
EECS 598: Statistical Learning Theory, Winter 2014 Topic 14

Calibrated Surrogate Losses
Lecturer: Clayton Scott Scribe: Efrén Cruz Cortés

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Surrogate Losses for Classification

Recall a loss function is of the form L : Y × R → [0,∞). In binary classification (Y = {−1,+1}), we
usually measure performace with respect to the 0/1 loss L(y, t) = 1{sign(t)6=y}, with the associated risk
R(f) = EXY

[
1{sign(f(X))6=Y }

]
. However, the 0/1 loss is neither convex nor differentiable with respect to t,

which posses computational challenges for (penalized) empirical risk minimization. A surrogate loss L is a
loss that is used as a proxy for the 0/1 loss, and usually has better computational properties. The associated
risk is RL(f) = EXY [L(Y, f(X))]. Using a surrogate loss raises the question of whether minimizing RL(f)
is still meaningful.

Denote

R∗ = inf
f
R(f)

and

R∗L = inf
f
RL(f).

where in both cases the inf is over all measurable functions f : X → R.
In these notes we will give sufficient conditions on L such that

RL(fn)→ R∗L =⇒ R(fn)→ R∗.

To each L we will associate a nondecreasing function ψL : [0,∞)→ [0,∞) such that for all joint distributions
PXY and all f : X → R,

ψL (RL(f)−R∗L) ≤ R(f)−R∗.

The sufficient conditions on L will imply ψL is strictly increasing and therefore invertible.

2 Excess Risk Bound

Recall η(x) = Pr(Y = 1|X = x). Then

RL(f) = EXY [L(Y, f(X))]
= EXEY |X [L(Y, f(X))]
= EX [η(X)L(1, f(X)) + (1− η(X))L(−1, f(X))]
= EX [CL (η(X), f(X))]

where CL (η, t) = ηL(1, t) + (1− η)L(−1, t) and η ∈ [0, 1].
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Define

C∗L(η) := inf
t∈R

CL(η, t) ,

C−L (η) := inf
t:t(η− 1

2 )≤0
CL(η, t)

and note that R∗L = EX [C∗L(η(X))]. Also define

HL(η) = C−L (η)− C∗L(η)

and note that HL ≥ 0. For ε ∈ [0, 1], define

νL(ε) := min
{
HL

(
1 + ε

2

)
, HL

(
1− ε

2

)}
= min

η∈[0,1]

|2η−1|=ε

HL(η) .

Finally, define

ψL = ν∗∗L

= the Fenchel-Legendre biconjugate of νL
= largest lower semi-continuous function bounded above by νL .

An equivalent definition of the Fenchel-Legendre biconjugate is: given a function g, g∗∗ is the unique function
such that

Epi g∗∗ = co Epi g

where Epi g = {(r, s) | g(r) ≤ s}, co is the convex hull, and the overline indicates set closure. Note that
νL(0) = 0 (since η = 1/2 makes C−L unconstrained), so ψL(0) = 0, and that ψL is not decreasing because
νL ≥ 0 and ψL is convex.

Example: Recall the hinge loss L(y, t) = (1− yt)+, where (a)+ = max (0, a). Then

CL(η, t) = η(1− t)+ + (1− η)(1 + y)+ .

Noting that for each η, CL(η, t) is convex and piecewise linear with breakpoints at −1,+1, it is not hard to
see that

C∗L = min
t∈R

CL(η, t)

= 2 min {η, 1− η} ,

and

C−L (η) = inf
t:t(η− 1

2 )≤0
CL(η, t)

= CL(η, 0)
= 1 .

Therefore

HL(η) = 1− 2 min {η, 1− η} ,

which implies

νL(ε) = ε = ψL(ε) .

See Figs. 1 and 2.
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Figure 1: CL(η, t) for Example 1, where L is the hinge loss.

Figure 2: HL(η) for Example 1, where L is the hinge loss.
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Theorem 1. For all L,PXY , and f ,

ψL (R(f)−R∗) ≤ RL(f)−R∗L .

Proof.

ψL (R(f)−R∗) = ψL

(
EX

[
|2η(X)− 1|1{sign (f(X)) 6=sign (η(X)− 1

2 )}

])
≤ EX

[
ψL

(
|2η(X)− 1|1{sign(f(X)) 6=sign(η(X)− 1

2 )}

)]
(Jensen’s)

≤ EX
[
ψL

(
|2η(X)− 1|1{f(X)(η(X)− 1

2 )≤0}

)]
≤ EX

[
νL

(
|2η(X)− 1|1{f(X)(η(X)− 1

2 )≤0}

)]
= EX

[
1{f(X)(η(X)− 1

2 )≤0}νL (|2η(X)− 1|)
]

(since νL(0) = 0)

= EX

1{f(X)(η(X)− 1
2 )≤0} inf

η∈[0,1]
|2η−1|=|2η(X)−1|

HL(η)


≤ EX

[
1{f(X)(η(X)− 1

2 )≤0}HL(η(X))
]

= EX

[
1{f(X)(η(X)− 1

2 )≤0} inf
t:t(η(X)− 1

2 )≤0
(CL(η(X), t)− C∗L(η(X)))

]
≤ EX [CL(η(X), f(X))− C∗L(η(X))]
= RL(f)−R∗L .

Corollary 1. For the hinge loss,
R(f)−R∗ ≤ RL(f)−R∗L.

Proof. As we saw above, in this case ψL is the identity.

3 Classification Calibrated Losses

Definition 1. We say L is classification calibrated, and write L is CC, if and only if HL(η) > 0 ∀ η 6= 1/2.

Theorem 2. L is CC if and only if ψL is invertible.

Proof sketch. ( =⇒ ) Suppose L is CC. We know ψL(0) = 0, and ψL is convex and nondecreasing, so it
suffices to show ψL(ε) > 0 ∀ ε ∈ (0, 1]. So let ε ∈ (0, 1]. Then νL(ε) = min

{
HL

(
1+ε
2

)
, HL

(
1−ε
2

)}
> 0. Now,

Epi νL is closed (since νL is lower semi-continuous, a lemma we will not prove), and so co Epi νL is closed.
So if ψL(ε) = 0, then (ε, 0) is a convex combination of points in Epi νL, which is impossible.
(⇐= ) Similar. Left as an exercise.

4 Convex Margin Losses

Assume L(y, t) = φ(yt), where φ : R→ [0,∞).

Theorem 3. Suppose φ is convex and differentiable at 0. Then L is CC ⇐⇒ φ′(0) < 0.
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Figure 3: Convex margin losses against the 0/1 loss.

Proof. φ is convex, therefore CL(η, t) = ηφ(t) + (1 − η)φ(−t) is convex in t for fixed η. Also note that
∂
∂tCL(η, t)

∣∣
t=0

= (2η − 1)φ′(0). So

L is CC ⇐⇒ ∀ η 6= 1
2
, inf
t:t(η− 1

2 )≤0
> C∗L(η)

⇐⇒ ∀ η 6= 1
2
,
∂

∂t
CL(η, t)

∣∣∣∣
t=0

{
> 0 if η < 1

2

< 0 if η > 1
2

⇐⇒ φ′(0) < 0.

5 Further Reading

The material in these notes is based largely on [2]. Other key references include [1, 3]. The idea of calibrated
surrogate losses has been extended to other supervised learning problems, including multiclass classification
[4], cost-sensitive binary classification [5, 6], and ranking.

Exercises

1. Consider the exponential loss L(y, t) = e−yt. Determine ψL.

2. Consider the logistic loss L(y, t) = log(1 + e−yt). Determine a closed form expression for HL. Then
express ψL(ε) as a power series in ε, and use this to argue that ψL(ε) ≥ ε2/2. Hint: Use an appropriate
Taylor series.
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