Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1 Introduction

Let f be a density on \mathbb{R}^{d}, i.e. $f \geq 0$ and $\int f(x) d x=1$. Suppose $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i i d}{\sim} f$. Let ϕ be a function s.t. $\int \phi(x) d x=1$, called a kernel, and denote

$$
\phi_{\sigma}(x):=\frac{1}{\sigma^{d}} \phi\left(\frac{x}{\sigma}\right)
$$

for $\sigma>0 . \sigma$ is called the bandwidth. The kernel density estimator (KDE) is

$$
\widehat{f}_{n}(x):=\frac{1}{n} \sum_{i=1}^{n} \phi_{\sigma}\left(x-X_{i}\right)
$$

Example. 1) Gaussian kernel: $\phi(x)=(2 \pi)^{-\frac{d}{2}} e^{-\frac{\|x\|^{2}}{2}}$
2) There are some common kernels like triangle kernel and box kernel. See Figure 1 for their graph in one dimension.

$2 L^{p}$ Space

For $f: \mathbb{R} \rightarrow \mathbb{R}$ and $0<p<\infty$, define

$$
\|f\|_{p}=\left(\int|f(x)|^{p} d x\right)^{\frac{1}{p}}
$$

and

$$
L^{p}=\left\{f \mid\|f\|_{p}<\infty\right\}
$$

If $p \geq 1$ and we identify f and g when $\|f-g\|_{p}=0$ (thus defining equivalence classes) then L^{p} is a normed vector space, where the triangle inequality is given by Minkowski's Inequality. For a full development, see [1].

Definition 1 (Convolution). Given f, g, the convolution $f * g$ is the function

$$
f * g(x)=\int f(y) g(x-y) d y=\int g(y) f(x-y) d y
$$

Young's Inequality shows that the convolution of L^{1} functions is still an L^{1} function.
Lemma 1 (Young's Inequality). If $f, g \in L^{1}$, then $f * g \in L^{1}$ and $\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}$.

Figure 1: This is a picture showing some kernels. In addition to the uniform and triangular kernels, the third example is an arbitrary kernel illustrating that a kernel need not be 1) positive, or 2) symmetric.

Proof.

$$
\begin{aligned}
\|f * g\|_{1} & =\int|f * g(x)| d x \\
& =\int\left|\int f(y) g(x-y) d y\right| d x \\
& \leq \int\left(\int|f(y) g(x-y)| d y\right) d x \\
& =\int|f(y)|\left(\int|g(x-y)| d x\right) d y \quad \text { (By Tonelli Theorem) } \\
& \left.=\int|f(y)|\|g\|_{1} d y \quad \text { (By substitution: } u=x-y\right) \\
& =\|f\|_{1}\|g\|_{1}
\end{aligned}
$$

We state the next result without proof.
Theorem 1 (See Folland, Thm 8.14). Let $f \in L^{p}$, and $\phi \in L^{1}$ with $\int \phi(x) d x=a$. Then for any $r>0$, $f * \phi_{r} \in L^{p}$ and

$$
\lim _{r \downarrow 0}\left\|f * \phi_{r}-a f\right\|_{p}=0 .
$$

$3 \quad L^{2}$ consistency

Theorem 2. Let $f \in L^{2}$ be a density, $\phi \in L^{1} \bigcap L^{2}$ with $\int \phi(x) d x=1$. Assume $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i i d}{\sim} f$. If $\sigma \rightarrow 0$ and $n \sigma^{d} \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\left\|\widehat{f_{n}}-f\right\|_{2} \xrightarrow{i . p .} 0
$$

Proof. By the triangle inequality,

$$
\left\|\widehat{f}_{n}-f\right\|_{2} \leq\left\|\widehat{f}_{n}-f * \phi_{\sigma}\right\|_{2}+\left\|f * \phi_{\sigma}-f\right\|_{2}
$$

The second term $\rightarrow 0$ as $\sigma \rightarrow 0$, by Theorem 1 , since $f \in L^{2}, \phi \in L^{1}$. The first term converges i.p. to zero according to Lemma 2.

Lemma 2. If f is a density, $\phi \in L^{2}$, and $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i i d}{\sim} f$, then

$$
\left\|\widehat{f_{n}}-f * \phi_{\sigma}\right\|_{2} \xrightarrow{i . p .} 0
$$

provided $n \sigma^{d} \rightarrow \infty$.
Proof. Observe

$$
\begin{aligned}
\operatorname{Pr}\left\{\left\|\widehat{f}_{n}-f * \phi_{\sigma}\right\|_{2}>\epsilon\right\} & =\operatorname{Pr}\left\{\left\|\widehat{f}_{n}-f * \phi_{\sigma}\right\|_{2}^{2}>\epsilon^{2}\right\} \\
& \leq \mathbb{E}\left\{\left\|\widehat{f}_{n}-f * \phi_{\sigma}\right\|_{2}^{2}\right\} / \epsilon^{2}
\end{aligned}
$$

by Markov's Inequality. So it suffices to show $\mathbb{E}\left\{\left\|\widehat{f}_{n}-f * \phi_{\sigma}\right\|_{2}^{2}\right\} \rightarrow 0$. Note \mathbb{E} is an integral operator, and therefore by Tonelli's Theorem we can interchange the order of integration:

$$
\mathbb{E}\left\{\left\|\widehat{f}_{n}-f * \phi_{\sigma}\right\|_{2}^{2}\right\}=\int \mathbb{E}\left\{\left(\widehat{f}_{n}(x)-f * \phi_{\sigma}(x)\right)^{2}\right\} d x
$$

Write

$$
\widehat{f}_{n}(x)-f * \phi_{\sigma}(x)=\frac{1}{n} \sum_{i=1}^{n} Z_{i}
$$

where $Z_{i}=\phi_{\sigma}\left(x-X_{i}\right)-f * \phi_{\sigma}(x)$. Note that Z_{i} are iid and $\mathbb{E}\left(Z_{i}\right)=0$ because

$$
\mathbb{E} \phi_{\sigma}\left(x-X_{i}\right)=\int \phi_{\sigma}\left(x-x_{i}\right) f\left(x_{i}\right) d x_{i}=f * \phi_{\sigma}(x)
$$

The variance of Z_{i} is

$$
\begin{aligned}
\mathbb{E}\left(Z_{i}^{2}\right) & =\operatorname{Var}\left(\phi_{\sigma}\left(x-X_{i}\right)\right) \\
& =\mathbb{E}\left\{\left(\phi_{\sigma}\left(x-X_{i}\right)\right)^{2}\right\}-\left[\mathbb{E}\left\{\phi_{\sigma}\left(x-X_{i}\right)\right\}\right]^{2} \\
& \leq \mathbb{E}\left\{\left(\phi_{\sigma}\left(x-X_{i}\right)\right)^{2}\right\} \\
& =\int f(y) \phi_{\sigma}(x-y)^{2} d y \\
& =f * \phi_{\sigma}^{2}(x) \\
& =\frac{1}{\sigma^{d}} f *\left(\phi^{2}\right)_{\sigma}(x),
\end{aligned}
$$

where the last step follows from the fact $\phi_{\sigma}^{2}(x)=\left[\frac{1}{\sigma^{d}} \phi\left(\frac{x}{\sigma}\right)\right]^{2}=\frac{1}{\sigma^{d}}\left[\frac{1}{\sigma^{d}} \phi^{2}\left(\frac{x}{\sigma}\right)\right]=\frac{1}{\sigma^{d}}\left(\phi^{2}\right)_{\sigma}$. Thus

$$
\mathbb{E}\left\{\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right)^{2}\right\}=\frac{1}{n} \mathbb{E}\left\{Z_{1}^{2}\right\} \leq \frac{1}{n \sigma^{d}} f *\left(\phi^{2}\right)_{\sigma}(x)
$$

and therefore

$$
\begin{aligned}
\int \mathbb{E}\left\{\left(\widehat{f}_{n}(x)-f * \phi_{\sigma}(x)\right)^{2}\right\} d x & \leq \frac{1}{n \sigma^{d}} \int f *\left(\phi^{2}\right)_{\sigma}(x) d x \\
& =\frac{1}{n \sigma^{d}}\left\|f *\left(\phi^{2}\right)_{\sigma}(x)\right\|_{1} \\
& \leq \frac{1}{n \sigma^{d}}\|f\|_{1}\left\|\left(\phi^{2}\right)_{\sigma}\right\|_{1} \quad \text { (by Young's Inequality) } \\
& =\frac{1}{n \sigma^{d}}\|\phi\|_{2}^{2} \quad\left(\|f\|_{1}=1\right) \\
& \rightarrow 0
\end{aligned}
$$

since $n \sigma^{d} \rightarrow \infty$ and $\phi \in L^{2}$.

Remark.

(1) The condition $f \in L^{2}$ excludes certain densities such as

$$
f(x)=\frac{1}{1-r} x^{-r}, 0<x<1
$$

where $\frac{1}{2}<r<1$.
(2) $\phi \in L^{2}$ is satisfied by all common kernels.
(3) Recall ϕ need not be symmetric w.r.t. the origin. Thus, the consistency result holds for

$$
\phi(x)=\mathbf{1}_{\left\{x \in B\left(x_{0}, r\right)\right\}}
$$

where

$$
B\left(x_{0}, r\right)=\left\{x:\left\|x-x_{0}\right\|_{2} \leq r\right\}
$$

r is s.t. $\int \phi(x) d x=1$, and $x_{0}=\left(0,0, \cdots, 0,10^{100}\right)$. This may seem bizarre, but as an exercise you are asked to make sense of this example.

$4 \quad L^{1}$-Consistency

In this section we will show that the L^{1} error converges to 0 in probability. To keep things simpler, we will assume f has compact support, although this is not necessary for L^{1} consistency.

Theorem 3. If f is a density with compact support, $\phi \in L^{1}$ s.t. $\int \phi(x) d x=1$, and $X_{1}, X_{2}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} f$, then

$$
\left\|\widehat{f}_{n}-f\right\|_{1} \xrightarrow{i . p .} 0
$$

provided that $\sigma \rightarrow 0$ and $n \sigma^{d} \rightarrow 0$ and $n \rightarrow \infty$.
Proof. Note that

$$
\left\|\widehat{f}_{n}-f\right\|_{1} \leq\left\|\widehat{f}_{n}-f * \phi_{\sigma}\right\|_{1}+\left\|f * \phi_{\sigma}-f\right\|_{1}
$$

By Theorem 1, we know that $\left\|f * \phi_{\sigma}-f\right\|_{1} \rightarrow 0$, so it remains to show convergence to zero of $\left\|\widehat{f}_{n}-f * \phi_{\sigma}\right\|_{1}$.

Let $\mathcal{C}_{c}=\left\{g: \mathbb{R}^{d} \rightarrow \mathbb{R} \mid g\right.$ is bounded and has compact support $\}$. It is a well-known fact in analysis [1] that \mathcal{C}_{c} is dense in L^{1}. Thus for any fixed $\epsilon>0$, we can take $\psi \in \mathcal{C}_{c}$ s.t. $\|\phi-\psi\|_{1}<\epsilon$. Denote $\widehat{f}_{n}^{c}(x)=\frac{1}{n} \sum_{i=1}^{n} \psi_{\sigma}\left(x-X_{i}\right)$. Note that

$$
\left\|\widehat{f}_{n}-f * \phi_{\sigma}\right\|_{1} \leq\left\|\widehat{f}_{n}-\widehat{f}_{n}^{c}\right\|_{1}+\left\|\widehat{f}_{n}^{c}-f * \psi_{\sigma}\right\|_{1}+\left\|f * \psi_{\sigma}-f * \phi_{\sigma}\right\|_{1}
$$

By Young's Inequality,

$$
\left\|f * \psi_{\sigma}-f * \phi_{\sigma}\right\|_{1}=\left\|f *\left(\psi_{\sigma}-\phi_{\sigma}\right)\right\|_{1} \leq\|f\|_{1}\left\|\psi_{\sigma}-\phi_{\sigma}\right\|=\|\psi-\phi\|_{1}<\epsilon
$$

The first term is bounded by

$$
\left\|\widehat{f}_{n}-\widehat{f}_{n}^{c}\right\|_{1} \leq \frac{1}{n} \sum_{i=1}^{n}\left\|\psi_{\sigma}\left(x-X_{i}\right)-\phi_{\sigma}\left(x-X_{i}\right)\right\|_{1}<\epsilon
$$

Since ϵ is arbitrary, we only need to prove that $\left\|\widehat{f_{n}^{c}}-f * \psi_{\sigma}\right\|_{1} \rightarrow 0 i . p$. Denote by S_{f} and S_{ψ} the supports of f and ψ, respectively. We know that S_{f} and S_{ψ} are both compact sets and $S_{\psi_{\sigma}}$ is also compact and shrinks as $\sigma \rightarrow 0$. Thus,

$$
\begin{array}{rlr}
\left\|\widehat{f}_{n}^{c}-f * \psi_{\sigma}\right\|_{1} & =\int_{S_{f} \cup S_{\psi_{\sigma}}}\left|\widehat{f}_{n}^{c}-f * \psi_{\sigma}\right| d x & \\
& =\int_{S_{f} \cup S_{\psi}}\left|\widehat{f}_{n}^{c}-f * \psi_{\sigma}\right| d x & \\
& =\int\left|\widehat{f}_{n}^{c}-f * \psi_{\sigma}\right| \mathbf{1}_{S_{f} \cup S_{\psi}} d x & \\
& \leq\left\|\widehat{f}_{n}^{c}-f * \psi_{\sigma}\right\|_{2}\left\|\mathbf{1}_{S_{f} \cup S_{\psi}}\right\|_{2} . & \text { (Hölder's Inequality) }
\end{array}
$$

The second equality holds when $\sigma<1$, which implies $S_{f} \cup S_{\psi_{\sigma}} \subseteq S_{f} \cup S_{\psi}$. Since ψ is in L^{1} and bounded with compact support, it is also in L^{2}. Thus by Lemma $2,\left\|\widehat{f} c h * f \psi_{\sigma}^{c}\right\|_{2} \rightarrow 0 i . p$. Now $\left\|\mathbf{1}_{S_{f} \cap S_{\psi}}\right\|_{2}$ is the square root of the volume of a compact set and thus is finite. Therefore $\left\|\widehat{f_{n}^{c}}-f * \psi_{\sigma}\right\|_{1} \rightarrow 0 i . p$.

Remark. The reason that we care about L^{1} error is the following equality called Scheffe's Identity: if f, g are densities and \mathcal{B} is the set of Borel sets, then:

$$
\begin{aligned}
\|f-g\|_{1} & =\int_{f>g}(f-g)(x) d x-\int_{f<g}(g-f)(x) d x \\
& =\int_{f>g}(f-g)(x) d x-\left[\int(g-f)(x) d x-\int_{f>g}(g-f)(x) d x\right] \\
& =2 \int_{f>g}(f-g)(x) d x \\
& =2 \sup _{B \in \mathcal{B}} \mid \int_{B} f(x) d x-\int_{B} g(x) d x
\end{aligned}
$$

Scheffe's Identity shows that small L^{1} error leads to accurate probability estimation.

5 Strong Consistency

If we add the constraint that the kernel be nonnegative, then weak L^{1} consistency implies strong L^{1} consistency.

Theorem 4. Assume $\phi \geq 0$ and $\int \phi(x) d x=1$. If $X_{1}, X_{2}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} f$, then $\left\|\widehat{f}_{n}-f\right\|_{1} \rightarrow 0$ i.p. implies $\left\|\widehat{f}_{n}-f\right\|_{1} \rightarrow 0$ a.s.

Proof. Let $S=\left(X_{1}, \ldots, X_{n}\right)$ and $S_{i}^{\prime}=\left(X_{1}, \ldots, X_{i-1}, X_{i}^{\prime}, X_{i+1}, \ldots, X_{n}\right)$. Write $\widehat{f}_{n}=\widehat{f}_{n, S}$, using the new subscript to indicate the sample. Denote $\phi_{n}(S)=\left\|\widehat{f}_{n, S}-f\right\|_{1}$. Then

$$
\begin{array}{rlr}
\left|\phi_{n}(S)-\phi_{n}\left(S_{i}^{\prime}\right)\right| & \leq\left\|\widehat{f}_{n, S}-\widehat{f}_{n, S_{i}^{\prime}}\right\|_{1} & \text { (reverse triangle inequality) } \\
& =\frac{1}{n} \int\left|\phi_{\sigma}\left(x-X_{i}\right)-\phi_{\sigma}\left(x-X_{i}^{\prime}\right)\right| d x \\
& \leq \frac{1}{n} \int\left|\phi_{\sigma}\left(x-X_{i}\right)\right| d x+\int\left|\phi_{\sigma}\left(x-X_{i}^{\prime}\right)\right| d x \\
& =\frac{2}{n} . & (\phi \text { nonnegative })
\end{array}
$$

By the bounded difference inequality,

$$
\operatorname{Pr}\left(\phi_{n}(S)-\mathbb{E}\left[\phi_{n}(S)\right] \geq \epsilon\right) \leq e^{-n \epsilon^{2} / 2}
$$

Fix $\epsilon>0$. By weak consistency, $\exists N$ s.t. $n \geq N \Rightarrow \mathbb{E} \phi_{n}(S)<\frac{\epsilon}{2}$. Then for $n \geq N$,

$$
\operatorname{Pr}\left(\phi_{n}(S) \geq \epsilon\right) \leq \operatorname{Pr}\left(\phi_{n}(S)-\mathbb{E} \phi_{n}(S) \geq \epsilon / 2\right) \leq e^{-n \epsilon^{2} / 8}
$$

This upper bound decrease geometrically. Therefore

$$
\sum_{n=1}^{\infty} \operatorname{Pr}\left(\phi_{n}(S) \geq \epsilon\right)<\infty
$$

and Borel-Cantelli implies $\phi_{n}(S) \rightarrow 0$ a.s.

Exercises

1. Make sense of the third remark after the proof of L^{2} consistency.
2. What does Bernstein's inequality imply about $\frac{1}{n} \sum Z_{i}$ in the proof of Lemma 2? Is this observation useful in any way?
3. Remove the assumption in Theorem 3 that f has compact support.

References

[1] Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, Wiley, 1999

