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Rademacher Complexity of Kernel Classes
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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Introduction

In the last lecture we discussed surrogate losses, such as the hinge loss that gives rise to SVMs. We frequently
use a surrogate loss instead of the 0-1 loss because surrogate losses lead to more tractable optimization
probelms. However, our underlying goal is usually to minimize the 0-1 loss. We previously showed that if
L is classification calibrated, then consistency w.r.t RL implies consistency w.r.t. R. The next step is to
establish the consistency of kernel methods with respect to RL. Moving in this direction, in this lecture we
use Rademacher complexity to derive a uniform deviation bound, over a ball in a RKHS, for risks based on
surrogate losses that are Lipschitz continuous.

The bounds in this lecture do not require that Y be finite, so here Y refers to the response space of a
classification or regression problem.

2 Lipschitz Composition Property of Rademacher Complexity

Lemma 1. (Zhang and Meir, 2003) Suppose {φi} , {ψi} , i = 1, . . . , n, are two sets of functions on Θ such
that for each i and θ, θ′ ∈ Θ, |φi(θ)− φi(θ′)| ≤ |ψi(θ)− ψi(θ′)|. Then for all functions c : Θ → R,

E

[
sup

θ

{
c(θ) +

n∑

i=1

σiφi(θ)

}]
≤ E

[
sup

θ

{
c(θ) +

n∑

i=1

σiψi(θ)

}]
.

Before proving Lemma 1, we state some useful corollaries.

Corollary 1. Let G ⊆ [a, b]X and suppose τ : R → R is C-Lipschitz continuous. Then for any S =
(Z1, . . . , Zn),

R̂S(τ ◦ G) ≤ CR̂S(G)

where τ ◦ G = {x 7→ τ(g(x)) | g ∈ G} .
Proof. Apply lemma 1 with Θ = G, θ = g, φi(g) = τ(g(Zi)), ψi(g) = Cg(Zi), and c(θ) = 0. Since τ is
C-Lipschitz continuous, |τ(g(Zi))− τ(g(Z ′i))| ≤ C|g(Zi)− g(Z ′i)|, so the conditions of the lemma hold. Then
dividing both sides of the inequality by n, the LHS becomes R̂S(τ ◦ G) and the RHS becomes R̂S(G).

Corollary 2. Suppose F ⊆ [a, b]X and L : Y ×R→ [0,∞) is a loss such that L(y, ·) is C-Lipschitz ∀y ∈ Y.
Then for all S = ((X1, Y1), . . . , (Xn, Yn)),

R̂S(L ◦ F) ≤ CR̂S(F)

where L ◦ F = {(x, y) 7→ L(y, f(x)) | f ∈ F}.
Proof. Let Θ = F , θ = f, φi(f) = L(Yi, f(Xi)), ψi(f) = Cf(Xi), and c(θ) = 0. Now argue as in the proof of
Corollary 1.
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Note. Corollaries 1 and 2 are similar except for the domains of the function classes; whereas the domains
of the functions classes are the same in Corollary 1, they are different in Corollary 2.

Proof of Lemma 1. By induction. The lemma holds for n = 0, because in that case we only have c(θ) on both
sides of the inequality. Now suppose the lemma holds for some n > 0 and let σ be a vector of Rademacher
variables. Then

Eσ

[
sup

θ

{
c(θ) +

n+1∑

i=1

σiφi(θ)

}]

= Eσ1,...,σnEσn+1

[
sup

θ

{
c(θ) +

n+1∑

i=1

σiφi(θ)

}]

= Eσ1,...,σn

[
1
2

sup
θ

{
c(θ) +

n∑

i=1

σiφi(θ) + φn+1(θ)

}
+

1
2

sup
θ′

{
c(θ′) +

n∑

i=1

σiφi(θ′)− φn+1(θ′)

}]
(1)

= Eσ1,...,σn

[
sup
θ,θ′

{
c(θ) + c(θ′)

2
+

n∑

i=1

σi
φi(θ) + φi(θ′)

2
+
φn+1(θ)− φn+1(θ′)

2

}]

= Eσ1,...,σn

[
sup
θ,θ′

{
c(θ) + c(θ′)

2
+

n∑

i=1

σi
φi(θ) + φi(θ′)

2
+
|φn+1(θ)− φn+1(θ′)|

2

}]
(2)

≤ Eσ1,...,σn

[
sup
θ,θ′

{
c(θ) + c(θ′)

2
+

n∑

i=1

σi
φi(θ) + φi(θ′)

2
+
|ψn+1(θ)− ψn+1(θ′)|

2

}]
(Lemma 1 conditions)

= Eσ1,...,σn

[
sup
θ,θ′

{
c(θ) + c(θ′)

2
+

n∑

i=1

σi
φi(θ) + φi(θ′)

2
+
ψn+1(θ)− ψn+1(θ′)

2

}]
(same as (2) above)

= Eσ1,...,σnEσn+1

[
sup

θ

{
c(θ) + σn+1ψn+1(θ) +

n∑

i=1

σiφi(θ)

}]
(reversing above steps, applied to ψn+1)

= Eσn+1Eσ1,...,σn

[
sup

θ

{
c(θ) + σn+1ψn+1(θ) +

n∑

i=1

σiφi(θ)

}]

≤ Eσn+1Eσ1,...,σn

[
sup

θ

{
c(θ) + σn+1ψn+1(θ) +

n∑

i=1

σiψi(θ)

}]
(induction hypothesis)

= Eσ

[
sup

θ

{
c(θ) +

n+1∑

i=1

σiψi(θ)

}]

Where (1) follows because σn+1 is uniformly distributed on {−1,+1}. To see that (2) holds, note that if
φn+1(θ) < φn+1(θ′), then swapping θ and θ′ increases the last term while leaving the others fixed.

3 Kernel Classes

Theorem 1. Suppose k is a bounded kernel with supx

√
k(x, x) = B < ∞ and let F be its RKHS. Let

M > 0 be fixed. Then for any S = (X1, ..., Xn),

R̂S(Bk(M)) ≤ MB√
n

where Bk(M) = {f ∈ F | ‖f‖F ≤M}
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Proof. Fix S = (X1, ..., Xn). Then

R̂S(Bk(M)) = Eσ

[
sup

f∈Bk(M)

1
n

n∑

i=1

σif(Xi)

]

=
1
n
Eσ

[
sup

f∈Bk(M)

n∑

i=1

σi 〈f, k(·, Xi)〉
]

=
1
n
Eσ

[
sup

f∈Bk(M)

〈
f,

n∑

i=1

σik(·, Xi)

〉]
(linearity of inner product)

=
1
n
E

[〈
M

∑n
i=1 σik(·, Xi)

‖∑n
i=1 σik(·, Xi)‖ ,

n∑

i=1

σik(·, Xi)

〉]
(Cauchy-Schwartz condition for equality)

=
M

n
Eσ

[∥∥∥∥∥
n∑

i=1

σik(·, Xi)

∥∥∥∥∥

]

=
M

n
Eσ




√√√√
∥∥∥∥∥

n∑

i=1

σik(·, Xi)

∥∥∥∥∥

2



≤ M

n

√√√√Eσ

∥∥∥∥∥
n∑

i=1

σik(·, Xi)

∥∥∥∥∥

2

(Jensen’s inequality)

=
M

n

√√√√
n∑

i=1

‖k(·, Xi)‖2 (Eσ [σiσj ] = 0, i 6= j)

=
M

n

√√√√
n∑

i=1

k(Xi, Xi) (reproducing property)

≤ M

n

√
nB2

=
MB√
n
.

Note. M
n

√∑n
i=1 k(Xi, Xi) = M

n

√
tr(K), where K is the kernel matrix. Also, any kernel on a compact set

satisfies supx

√
k(x, x) <∞, provided k is continuous.

Note. By the Kintchine-Kahane inequality, the first inequality above holds in the opposite direction with
an additional factor of

√
2.

Now we can derive a uniform deviation bound on balls Bk(M) in the RKHS of kernel k. Recall the
two-sided Rademacher complexity bound:

Suppose G ⊆ [a, b]Z and Z1, ..., Zn are iid. Then ∀δ > 0 w.p. ≥ 1− δ w.r.t. (Z1, . . . , Zn),

sup
g∈G

∣∣∣∣∣Eg(Z)− 1
n

n∑

i=1

g(Zi)

∣∣∣∣∣ ≤ 2Rn(G) + (b− a)

√
ln(2/δ)

2n
. (3)

We can apply this bound with G = L ◦ Bk(M) and Z = (X,Y ). Then g(Z) = L(Y, f(X)) for f ∈ Bk(M),
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and
Eg(Z) = EL(Y, f(X)) = RL(f)

Similarly, we have
1
n

∑
g(Zi) =

1
n

∑
L(Yi, f(Xi)) =: R̂L(f)

This gives us RL(f) − R̂L(f) on the LHS of (3) and Rn(L ◦ Bk(M)) in the first term on the RHS. We
can use our previous results to bound the RHS, which leads to the following theorem:

Theorem 2. Let k be a bounded kernel, supx

√
k(x, x) = B <∞. Suppose L(y, ·) is C-Lipschitz continuous

for all y ∈ Y, and that L0 := supy∈Y L(y, 0) < ∞. Fix M > 0 and δ > 0. Then w.p. ≥ 1− δ w.r.t. the iid
sample ((X1, Y1), . . . , (Xn, Yn)),

sup
f∈Bk(M)

∣∣∣RL(f)− R̂L(f)
∣∣∣ ≤ 2CMB√

n
+ (L0 + CMB)

√
ln(2/δ)

2n
.

Proof. The first term on the RHS comes from Corollary 2 and Theorem 1, noting that Rn(Bk(M)) =
ER̂S(Bk(M)) ≤MB/

√
n. The term b− a from (3) results from the observation that for f ∈ Bk(M),

‖f‖∞ = sup
x∈X

|f(x)|

= sup
x∈X

|〈f, k(·, x)〉F | (reproducing property)

≤ sup
x∈X

‖f‖F‖k(·, x)‖F (Cauchy-Schwarz)

≤MB.

Then a := 0 ≤ g(Z) = L(Y, f(X)) ≤ L0 + CMB =: b.

Note. The assumption L0 < ∞ always holds for classification since Y is finite. The bound also applies to
some regression settings.

Note. Some common loss functions, such as the hinge and logistic losses, satisfy the Lipschitz assumption,
but others, such as the exponential and squared error losses, do not.
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