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Kernel Methods and the Representer Theorem
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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Introduction

These notes describe kernel methods for supervised learning problems. We have an input space X , an
output space Y, and training data (x1, y1), ..., (xn, yn). Keep in mind two important special cases: binary
classification where Y = {−1, 1}, and regression where Y ⊆ R.

2 Loss Functions

Definition 1. A loss function (or just loss) is a function L : Y × R → [0,∞). For a loss L and joint
distribution on (X,Y ), the L-risk of a function f : X → R is RL(f) := EXY L(Y, f(X)).

Examples. (a) In regression with Y = R, a common loss is the squared error loss, L(y, t) = (y − t)2, in
which case RL(f) = EXY (Y, f(X))2 is the mean squared error.

(b) In classification with Y = {−1, 1}, the 0-1 loss is L(y, t) = 1{sign(t)6=y} in which case RL(f) =
PXY (sign(f(X)) 6= Y ) is the probability of error.

(c) The 0-1 loss L(y, t) is neither differentiable nor convex in its second argument, which makes the empirical
risk difficult to optimize in practice. A surrogate loss is a loss that serves as a proxy for another
loss, usually because it possesses desirable qualities from a computational perspective. Popular convex
surrogates for the 0-1 loss are the hinge loss

L(y, t) = max(0, 1− yt)

and the logistic loss
L(y, t) = log(1 + e−yt).

Remarks. (a) In classification we associate f : X → R to the classifier h(x) = sign(f(x)) where sign(t) = 1
for t ≥ 0 and sign(t) = −1 for t < 0. The convention for sign(0) is not important.

(b) To be consistent with our earlier notation, we write R(f) for RL(f) when L is the 0-1 loss.

(c) In the classification setting, if L(y, t) = φ(yt) for some function φ, we refer to L as a margin loss.
The quantity yf(x) is called the functional margin, which is different from but related to the geometric
margin, which is the distance from a point x to a hyperplane. We’ll discuss the functional margin more
later.
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Figure 1: The logistic and hinge losses, as functions of yt, compared to the loss 1{ty≤0}, which upper bounds
the 0-1 loss 1{sign(t)6=y}.

3 The Representer Theorem

Let k be a kernel on X and let F be its associated RKHS. A kernel method (or kernel machine) is a
discrimination rule of the form

f̂ = arg min
f∈F

1
n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2F (1)

where λ ≥ 0. Since F is possibly infinite dimensional, it is not obvious that this optimization problem can
be solved efficiently. Fortunately, we have the following result, which implies that (2) reduces to a finite
dimensional optimization problem.

Theorem 1 (The Representer Theorem). Let k be a kernel on X and let F be its associated RKHS. Fix
x1, . . . , xn ∈ X , and consider the optimization problem

min
f∈F

D(f(x1), . . . , f(xn)) + P (‖f‖2F ), (2)

where P is nondecreasing and D depends on f only though f(x1), . . . , f(xn). If (2) has a minimizer, then it

has a minimizer of the form f =
n∑
i=1

αik(·, xi) where αi ∈ R. Furthermore, if P is strictly increasing, then

every solution of (2) has this form.

Proof. Denote J(f) = D(f(x1), ..., f(xn)) + P (‖f‖2F ). Consider the subspace S ⊂ F given by S =
span{k(·, xi) : i = 1, . . . , n}. S is finite dimensional and therefore closed. The projection theorem then
implies F = S ⊕ S⊥, i.e., every f ∈ F we can uniquely written f = f‖ + f⊥ where f‖ ∈ S and f⊥ ∈ S⊥.
Noting that 〈f⊥, k(·, xi)〉 = 0 for each i, the reproducing property implies

f(xi) = 〈f, k(·, xi)〉
= 〈f‖, k(·, xi)〉+ 〈f⊥, k(·, xi)〉
= f‖(xi).
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Then

J(f) = D(f(x1), ..., f(xn)) + P (‖f‖2F )

= D(f‖(x1), ..., f‖(xn)) + P (‖f‖2F )

≥ D(f‖(x1), ..., f‖(xn)) + P (‖f‖‖2F )
= J(f‖).

The inequality holds because P is non-decreasing and ‖f‖2F = ‖f‖‖2F + ‖f⊥‖2F . Therefore if f is a minimizer
of J(f) then so is f‖. Since f‖ ∈ S, it has the desired form. The second statement holds because if P is
strictly increasing then for f /∈ S, J(f) > J(f‖).

4 Kernel Ridge Regression

Now let’s use the representer theorem in the context of regression with the squared error loss, so that X = Rd
and Y = R. The kernel method solves

f̂ = arg min
f∈F

1
n

n∑
i=1

(yi − f(xi))2 + λ‖f‖2F ,

so the representer theorem applies with D(f(x1), . . . , f(xn)) =
n∑
i=1

(f(xi)− yi)2 and P (t) = λt, and we may

assume f =
n∑
i=1

αik(·, xi). So it suffices to solve

min
α∈Rn

n∑
i=1

(yi −
n∑
j=1

αjk(xj , xi))2 + λ‖
n∑
j=1

αjk(·, xj)‖2.

Denoting K = [k(xi, xj)]ni,j=1 and y = (y1, ..., yn)T , the objective function is

J(α) = αTKα− 2yTKα+ yT y + λαTKα.

Since this objective is strongly convey, it has a unique minimizer. Assuming K is invertible, ∂J
∂α = 0 gives

α = (K + λI)−1y and f̂(x) = αT k(x) where k(x) = (k(x, x1), ..., k(x, xn))T .
This predictor is kernel ridge regression, which can alternately be derived by kernelizing the linear ridge

regression predictor. Assuming xi, yi have zero mean, consider linear ridge regression:

min
β∈Rd

n∑
i=1

(yi − βTxi)2 + λ‖β‖2.

The solution is
β = (XXT + λI)−1Xy

where X = [x1 · · · xn] ∈ Rd×n is the data matrix. Using the matrix inversion lemma one can show

βTx = yTXT (XXT + λI)−1x = yT (XTX + λI)−1(〈x, x1〉, . . . , 〈x, xn〉)T

where the inner product is the dot product. Note that XTX is a Gram matrix, so the above predictor uses
elements of X entirely via inner products. If we replace the inner products by kernels,

〈x, x′〉 7→ k(x, x′) = 〈Φ(x),Φ(x′)〉,

it is as if we are performing ridge regression on the transformed data Φ(xi), where Φ is a feature map
associated to k. The resulting predictor is now nonlinear in x and agrees with the predictor derived from
the RKHS perspective.
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5 Support Vector Machines

A support vector machine (without offset) is the solution of

min
f∈F

1
n

n∑
i=1

max(0, 1− yif(xi)) +
λ

2
‖f‖2. (3)

By the representer theorem and strong convexity, the unique solution has the form f =
n∑
i=1

rik(·, xi). Plugging

this into (3) and applying Lagrange multiplier theory, it can be shown that the optimal ri have the form
ri = yiαi where αi solve

min
α
−

∑
i

αi +
1
2

∑
ij

yiyjαiαjk(xi, xj)

s.t 0 ≤ αi ≤
1
nλ

, i = 1, . . . , n.

This classifier is usually derived from an alternate perspective, that of maximizing the geometric (soft)
margin of a hyperplane, and then applying the kernel trick as was done with kernel ridge regression. This
derivation should be covered in EECS 545 Machine Learning.

Exercises

1. In some kernels methods it is desirable to include an offset term. Prove an extension of the representer
theorem where the class being minimized over is F + R, the set of all functions of the form f(x) + b
where f ∈ F and b ∈ R


