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1 Introduction

Note: There are some errors in the bounds below stemming from a missing constant in the second term on
the RHS of the Rademacher complexity bound.

In these notes we will establish rates of convergence for linear support vector machines under the hard
margin assumption. To set the stage, we first introduce a little notation and a basic result the follows easily
from previous discussions.

Denote XM = {x ∈ Rd | ‖x‖2 ≤ M}, a ball of radius M . The linear kernel is k(x, x′) = 〈x, x′〉 := xTx′.
It is called linear because its RKHS contains linear functions. Given w ∈ Rd, denote by fw the function
fw(x) = 〈w, x〉.

Proposition 1. FM = {fw |w ∈ XM} is the RHKS of k on XM and ‖fw‖FM
= ‖w‖2 ∀w ∈ Xm

Proof. Notice that Id : Xm → Xm is a feature map for the kernel. Futhermore, the map V : XM → FM given
by V(w) = fw is injective. By Lemma 1 from Topic 12, the result follows.

2 Hard Margin Assumption

We know from earlier discussions that rates of convergence are not possible without distributional assump-
tions. We make the following assumption on the joint distribution PXY of (X,Y ).

Definition 1. We say L is a separating hyperplane if ∃w such that

• L = {x : 〈w, x〉 = 0}

• Pr (Y 〈w,X〉 > 0) = 1

Definition 2. We say PXY has a hard margin of ∆ > 0 if there exists a separating hyperplane L such that
Pr (X ∈ L+ ∆) = 0 where L+ ∆ means all points whose distance to L is less than ∆.

See Fig. 1 for an illustration.

3 Rates for Soft-Margin SVMs

Let (X1, Y1), . . . , (Xn, Yn) ∈ Rd×{−1, 1} be training data. The soft-margin linear SVM is the discrimination
rule f̂n := f bwn

, where ŵn is the solution of the optimization problem:

arg min
w∈Rd

1
n

n∑
i=1

L(Yi, 〈w,Xi〉) + λ‖w‖22,

1



2

Y = 1

Y = −1
Δ

Figure 1: An example of a separating hyperplane for a distribution with a hard margin of ∆.

where L is the hinge loss. This is equivalent to the quadratic program:

min
w∈Rd

λ‖w‖2 +
1
n

n∑
i=1

ξi

s.t. Yi〈w, Xi〉 ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n.

Theorem 1. Assume PXY has a hard margin of ∆ > 0, and also Pr (‖X‖2 ≤ B) = 1 for some B > 0.
Then for any δ > 0, with probability 1− δ,

R(f̂n) ≤ 2B√
n

max{λ−1/2,∆−1}+
λ

∆2
+

√
log(1/δ)

2n
.

In particular, if δ ∼ n−γ for some γ ≥ 1
3 , and λ ∼ n−3, then

E[R(f̂n)] = O(n−1/3).

The following intermediate result will be used in established the above.

Lemma 1. If PXY has a hard margin of ∆, then there exists w∆ such that ‖w∆‖2 = 1
∆ and

Pr (Y 〈w∆, X〉 ≥ 1) = 1.

Proof. Recall that for any w, x ∈ XM , the shortest distance from x to {x : 〈w, x〉 = 0} is

|〈w, x〉|
‖w‖

.

Let w∆ be such that L = {x : 〈w∆, x〉 = 0} from the hard margin assumption, normalized such that
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‖w∆‖ = 1
∆ (This is allowed because rescaling the vector w does not alter the hyperplane.) Then

Pr (Y 〈w∆, X〉 ≥ 1) = Pr (|〈w∆, X〉| ≥ 1)

= Pr (|〈w∆, X〉| ≥
∆
∆

)

= Pr
(
|〈w∆, X〉|

( 1
∆ )

≥ ∆
)

= Pr
(
|〈w∆, X〉|
‖w∆‖

≥ ∆
)

= Pr (distance to hyperplane is ≥ ∆) = 1 (by hard margin assumption).

Now we can prove Theorem 1:

Proof of Theorem 1. In the proof we refer to w and fw interchangeably since the two are equivalent and
have the same norm (see introduction).

Denote J(w) = 1
n

∑n
i=1 L(Yi, 〈w, xi〉) + λ‖w‖22. Observe also that

λ‖ŵn‖22 ≤ J(ŵn) ≤ J(0) = 1.

So ‖ŵn‖2 ≤ 1√
λ

. Let w∆ be as in the lemma. Then both f̂n = f bwn
and and f∆ belong to FM where

M = max{λ−1/2,∆−1}. We know use the uniform deviation bound (UDB) on balls in a RKHS from a
previous lecture. The assumption that Pr(‖X‖ ≤ B) = 1 means that the kernel is bounded, which is
necessary for the UDB.

Let δ > 0. By the one sided uniform deviation bound for balls in a RKHS, with probability 1− δ,

R(ŵn) ≤ RL(ŵn)
[since hinge loss upper bounds 0− 1 loss] (1)

≤ R̂L(ŵn) +
2MB√

n
+

√
log(1/δ)

2n
[UDB] (2)

≤ R̂L(f∆) + λ‖w∆‖2 − λ‖ŵn‖2 +
2MB√

n
+

√
log(1/δ)

2n
(3)

[since J(ŵn) ≤ J(w∆)] (4)

≤ R̂L(f∆) + λ‖w∆‖2 +
2MB√

n
+

√
log(1/δ)

2n
(5)

≤ λ

∆2
+

2MB√
n

+

√
log(1/δ)

2n
. (6)

[R̂L(f∆) = 0] (7)

This establishes the first part of the theorem. To prove the second part, let Ω be the event where the bound
holds. Then

E[R(f̂n)] = E[R(f̂n)|Ω] Pr (Ω) + E[R(f̂n)|Ωc] Pr (Ωc)

Looking at the above expression, it is clear that Pr (Ω) < 1, Pr (Ωc) ≤ δ = n−γ , and E[R(f̂n)|Ωc] < 1. The
remaining term is bounded using the first part of the theorem. So that the first two terms of the bound
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grow at an equivalent rate, select λ such that λ = 1√
nλ

. This yields λ ∼ n−1/3. Plugging this into the above
expression, we deduce

E[R(f̂n)] = O(n−1/3).

4 Rates for Hard-Margin Linear SVM

If we know the hard margin assumption holds, we can attain a faster rate using the so-called hard margin
SVM, where ŵn is the solution to

arg min
w∈Rd

‖w‖2 such that Yi〈w,Xi〉 ≥ 1.

So ŵn maximizes the distance (among all separating hyperplanes) to the nearest Xi.

Theorem 2. Assume PXY has hard margin ∆ > 0 and Pr (‖X‖ ≥ B) = 1 for some B. Then for δ > 0,
with probability 1− δ,

R(f̂n) ≤ 2B
∆
√
n

+

√
log(1/δ)

2n
.

In particular, if δ ∼ n−γ for some γ ≥ 1
2 , then

E[R(f̂n)] = O

(√
log n
n

)

Proof. Notice that w∆ is feasible for this optimization problem (that is, it satisfies the constraints but isn’t
necessarily the minimum). This means that

‖ŵn‖ ≤ ‖w∆‖ =
1
∆

Arguing as in the previous proof, with probability at least 1− δ,

R(ŵn) ≤ RL(ŵn) ≤ R̂L(ŵn) +
2B

∆
√
n

+

√
log(1/δ)

2n
=

2B
∆
√
n

+

√
log(1/δ)

2n
.

The second part of the proof is similar to last time, except with δ ∼ n−γ , the final term is dominant, and
that is why we attain the improved rate of

E[R(f̂n)] = O

(√
log n
n

)
.

The primary reason why we use the soft margin rather than the hard (even though it has more favorable
characteristics) is that the hard margin assumption may not be satisfied, which causes the algorithm for the
hard margin SVM to fail. The soft margin SVM can still produce a usable hyperplane even without perfect
separation.

Exercises

1. Can you generalize the above results to other Lipshitz losses?


