
EECS 598: Statistical Learning Theory, Winter 2014 Topic 17

Universal Consistency of SVMs and Other Kernel Methods
Lecturer: Clayton Scott Scribe: Kristjan Greenewald

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Introduction

As before, the following supervised learning setup is considered. There are available n iid training examples
(X1, Y1), . . . , (Xn, Yn) from a distribution PXY on X × Y. Let k be a kernel on X with RKHS F , and let
L : Y × R→ [0,∞) be a loss. Consider the kernel method

f̂n = arg min
f∈F

1
n

n∑

i=1

L(Yi, f(Xi)) + λ‖f‖2F .

It will be shown that under sufficient conditions on k, L, and λ = λn that RL(f̂n) a.s−−→ R∗L ∀PXY and
R(f̂n) a.s−−→ R∗ ∀PXY .

Definition 1 (Lipschitz Loss). A Lipschitz loss is any loss L such that for every y ∈ Y, L(y, ·) is C-Lipschitz
where C does not depend on y.

2 Large RKHSs

Proofs of several results is the section may be found in [1], Chs. 4 and 5, along with additional results and
discussion. Recall

R∗L = inf{RL(f) | f : X → R}
and define

R∗L,F = inf{RL(f) | f ∈ F}.
There exist kernels for which these are equal.

Definition 2 (Universal Kernels). Let X be a compact metric space. We say a kernel k on X is universal if
its RKHS F is dense in C(X ), the set of continuous functions X → R, with respect to the supremum norm.
That is, ∀ε > 0, ∀g ∈ C(X ), ∃f ∈ F such that

‖f − g‖∞ := sup
x∈X

|f(x)− g(x)| < ε.

Facts about universal kernels:

1. If k is universal, then R∗L,F = R∗L for any Lipschitz loss L.

2. If p(t) =
∑

n≥0 antn for |t| < r and an > 0 ∀n, then

k(x, x′) = p(〈x, x′〉Rd)

is universal on X = {x ∈ Rd | ‖x‖ <
√

r}. Example: eβ〈x,x′〉 is universal on any compact set in Rd.
The proof uses the Stone-Weierstrass Theorem.
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3. If k is universal on X , then so is the associated normalized kernel. Hence the Gaussian kernel e−γ‖x−x′‖2

is universal on any compact set in Rd. The proof follows from definitions relatively easily.

4. Every nonconstant radial kernel of the form

k(x, x′) =
∫ ∞

0

e−u‖x−x′‖2dµ(u)

where µ is a nonnegative finite measure, is universal on any compact set in Rd. See [2]. This includes
the Gaussian, Laplacian, and multivariate Student kernels.

5. If k is universal, then k is characteristic, which means the map P 7→ ∫
k(·, x)dP (x) ∈ F is injective.

6. If k is universal on X , and A,B ⊆ X are disjoint and compact, then ∃f ∈ F such that f(x) > 0∀x ∈ A
and f(x) < 0 ∀x ∈ B.

Proof. Let d be the metric on X . For C ⊆ X define d(x,C) = infx′∈C d(x, x′). Consider the function

g(x) =
d(x,B)

d(x, A) + d(x,B)
− d(x,A)

d(x, A) + d(x,B)
.

Since d(x, C) is continuous in x (proof left as an exercise), g ∈ C(X ). Observe that g(x) = 1 for x ∈ A
and g(x) = −1 for x ∈ B. Let ε > 0 and let f ∈ F such that ‖f − g‖∞ < ε. Then f ≥ 1− ε on A and
f ≤ −1 + ε on B.

This means F has infinite VC dimension. This can be seen by letting {X1, . . . Xn} ∈ X , distinct,
Y1, . . . , Yn ∈ {+1,−1}, and setting A = {Xi|Yi = +1}, B = {Xi|Yi = −1}.
This property has another interesting consequence. Let Φ0 : X → F0 be any feature map for k. By an
exercise in Topic 12, we know that

F = {f = 〈w, Φ0(·)〉F0 , w ∈ F0}.

If f ∈ F , let w be such that f = 〈w, Φ0(·)〉F0 . Then f is a linear classifier with respect to the
transformed data, (Φ0(X1), Y1), . . . , (Φ0(Xn), Yn). Let

A = {Φ0(Xi)|Yi = 1}, B = {Φ0(Xi)|Yi = −1}.

Then by Prop. 6, there exists a linear classifier such that the distance from that hyperplane to every
training point

|〈w, Φ0(xi)〉|
‖w‖

is approximately the same. This property is certainly not true for the standard dot product kernel on
Rd, and therefore we must be careful when applying our intuition from 2 and 3 dimension to universal
kernels.

One drawback of universal kernels is that X must be compact. While this may not be a limitation in
practical applications, it does exclude the theoretically interesting case X = Rd. Fortunately, the following
is true.

Theorem 1. If k is a Gaussian kernel on X = Rd and L is Lipschitz, then R∗L,F = R∗L.



3

3 Universal Consistency

Theorem 2. Let k be a kernel such that R∗L,F = R∗L. Let L be a Lipschitz loss for which L0 := supy∈Y L(y, 0) <

∞. Assume supx∈X
√

k(x, x) = B < ∞. Let λ = λn → 0, such that nλn → ∞ as n → ∞. Then
RL(f̂n)−R∗L

a.s.−−→ 0 ∀PXY .

Corollary 1. If in addition L is classification calibrated, then R(f̂n)−R∗ a.s.−−→ 0 ∀PXY .

Note. The condition L0 < ∞ always holds for classification problems since Y is finite.

Proof of Theorem 2. Denote

J(f) =
1
n

n∑

i=1

L(Yi, f(Xi)) + λn‖f‖2

= R̂L(f) + λn‖f‖2.

Observe that J(f̂n) ≤ J(0) ≤ L0. Therefore λn‖f̂n‖2 ≤ L0 − R̂L(f̂n) ≤ L0 and so ‖f̂n‖2 ≤ L0/λn.
Set Mn =

√
L0/λn so that f̂n ∈ Bk(Mn). Let ε > 0. By the Borel-Cantelli Lemma it suffices to show

∑

n≥0

Pr(RL(f̂n)−R∗L ≥ ε) < ∞.

Fix fε ∈ F s.t. RL(fε) ≤ R∗L + ε/2. Note that fε ∈ Bk(Mn) for n sufficiently large. By the two-sided
Rademacher complexity bound for balls in a RKHS (Topic 15), for such large n and with probability ≥ 1− δ
w.r.t. the training data,

RL(f̂n) ≤ R̂L(f̂n) +
2CBMn√

n
+ (L0 + CBMn)

√
ln 2/δ

2n

≤ R̂L(fε) + λn‖fε‖2 − λn‖f̂n‖2 + 2CBMn + (L0 + CBMn)

√
ln 2/δ

2n

(because J(f̂n) ≤ J(fε) by definition of f̂n)

≤ R̂L(fε) + λn‖fε‖2 + 2CBMn + (L0 + CBMn)

√
ln 2/δ

2n

≤ RL(fε) + λn‖fε‖2 + 4CBMn + 2(L0 + CBMn)

√
ln 2/δ

2n
.

Note the Rademacher complexity bound is used twice, in the first and last steps. Take δ = n−2, and let N
be such that n ≥ N implies that both fε ∈ Bk(Mn) and

λn‖fε‖2 + 4CB

√
L0

nλn
+ 2(L0 + CB

√
L0

nλn
)

√
ln 2n2

2n
< ε/2.

Then for n ≥ N , w.p. ≥ 1− n−2

RL(f̂n) <RL(fε) + ε/2
≤R∗L + ε.

Therefore ∑

n≥1

Pr(RL(f̂n)−R∗L ≥ ε) ≤ N − 1 +
∑

n≥N

1
n2

< ∞.
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Remark. Both the hinge and logistic losses are Lipschitz and classification calibrated. Therefore, both the
support vector machine and kernel logistic regression, together with a bounded and universal kernel (such as
a nonconstant radial kernel, e.g., Gaussian, Laplacian, multivariate Student), and regularization parameter
tending to zero slower than 1/n, are universally consistent on any compact subset of Rd.

Remark. Note that the consistency result does not require Y = {−1, +1}. Thus, consider a regression
problem with Y = [a, b] ⊂ R and a clipped loss such as

L(y, t) = min{LB , |y − t|p},

p ≥ 1, LB > 0. Then L satisifies the assumptions of the theorem. However, note that this loss is nonconvex.
Other techniques exist for addressing unbounded output spaces and convex regression losses.

Exercises

1. In the definition of universal kernels, why is X required to be compact?

2. Prove Fact 3 about universal kernels.

3. Rates for linear SVMs under hard margin assumption (there are some errors in the constants below).

(a) Let X = Rd, Y = {−1, 1}, and L be the hinge loss. Consider the linear classifer f̂n(x) = ŵT
n x

where ŵn is the solution of

min
w

1
n

n∑

i=1

L(Yi, w
T Xi) + λ‖w‖2

Assume the following about PXY . We say L is a separating hyperplane if there exists w such that
L = {x : wT x = 0} and Pr(Y wT X > 0) = 1.

• (Hard margin assumption) There exists a separating hyperplane L and a ∆ > 0 such that
Pr(X ∈ L+ ∆) = 0, where L+ ∆ is the set of all points within ∆ of L.

• Pr(‖X‖ ≤ B) = 1 for some B > 0.

Show that with probability at least 1− δ,

R(f̂n) ≤ 4MB√
n

+
λ

∆
+ 2

√
log(2/δ)

2n
,

for some constant M , and express M in terms of ∆ and λ (M should be inversely proportional to
both). Show that for appropriate growth of λ, ER(f̂n) = O(n−1/3).

(b) If we know the hard margin condition holds a priori, it makes sense to let ŵn be the hard margin
SVM, obtained by solving

min
w

‖w‖2

s.t. Yiw
T Xi ≥ 1.

This classifier maximizes the distance from the hypeplane {x : wT x = 0} to the nearest training
data point, subject to being a separating hyperplane. Show that the same bound as in (a) holds
but without the λ/∆ term, and with an M that is no larger than the M from (a). Deduce that
ER(f̂n) = O(n−1/2).
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