EECS 598: Statistical Learning Theory, Winter 2014

Calibrated Surrogate Losses

Lecturer: Clayton Scott

Scribe: Efrén Cruz Cortés

Topic 14

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1 Surrogate Losses for Classification

Recall a loss function is of the form $L: \mathcal{Y} \times \mathbb{R} \to [0, \infty)$. In binary classification $(\mathcal{Y} = \{-1, +1\})$, we usually measure performace with respect to the 0/1 loss $L(y,t) = \mathbf{1}_{\{\operatorname{sign}(t) \neq y\}}$, with the associated risk $R(f) = \mathbb{E}_{XY} \left[\mathbf{1}_{\{\operatorname{sign}(f(X)) \neq Y\}} \right]$. However, the 0/1 loss is neither convex nor differentiable with respect to t, which posses computational challenges for (penalized) empirical risk minimization. A surrogate loss L is a loss that is used as a proxy for the 0/1 loss, and usually has better computational properties. The associated risk is $R_L(f) = \mathbb{E}_{XY} \left[L(Y, f(X)) \right]$. Using a surrogate loss raises the question of whether minimizing $R_L(f)$ is still meaningful.

Denote

$$R^* = \inf_f R(f)$$

and

$$R_L^* = \inf_f R_L(f).$$

where in both cases the inf is over all measurable functions $f : \mathcal{X} \to \mathbb{R}$.

In these notes we will give sufficient conditions on L such that

$$R_L(f_n) \to R_L^* \implies R(f_n) \to R^*$$

To each L we will associate a nondecreasing function $\psi_L : [0, \infty) \to [0, \infty)$ such that for all joint distributions P_{XY} and all $f : \mathcal{X} \to \mathbb{R}$,

 $\psi_L \left(R_L(f) - R_L^* \right) \le R(f) - R^*.$

The sufficient conditions on L will imply ψ_L is strictly increasing and therefore invertible.

2 Excess Risk Bound

Recall $\eta(x) = \Pr(Y = 1 | X = x)$. Then

$$R_L(f) = \mathbb{E}_{XY} \left[L(Y, f(X)) \right]$$

= $\mathbb{E}_X \mathbb{E}_{Y|X} \left[L(Y, f(X)) \right]$
= $\mathbb{E}_X \left[\eta(X) L(1, f(X)) + (1 - \eta(X)) L(-1, f(X)) \right]$
= $\mathbb{E}_X \left[C_L \left(\eta(X), f(X) \right) \right]$

where $C_L(\eta, t) = \eta L(1, t) + (1 - \eta)L(-1, t)$ and $\eta \in [0, 1]$.

Define

$$C_L^*(\eta) := \inf_{t \in \mathbb{R}} C_L(\eta, t) ,$$

$$C_L^-(\eta) := \inf_{\substack{t:t(\eta - \frac{1}{2}) \le 0}} C_L(\eta, t)$$

and note that $R_L^* = \mathbb{E}_X [C_L^*(\eta(X))]$. Also define

$$H_L(\eta) = C_L^-(\eta) - C_L^*(\eta)$$

and note that $H_L \ge 0$. For $\epsilon \in [0, 1]$, define

$$\nu_L(\epsilon) := \min\left\{ H_L\left(\frac{1+\epsilon}{2}\right), H_L\left(\frac{1-\epsilon}{2}\right) \right\}$$
$$= \min_{\substack{\eta \in [0,1] \\ |2\eta-1|=\epsilon}} H_L(\eta).$$

Finally, define

$$\begin{split} \psi_L &= \nu_L^{**} \\ &= \text{the Fenchel-Legendre biconjugate of } \nu_L \\ &= \text{largest lower semi-continuous function bounded above by } \nu_L \,. \end{split}$$

An equivalent definition of the Fenchel-Legendre biconjugate is: given a function g, g^{**} is the unique function such that

$$\operatorname{Epi} g^{**} = \overline{\operatorname{co} \operatorname{Epi} g}$$

where Epi $g = \{(r, s) | g(r) \leq s\}$, co is the convex hull, and the overline indicates set closure. Note that $\nu_L(0) = 0$ (since $\eta = 1/2$ makes C_L^- unconstrained), so $\psi_L(0) = 0$, and that ψ_L is not decreasing because $\nu_L \geq 0$ and ψ_L is convex.

Example: Recall the *hinge loss* $L(y,t) = (1 - yt)_+$, where $(a)_+ = \max(0,a)$. Then

$$C_L(\eta, t) = \eta (1 - t)_+ + (1 - \eta)(1 + y)_+.$$

Noting that for each η , $C_L(\eta, t)$ is convex and piecewise linear with breakpoints at -1, +1, it is not hard to see that

$$C_L^* = \min_{t \in \mathbb{R}} C_L(\eta, t)$$

= 2 min { $\eta, 1 - \eta$ },

and

$$C_L^-(\eta) = \inf_{\substack{t:t(\eta - \frac{1}{2}) \le 0}} C_L(\eta, t)$$
$$= C_L(\eta, 0)$$
$$= 1.$$

Therefore

$$H_L(\eta) = 1 - 2\min\{\eta, 1 - \eta\}$$

which implies

 $\nu_L(\epsilon) = \epsilon = \psi_L(\epsilon) \,.$

See Figs. 1 and 2.

Figure 1: $C_L(\eta, t)$ for Example 1, where L is the hinge loss.

Figure 2: $H_L(\eta)$ for Example 1, where L is the hinge loss.

Theorem 1. For all L, P_{XY} , and f,

$$\psi_L \left(R(f) - R^* \right) \le R_L(f) - R_L^* \,.$$

Proof.

$$\begin{split} \psi_{L} \left(R(f) - R^{*} \right) &= \psi_{L} \left(\mathbb{E}_{X} \left[|2\eta(X) - 1| \mathbf{1}_{\{\operatorname{sign} \left(f(X) \right) \neq \operatorname{sign} \left(\eta(X) - \frac{1}{2} \right) \}} \right] \right) \\ &\leq \mathbb{E}_{X} \left[\psi_{L} \left(|2\eta(X) - 1| \mathbf{1}_{\{\operatorname{sign} \left(f(X) \right) \neq \operatorname{sign} \left(\eta(X) - \frac{1}{2} \right) \}} \right) \right] \quad \text{(Jensen's)} \\ &\leq \mathbb{E}_{X} \left[\psi_{L} \left(|2\eta(X) - 1| \mathbf{1}_{\{f(X)(\eta(X) - \frac{1}{2}) \leq 0\}} \right) \right] \\ &\leq \mathbb{E}_{X} \left[\nu_{L} \left(|2\eta(X) - 1| \mathbf{1}_{\{f(X)(\eta(X) - \frac{1}{2}) \leq 0\}} \right) \right] \\ &= \mathbb{E}_{X} \left[\mathbf{1}_{\{f(X)(\eta(X) - \frac{1}{2}) \leq 0\}} \nu_{L} \left(|2\eta(X) - 1| \right) \right] \quad \text{(since } \nu_{L}(0) = 0) \\ &= \mathbb{E}_{X} \left[\mathbf{1}_{\{f(X)(\eta(X) - \frac{1}{2}) \leq 0\}} \inf_{\substack{|2\eta - 1| = |2\eta(X) - 1| \\ |2\eta - 1| = |2\eta(X) - 1|}} H_{L}(\eta) \right] \\ &\leq \mathbb{E}_{X} \left[\mathbf{1}_{\{f(X)(\eta(X) - \frac{1}{2}) \leq 0\}} H_{L}(\eta(X)) \right] \\ &= \mathbb{E}_{X} \left[\mathbf{1}_{\{f(X)(\eta(X) - \frac{1}{2}) \leq 0\}} \inf_{t:t\left(\eta(X) - \frac{1}{2}\right) \leq 0} \left(C_{L}(\eta(X), t) - C_{L}^{*}(\eta(X)) \right) \right] \\ &\leq \mathbb{E}_{X} \left[C_{L}(\eta(X), f(X)) - C_{L}^{*}(\eta(X)) \right] \\ &= R_{L}(f) - R_{L}^{*}. \end{split}$$

Corollary 1. For the hinge loss,

$$R(f) - R^* \le R_L(f) - R_L^*.$$

Proof. As we saw above, in this case ψ_L is the identity.

3 Classification Calibrated Losses

Definition 1. We say L is classification calibrated, and write L is CC, if and only if $H_L(\eta) > 0 \forall \eta \neq 1/2$.

Theorem 2. L is CC if and only if ψ_L is invertible.

Proof sketch. (\implies) Suppose L is CC. We know $\psi_L(0) = 0$, and ψ_L is convex and nondecreasing, so it suffices to show $\psi_L(\epsilon) > 0 \ \forall \ \epsilon \in (0, 1]$. So let $\epsilon \in (0, 1]$. Then $\nu_L(\epsilon) = \min\left\{H_L\left(\frac{1+\epsilon}{2}\right), H_L\left(\frac{1-\epsilon}{2}\right)\right\} > 0$. Now, Epi ν_L is closed (since ν_L is lower semi-continuous, a lemma we will not prove), and so co Epi ν_L is closed. So if $\psi_L(\epsilon) = 0$, then $(\epsilon, 0)$ is a convex combination of points in Epi ν_L , which is impossible. (\Leftarrow) Similar. Left as an exercise.

4 Convex Margin Losses

Assume $L(y,t) = \phi(yt)$, where $\phi : \mathbb{R} \to [0,\infty)$.

Theorem 3. Suppose ϕ is convex and differentiable at 0. Then L is $CC \iff \phi'(0) < 0$.

Figure 3: Convex margin losses against the 0/1 loss.

Proof. ϕ is convex, therefore $C_L(\eta, t) = \eta \phi(t) + (1 - \eta)\phi(-t)$ is convex in t for fixed η . Also note that $\frac{\partial}{\partial t}C_L(\eta, t)\Big|_{t=0} = (2\eta - 1)\phi'(0)$. So

$$L \text{ is } CC \iff \forall \eta \neq \frac{1}{2}, \quad \inf_{t:t\left(\eta - \frac{1}{2}\right) \leq 0} > C_L^*(\eta)$$
$$\iff \forall \eta \neq \frac{1}{2}, \quad \frac{\partial}{\partial t} C_L(\eta, t) \Big|_{t=0} \begin{cases} > 0 & \text{if } \eta < \frac{1}{2} \\ < 0 & \text{if } \eta > \frac{1}{2} \end{cases}$$
$$\iff \phi'(0) < 0.$$

_		-
г		ъ

5 Further Reading

The material in these notes is based largely on [2]. Other key references include [1, 3]. The idea of calibrated surrogate losses has been extended to other supervised learning problems, including multiclass classification [4], cost-sensitive binary classification [5, 6], and ranking.

Exercises

- 1. Consider the exponential loss $L(y,t) = e^{-yt}$. Determine ψ_L .
- 2. Consider the logistic loss $L(y,t) = \log(1 + e^{-yt})$. Determine a closed form expression for H_L . Then express $\psi_L(\epsilon)$ as a power series in ϵ , and use this to argue that $\psi_L(\epsilon) \ge \epsilon^2/2$. *Hint:* Use an appropriate Taylor series.

References

 T. Zhang, "Statistical behavior and consistency of classification methods based on convex risk minimization," The Annals of Statistics, vol. 32, no. 1, pp. 56-85, 2004.

- [2] P. Bartlett, M. Jordan, and J. McAuliffe, "Convexity, classification, and risk bounds," J. Amer. Statist. Assoc., vol. 101, pp. 138-156, 2006.
- [3] I. Steinwart "How to compare different loss functions and their risks," *Constructive Approximation*, vol. 26, no. 2, pp. 225-287, 2007.
- [4] A. Tewari and P. Bartlett, "On the Consistency of Multiclass Classification Methods," J. Machine Learning Research, vol. 8, pp. 1007–1025, 2007.
- [5] C. Scott, "Surrogate Losses and Regret Bounds for Cost-Sensitive Classification with Example-Dependent Costs," in *Proceedings of the 28th International Conference on Machine Learning*, L. Getoor and T. Scheffer, Eds., Ominipress, pp. 697-704, 2011.
- [6] C. Scott, "Calibrated Asymmetric Surrogate Losses," *Electronic Journal of Statistics*, vol. 6, pp. 958-992, 2012.