EECS 598: Statistical Learning Theory, Winter 2014

Topic 17

Universal Consistency of SVMs and Other Kernel Methods

Lecturer: Clayton Scott

 $Scribe:\ Kristjan\ Greenewald$

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1 Introduction

As before, the following supervised learning setup is considered. There are available n iid training examples $(X_1, Y_1), \ldots, (X_n, Y_n)$ from a distribution P_{XY} on $\mathcal{X} \times \mathcal{Y}$. Let k be a kernel on \mathcal{X} with RKHS \mathcal{F} , and let $L: \mathcal{Y} \times \mathbb{R} \to [0, \infty)$ be a loss. Consider the kernel method

$$\widehat{f}_n = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n L(Y_i, f(X_i)) + \lambda \|f\|_{\mathcal{F}}^2.$$

It will be shown that under sufficient conditions on k, L, and $\lambda = \lambda_n$ that $R_L(\hat{f}_n) \xrightarrow{a.s} R_L^* \forall P_{XY}$ and $R(\hat{f}_n) \xrightarrow{a.s} R^* \forall P_{XY}$.

Definition 1 (Lipschitz Loss). A Lipschitz loss is any loss L such that for every $y \in \mathcal{Y}$, $L(y, \cdot)$ is C-Lipschitz where C does not depend on y.

2 Large RKHSs

Proofs of several results is the section may be found in [1], Chs. 4 and 5, along with additional results and discussion. Recall

$$R_L^* = \inf\{R_L(f) \mid f : \mathcal{X} \to \mathbb{R}\}$$

and define

$$R_{L,\mathcal{F}}^* = \inf\{R_L(f) \mid f \in \mathcal{F}\}.$$

There exist kernels for which these are equal.

Definition 2 (Universal Kernels). Let \mathcal{X} be a compact metric space. We say a kernel k on \mathcal{X} is universal if its RKHS \mathcal{F} is dense in $\mathcal{C}(\mathcal{X})$, the set of continuous functions $\mathcal{X} \to \mathbb{R}$, with respect to the supremum norm. That is, $\forall \epsilon > 0$, $\forall g \in \mathcal{C}(\mathcal{X})$, $\exists f \in \mathcal{F}$ such that

$$||f - g||_{\infty} := \sup_{x \in \mathcal{X}} |f(x) - g(x)| < \epsilon.$$

Facts about universal kernels:

- 1. If k is universal, then $R_{L,\mathcal{F}}^* = R_L^*$ for any Lipschitz loss L.
- 2. If $p(t) = \sum_{n>0} a_n t^n$ for |t| < r and $a_n > 0 \forall n$, then

$$k(x, x') = p(\langle x, x' \rangle_{\mathbb{R}^d})$$

is universal on $\mathcal{X} = \{x \in \mathbb{R}^d \mid ||x|| < \sqrt{r}\}$. Example: $e^{\beta \langle x, x' \rangle}$ is universal on any compact set in \mathbb{R}^d . The proof uses the Stone-Weierstrass Theorem.

- 3. If k is universal on \mathcal{X} , then so is the associated normalized kernel. Hence the Gaussian kernel $e^{-\gamma ||x-x'||^2}$ is universal on any compact set in \mathbb{R}^d . The proof follows from definitions relatively easily.
- 4. Every nonconstant radial kernel of the form

$$k(x, x') = \int_0^\infty e^{-u \|x - x'\|^2} d\mu(u)$$

where μ is a nonnegative finite measure, is universal on any compact set in \mathbb{R}^d . See [2]. This includes the Gaussian, Laplacian, and multivariate Student kernels.

- 5. If k is universal, then k is characteristic, which means the map $P \mapsto \int k(\cdot, x) dP(x) \in \mathcal{F}$ is injective.
- 6. If k is universal on \mathcal{X} , and $A, B \subseteq \mathcal{X}$ are disjoint and compact, then $\exists f \in \mathcal{F}$ such that $f(x) > 0 \forall x \in A$ and $f(x) < 0 \forall x \in B$.

Proof. Let d be the metric on \mathcal{X} . For $C \subseteq \mathcal{X}$ define $d(x,C) = \inf_{x' \in C} d(x,x')$. Consider the function

$$g(x) = \frac{d(x,B)}{d(x,A) + d(x,B)} - \frac{d(x,A)}{d(x,A) + d(x,B)}$$

Since d(x, C) is continuous in x (proof left as an exercise), $g \in \mathcal{C}(\mathcal{X})$. Observe that g(x) = 1 for $x \in A$ and g(x) = -1 for $x \in B$. Let $\epsilon > 0$ and let $f \in \mathcal{F}$ such that $||f - g||_{\infty} < \epsilon$. Then $f \ge 1 - \epsilon$ on A and $f \le -1 + \epsilon$ on B.

This means \mathcal{F} has infinite VC dimension. This can be seen by letting $\{X_1, \ldots, X_n\} \in \mathcal{X}$, distinct, $Y_1, \ldots, Y_n \in \{+1, -1\}$, and setting $A = \{X_i | Y_i = +1\}, B = \{X_i | Y_i = -1\}$.

This property has another interesting consequence. Let $\Phi_0 : \mathcal{X} \to \mathcal{F}_0$ be any feature map for k. By an exercise in Topic 12, we know that

$$\mathcal{F} = \{ f = \langle w, \Phi_0(\cdot) \rangle_{\mathcal{F}_0}, w \in \mathcal{F}_0 \}.$$

If $f \in \mathcal{F}$, let w be such that $f = \langle w, \Phi_0(\cdot) \rangle_{\mathcal{F}_0}$. Then f is a linear classifier with respect to the transformed data, $(\Phi_0(X_1), Y_1), \ldots, (\Phi_0(X_n), Y_n)$. Let

$$A = \{ \Phi_0(X_i) | Y_i = 1 \}, \quad B = \{ \Phi_0(X_i) | Y_i = -1 \}.$$

Then by Prop. 6, there exists a linear classifier such that the distance from that hyperplane to *every* training point

$$\frac{|\langle w, \Phi_0(x_i)\rangle|}{\|w\|}$$

is approximately the same. This property is certainly not true for the standard dot product kernel on \mathbb{R}^d , and therefore we must be careful when applying our intuition from 2 and 3 dimension to universal kernels.

One drawback of universal kernels is that \mathcal{X} must be compact. While this may not be a limitation in practical applications, it does exclude the theoretically interesting case $\mathcal{X} = \mathbb{R}^d$. Fortunately, the following is true.

Theorem 1. If k is a Gaussian kernel on $\mathcal{X} = \mathbb{R}^d$ and L is Lipschitz, then $R^*_{L,\mathcal{F}} = R^*_L$.

3 Universal Consistency

Theorem 2. Let k be a kernel such that $R_{L,\mathcal{F}}^* = R_L^*$. Let L be a Lipschitz loss for which $L_0 := \sup_{y \in \mathcal{Y}} L(y,0) < \infty$. Assume $\sup_{x \in \mathcal{X}} \sqrt{k(x,x)} = B < \infty$. Let $\lambda = \lambda_n \to 0$, such that $n\lambda_n \to \infty$ as $n \to \infty$. Then $R_L(\widehat{f_n}) - R_L^* \xrightarrow{a.s.} 0 \quad \forall P_{XY}$.

Corollary 1. If in addition L is classification calibrated, then $R(\hat{f}_n) - R^* \xrightarrow{a.s.} 0 \quad \forall P_{XY}$.

Note. The condition $L_0 < \infty$ always holds for classification problems since \mathcal{Y} is finite.

Proof of Theorem 2. Denote

$$J(f) = \frac{1}{n} \sum_{i=1}^{n} L(Y_i, f(X_i)) + \lambda_n ||f||^2$$

= $\widehat{R}_L(f) + \lambda_n ||f||^2.$

Observe that $J(\hat{f}_n) \leq J(0) \leq L_0$. Therefore $\lambda_n \|\hat{f}_n\|^2 \leq L_0 - \hat{R}_L(\hat{f}_n) \leq L_0$ and so $\|\hat{f}_n\|^2 \leq L_0/\lambda_n$. Set $M_n = \sqrt{L_0/\lambda_n}$ so that $\hat{f}_n \in B_k(M_n)$. Let $\epsilon > 0$. By the Borel-Cantelli Lemma it suffices to show

$$\sum_{n\geq 0} \Pr(R_L(\widehat{f}_n) - R_L^* \geq \epsilon) < \infty.$$

Fix $f_{\epsilon} \in \mathcal{F}$ s.t. $R_L(f_{\epsilon}) \leq R_L^* + \epsilon/2$. Note that $f_{\epsilon} \in B_k(M_n)$ for *n* sufficiently large. By the two-sided Rademacher complexity bound for balls in a RKHS (Topic 15), for such large *n* and with probability $\geq 1 - \delta$ w.r.t. the training data,

$$\begin{aligned} R_L(\widehat{f}_n) &\leq \widehat{R}_L(\widehat{f}_n) + \frac{2CBM_n}{\sqrt{n}} + (L_0 + CBM_n)\sqrt{\frac{\ln 2/\delta}{2n}} \\ &\leq \widehat{R}_L(f_\epsilon) + \lambda_n \|f_\epsilon\|^2 - \lambda_n \|\widehat{f}_n\|^2 + 2CBM_n + (L_0 + CBM_n)\sqrt{\frac{\ln 2/\delta}{2n}} \\ &\quad \text{(because } J(\widehat{f}_n) \leq J(f_\epsilon) \text{ by definition of } \widehat{f}_n) \\ &\leq \widehat{R}_L(f_\epsilon) + \lambda_n \|f_\epsilon\|^2 + 2CBM_n + (L_0 + CBM_n)\sqrt{\frac{\ln 2/\delta}{2n}} \\ &\leq R_L(f_\epsilon) + \lambda_n \|f_\epsilon\|^2 + 4CBM_n + 2(L_0 + CBM_n)\sqrt{\frac{\ln 2/\delta}{2n}}. \end{aligned}$$

Note the Rademacher complexity bound is used twice, in the first and last steps. Take $\delta = n^{-2}$, and let N be such that $n \ge N$ implies that both $f_{\epsilon} \in B_k(M_n)$ and

$$\lambda_n \|f_{\epsilon}\|^2 + 4CB\sqrt{\frac{L_0}{n\lambda_n}} + 2(L_0 + CB\sqrt{\frac{L_0}{n\lambda_n}})\sqrt{\frac{\ln 2n^2}{2n}} < \epsilon/2.$$

Then for $n \ge N$, w.p. $\ge 1 - n^{-2}$

$$R_L(\hat{f}_n) < R_L(f_\epsilon) + \epsilon/2$$

$$\leq R_L^* + \epsilon.$$

Therefore

$$\sum_{n\geq 1} \Pr(R_L(\widehat{f}_n) - R_L^* \ge \epsilon) \le N - 1 + \sum_{n\geq N} \frac{1}{n^2} < \infty.$$

Remark. Both the hinge and logistic losses are Lipschitz and classification calibrated. Therefore, both the support vector machine and kernel logistic regression, together with a bounded and universal kernel (such as a nonconstant radial kernel, e.g., Gaussian, Laplacian, multivariate Student), and regularization parameter tending to zero slower than 1/n, are universally consistent on any compact subset of \mathbb{R}^d .

Remark. Note that the consistency result does not require $\mathcal{Y} = \{-1, +1\}$. Thus, consider a regression problem with $\mathcal{Y} = [a, b] \subset \mathbb{R}$ and a clipped loss such as

$$L(y,t) = \min\{L_B, |y-t|^p\},\$$

 $p \ge 1$, $L_B > 0$. Then L satisifies the assumptions of the theorem. However, note that this loss is nonconvex. Other techniques exist for addressing unbounded output spaces and convex regression losses.

Exercises

- 1. In the definition of universal kernels, why is \mathcal{X} required to be compact?
- 2. Prove Fact 3 about universal kernels.
- 3. Rates for linear SVMs under hard margin assumption (there are some errors in the constants below).
 - (a) Let $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{-1, 1\}$, and L be the hinge loss. Consider the linear classifier $\widehat{f}_n(x) = \widehat{w}_n^T x$ where \widehat{w}_n is the solution of

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} L(Y_i, w^T X_i) + \lambda \|w\|^2$$

Assume the following about P_{XY} . We say \mathcal{L} is a separating hyperplane if there exists w such that $\mathcal{L} = \{x : w^T x = 0\}$ and $\Pr(Y w^T X > 0) = 1$.

- (Hard margin assumption) There exists a separating hyperplane \mathcal{L} and a $\Delta > 0$ such that $\Pr(X \in \mathcal{L} + \Delta) = 0$, where $\mathcal{L} + \Delta$ is the set of all points within Δ of \mathcal{L} .
- $\Pr(||X|| \le B) = 1$ for some B > 0.

Show that with probability at least $1 - \delta$,

$$R(\widehat{f}_n) \le \frac{4MB}{\sqrt{n}} + \frac{\lambda}{\Delta} + 2\sqrt{\frac{\log(2/\delta)}{2n}}$$

for some constant M, and express M in terms of Δ and λ (M should be inversely proportional to both). Show that for appropriate growth of λ , $\mathbb{E}R(\widehat{f}_n) = O(n^{-1/3})$.

(b) If we know the hard margin condition holds a priori, it makes sense to let \hat{w}_n be the hard margin SVM, obtained by solving

$$\min_{w} \|w\|^2$$

s.t. $Y_i w^T X_i \ge 1$

This classifier maximizes the distance from the hypeplane $\{x : w^T x = 0\}$ to the nearest training data point, subject to being a separating hyperplane. Show that the same bound as in (a) holds but without the λ/Δ term, and with an M that is no larger than the M from (a). Deduce that $\mathbb{E}R(\hat{f}_n) = O(n^{-1/2})$.

References

- [1] I. Steinwart and A. Christmann, Support vector machines, Springer 2008.
- [2] C. Micchelli, Y. Xu and H. Zhang, "Universal Kernels," Journal of Machine Learning Research, vol. 7, pp. 2651-2667, 2006.