial” with respect to
this alternative norm.

The Laplacian and multivariate Student kernels are alternatives to the Gaussian kernel. They do not
decay to zero as rapidly as the Gaussian kernel, and therefore are less likely to encounter numerical
problems. Sometimes the entries of a Gaussian kernel matrix can be all zeros and ones, or the kernel
matrix can be near-singular.

4. Learn about tensor products, including both the vector space and inner product space structure.
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