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Calibrated Surrogate Losses
Lecturer: Clayton Scott Scribe: Efrén Cruz Cortés

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Surrogate Losses for Classification

Recall a loss function is of the form L : Y x R — [0,00). In binary classification (¥ = {-1,+1}), we
usually measure performace with respect to the 0/1 loss L(y,t) = 1igign(t)£y}, With the associated risk
R(f) =Exy [1{Sign(f(x))¢y}]. However, the 0/1 loss is neither convex nor differentiable with respect to ¢,
which posses computational challenges for (penalized) empirical risk minimization. A surrogate loss L is a
loss that is used as a proxy for the 0/1 loss, and usually has better computational properties. The associated
risk is RL(f) = Exy [L(Y, f(X))]. Using a surrogate loss raises the question of whether minimizing Ry, (f)
is still meaningful.
Denote

R* = inf R(/)

and

Ry, = inf Re(f).

where in both cases the inf is over all measurable functions f: X — R.
In these notes we will give sufficient conditions on L such that

To each L we will associate a nondecreasing function ¢y, : [0, 00) — [0, c0) such that for all joint distributions
Pxy and all f: X — R,

Y1 (RL(f) — Ry) < R(f) — R*.

The sufficient conditions on L will imply ¢, is strictly increasing and therefore invertible.

2 Excess Risk Bound
Recall n(x) = Pr(Y = 1|X = ). Then

RL(f) = Exy [L(Y, f(X))]
=ExEy|x [L(Y, f(X))]
=Ex [n(X)L(1, f(X)) + (1 — n(X))L(-1, f(X))]
=Ex [Cr (n(X), f(X))]

where Cp, (n,t) =nL(1,t) + (1 —n)L(-1,t) and n € [0,1].



Define
Cr(n) = inf Cr(n,t),

and note that R} = Ex [C}(n(X))]. Also define

Hi(n) = Cp(n) = Cr(n)
and note that Hy, > 0. For € € [0, 1], define

v (€) == min {HL (1;6) o, (126)}

= min H .
n€(0,1] £(m)
[2n—1|=e

Finally, define

Y=g’
= the Fenchel-Legendre biconjugate of vy,

= largest lower semi-continuous function bounded above by vy, .

An equivalent definition of the Fenchel-Legendre biconjugate is: given a function g, ¢** is the unique function
such that
Epig"™ = coEpig

where Epig = {(r,s)|g(r) < s}, co is the convex hull, and the overline indicates set closure. Note that
v (0) = 0 (since n = 1/2 makes C; unconstrained), so 1, (0) = 0, and that ¢z is not decreasing because
vy > 0 and vy, is convex.

Example: Recall the hinge loss L(y,t) = (1 — yt)4, where (a)+ = max (0,a). Then
Cr(nt) =nl=t)y + (1 =n)(1+y)4.

Noting that for each 1, Cr(n,t) is convex and piecewise linear with breakpoints at —1,+1, it is not hard to
see that

Cr =min Cr(n,1)
=2min{n,1-n},
and

t:t(nfé)ﬁo
Cr(n,0)
=1.

Therefore
Hi(n) =1-2min{n,1-n},
which implies
vr(e) =€e=vr(e).
See Figs. 1 and 2.
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Cr(n,t) for Example 1, where L is the hinge loss.
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Hp (n) for Example 1, where L is the hinge loss.



Theorem 1. For all L, Pxy, and f,

YL (R(f) — R*) < RL(f) — R},

Proof.

Vi (R(f) — BY) = e (Ex

<Ex |¥r

<Ex |¥r

TN N N/

<Ex |vg

[20(X) — 1] l{f(X)(n(X)—%)SO})}

[2n(X) =1 1{f(X)(n(X)—%)SO}>}

120(X) = 1 Lsign (7(x))sign (n(X)—%)}D

= ]EX _1{f(X)(77(X)7%)§O}VL (|277(X) — 1‘):| (Since VL(O) = 0)

=Ex [ 1ix0)mx)-1)<0}

<Ex [1{f<X>(n<X)—%)SO}HL("(X))}

=Ex | L0 me0-1)<oy

= R(f) — RL.

Corollary 1. For the hinge loss,

R(f) — R* < R.(f) — Ry.

Proof. As we saw above, in this case vy, is the identity.

3 Classification Calibrated Losses

inf
n€lo,1]
20— 1527 (X)—1|

inf

t:t(n(X)fé)SO

< Ex [CL(n(X), F(X)) — C(n(X))]

Hi(n)

(Cr(n(X

|2n(X) — 1] 1{sign(f(x))¢sign(n(x),%)})} (Jensen’s)

);t) = Cr(n(X)))

Definition 1. We say L is classification calibrated, and write L is CC, if and only if Hr,(n) >0V n #1/2.

Theorem 2. L is CC if and only if 1y is invertible.

Proof sketch. ( = ) Suppose L is CC. We know v, (0) = 0, and v, is convex and nondecreasing, so it
suffices to show ¢r,(e) > 0V € € (0,1]. So let € € (0,1]. Then vy (e) = min { Hy, (1<
Epivy, is closed (since vy, is lower semi-continuous, a lemma we will not prove), and so coEpivy, is closed.
So if ¢, (€) = 0, then (e, 0) is a convex combination of points in Epivy, which is impossible.

( <) Similar. Left as an exercise.

4 Convex Margin Losses

Assume L(y,t) = ¢(yt), where ¢ : R — [0, 00).

) He (

Theorem 3. Suppose ¢ is convex and differentiable at 0. Then L is CC < ¢'(0) < 0.

1—e¢
2

)} > 0. Now,

O
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Figure 3: Convex margin losses against the 0/1 loss.

Proof. ¢ is convex, therefore Cr(n,t) = ne(t) + (1 — n)¢(—t) is convex in t for fixed 7. Also note that
0L, t)],_y = (20— 1)¢/(0). So

1
Lis OC <= Y+, (inf > Cr(n)

t:t(n—%)<0
0 >0 ifnp<i
=V , —Cr(n, 2
N7 g Ol )t_0{<0 if > 1
<~ ¢'(0) <0

5 Further Reading

The material in these notes is based largely on [2]. Other key references include [1, 3]. The idea of calibrated
surrogate losses has been extended to other supervised learning problems, including multiclass classification
[4], cost-sensitive binary classification [5, 6], and ranking.

Exercises

1. Consider the exponential loss L(y,t) = e"¥t. Determine ;.

2. Consider the logistic loss L(y,t) = log(1 + e ¥*). Determine a closed form expression for Hy. Then
express 17, (€) as a power series in ¢, and use this to argue that 91, (€) > €2/2. Hint: Use an appropriate
Taylor series.
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