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1 Introduction

Let f be a density on Rd, i.e. f ≥ 0 and
∫
f(x)dx = 1. Suppose X1, X2, . . . , Xn

iid∼ f . Let φ be a function
s.t.

∫
φ(x)dx = 1, called a kernel, and denote

φσ(x) :=
1
σd
φ(
x

σ
)

for σ > 0. σ is called the bandwidth. The kernel density estimator (KDE) is

f̂n(x) :=
1
n

n∑
i=1

φσ(x−Xi).

Example. 1) Gaussian kernel: φ(x) = (2π)−
d
2 e−

‖x‖2
2

2) There are some common kernels like triangle kernel and box kernel. See Figure 1 for their graph in one
dimension.

2 Lp Space

For f : R→ R and 0 < p <∞, define

‖f‖p = (
∫
|f(x)|p dx)

1
p

and
Lp = {f | ‖f‖p <∞}.

If p ≥ 1 and we identify f and g when ‖f − g‖p = 0 (thus defining equivalence classes) then Lp is a normed
vector space, where the triangle inequality is given by Minkowski’s Inequality. For a full development, see
[1].

Definition 1 (Convolution). Given f, g, the convolution f ∗ g is the function

f ∗ g(x) =
∫
f(y)g(x− y)dy =

∫
g(y)f(x− y)dy.

Young’s Inequality shows that the convolution of L1 functions is still an L1 function.

Lemma 1 (Young’s Inequality). If f, g ∈ L1, then f ∗ g ∈ L1 and ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.
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Figure 1: This is a picture showing some kernels. In addition to the uniform and triangular kernels, the
third example is an arbitrary kernel illustrating that a kernel need not be 1) positive, or 2) symmetric.

Proof.

‖f ∗ g‖1 =
∫
|f ∗ g(x)|dx

=
∫
|
∫
f(y)g(x− y)dy|dx

≤
∫

(
∫
|f(y)g(x− y)|dy)dx

=
∫
|f(y)|(

∫
|g(x− y)|dx)dy (By Tonelli Theorem)

=
∫
|f(y)|‖g‖1dy (By substitution: u = x− y)

= ‖f‖1‖g‖1.

We state the next result without proof.

Theorem 1 (See Folland, Thm 8.14). Let f ∈ Lp, and φ ∈ L1 with
∫
φ(x)dx = a. Then for any r > 0,

f ∗ φr ∈ Lp and
lim
r↓0
‖f ∗ φr − af‖p = 0.
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3 L2 consistency

Theorem 2. Let f ∈ L2 be a density, φ ∈ L1
⋂
L2 with

∫
φ(x)dx = 1. Assume X1, X2, . . . , Xn

iid∼ f . If
σ → 0 and nσd →∞ as n→∞, then

‖f̂n − f‖2
i.p.→ 0.

Proof. By the triangle inequality,

‖f̂n − f‖2 ≤ ‖f̂n − f ∗ φσ‖2 + ‖f ∗ φσ − f‖2.

The second term → 0 as σ → 0, by Theorem 1, since f ∈ L2, φ ∈ L1. The first term converges i.p. to zero
according to Lemma 2.

Lemma 2. If f is a density, φ ∈ L2, and X1, X2, . . . , Xn
iid∼ f , then

‖f̂n − f ∗ φσ‖2
i.p.→ 0

provided nσd →∞.

Proof. Observe

Pr{‖f̂n − f ∗ φσ‖2 > ε} = Pr{‖f̂n − f ∗ φσ‖22 > ε2}

≤ E{‖f̂n − f ∗ φσ‖22}/ε2

by Markov’s Inequality. So it suffices to show E{‖f̂n − f ∗ φσ‖22} → 0. Note E is an integral operator, and
therefore by Tonelli’s Theorem we can interchange the order of integration:

E{‖f̂n − f ∗ φσ‖22} =
∫

E{(f̂n(x)− f ∗ φσ(x))2}dx.

Write

f̂n(x)− f ∗ φσ(x) =
1
n

n∑
i=1

Zi,

where Zi = φσ(x−Xi)− f ∗ φσ(x). Note that Zi are iid and E(Zi) = 0 because

Eφσ(x−Xi) =
∫
φσ(x− xi)f(xi)dxi = f ∗ φσ(x).

The variance of Zi is

E(Z2
i ) = Var(φσ(x−Xi))

= E{(φσ(x−Xi))2} − [E{φσ(x−Xi)}]2

≤ E{(φσ(x−Xi))2}

=
∫
f(y)φσ(x− y)2dy

= f ∗ φ2
σ(x)

=
1
σd
f ∗ (φ2)σ(x),
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where the last step follows from the fact φ2
σ(x) = [ 1

σd
φ( xσ )]2 = 1

σd
[ 1
σd
φ2( xσ )] = 1

σd
(φ2)σ. Thus

E{( 1
n

n∑
i=1

Zi)2} =
1
n

E{Z2
1} ≤

1
nσd

f ∗ (φ2)σ(x)

and therefore ∫
E{(f̂n(x)− f ∗ φσ(x))2}dx ≤ 1

nσd

∫
f ∗ (φ2)σ(x)dx

=
1
nσd
‖f ∗ (φ2)σ(x)‖1

≤ 1
nσd
‖f‖1‖(φ2)σ‖1 (by Young’s Inequality)

=
1
nσd
‖φ‖22 (‖f‖1 = 1)

→ 0,

since nσd →∞ and φ ∈ L2.

Remark.

(1) The condition f ∈ L2 excludes certain densities such as

f(x) =
1

1− r
x−r, 0 < x < 1,

where 1
2 < r < 1.

(2) φ ∈ L2 is satisfied by all common kernels.

(3) Recall φ need not be symmetric w.r.t. the origin. Thus, the consistency result holds for

φ(x) = 1{x∈B(x0,r)},

where
B(x0, r) = {x : ‖x− x0‖2 ≤ r},

r is s.t.
∫
φ(x)dx = 1, and x0 = (0, 0, · · · , 0, 10100). This may seem bizarre, but as an exercise you are asked

to make sense of this example.

4 L1-Consistency

In this section we will show that the L1 error converges to 0 in probability. To keep things simpler, we will
assume f has compact support, although this is not necessary for L1 consistency.

Theorem 3. If f is a density with compact support, φ ∈ L1 s.t.
∫
φ(x)dx = 1, and X1, X2, ..., Xn

i.i.d.∼ f ,
then

‖f̂n − f‖1
i.p.−→ 0,

provided that σ → 0 and nσd → 0 and n→∞.

Proof. Note that
‖f̂n − f‖1 ≤ ‖f̂n − f ∗ φσ‖1 + ‖f ∗ φσ − f‖1.

By Theorem 1, we know that ‖f ∗φσ− f‖1 → 0, so it remains to show convergence to zero of ‖f̂n− f ∗φσ‖1.
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Let Cc = {g : Rd → R | g is bounded and has compact support}. It is a well-known fact in analysis
[1] that Cc is dense in L1. Thus for any fixed ε > 0, we can take ψ ∈ Cc s.t. ‖φ − ψ‖1 < ε. Denote
f̂ cn(x) = 1

n

∑n
i=1 ψσ(x−Xi). Note that

‖f̂n − f ∗ φσ‖1 ≤ ‖f̂n − f̂ cn‖1 + ‖f̂ cn − f ∗ ψσ‖1 + ‖f ∗ ψσ − f ∗ φσ‖1.

By Young’s Inequality,

‖f ∗ ψσ − f ∗ φσ‖1 = ‖f ∗ (ψσ − φσ)‖1 ≤ ‖f‖1‖ψσ − φσ‖ = ‖ψ − φ‖1 < ε.

The first term is bounded by

‖f̂n − f̂ cn‖1 ≤
1
n

n∑
i=1

‖ψσ(x−Xi)− φσ(x−Xi)‖1 < ε.

Since ε is arbitrary, we only need to prove that ‖f̂ cn− f ∗ψσ‖1 → 0 i.p. Denote by Sf and Sψ the supports of
f and ψ, respectively. We know that Sf and Sψ are both compact sets and Sψσ is also compact and shrinks
as σ → 0. Thus,

‖f̂ cn − f ∗ ψσ‖1 =
∫
Sf∪Sψσ

|f̂ cn − f ∗ ψσ| dx

=
∫
Sf∪Sψ

|f̂ cn − f ∗ ψσ| dx (for σ ≤ 1)

=
∫
|f̂ cn − f ∗ ψσ|1Sf∪Sψdx

≤ ‖f̂ cn − f ∗ ψσ‖2‖1Sf∪Sψ‖2. (Hölder’s Inequality)

The second equality holds when σ < 1, which implies Sf ∪ Sψσ ⊆ Sf ∪ Sψ. Since ψ is in L1 and bounded
with compact support, it is also in L2. Thus by Lemma 2, ‖f̂ cn − f ∗ ψσ‖2 → 0 i.p. Now ‖1Sf∩Sψ‖2 is the
square root of the volume of a compact set and thus is finite. Therefore ‖f̂ cn − f ∗ ψσ‖1 → 0 i.p.

Remark. The reason that we care about L1 error is the following equality called Scheffe’s Identity: if f, g
are densities and B is the set of Borel sets, then:

‖f − g‖1 =
∫
f>g

(f − g)(x)dx−
∫
f<g

(g − f)(x)dx

=
∫
f>g

(f − g)(x)dx− [
∫

(g − f)(x)dx−
∫
f>g

(g − f)(x)dx]

= 2
∫
f>g

(f − g)(x)dx

= 2 sup
B∈B
|
∫
B

f(x)dx−
∫
B

g(x)dx|

Scheffe’s Identity shows that small L1 error leads to accurate probability estimation.

5 Strong Consistency

If we add the constraint that the kernel be nonnegative, then weak L1 consistency implies strong L1 consis-
tency.
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Theorem 4. Assume φ ≥ 0 and
∫
φ(x)dx = 1. If X1, X2, ..., Xn

i.i.d.∼ f , then ‖f̂n − f‖1 → 0 i.p. implies
‖f̂n − f‖1 → 0 a.s.

Proof. Let S = (X1, ..., Xn) and S′i = (X1, ..., Xi−1, X
′
i, Xi+1, ..., Xn). Write f̂n = f̂n,S , using the new

subscript to indicate the sample. Denote φn(S) = ‖f̂n,S − f‖1. Then

|φn(S)− φn(S′i)| ≤ ‖f̂n,S − f̂n,S′i‖1 (reverse triangle inequality)

=
1
n

∫
|φσ(x−Xi)− φσ(x−X ′i)|dx

≤ 1
n

∫
|φσ(x−Xi)|dx+

∫
|φσ(x−X ′i)|dx

=
2
n
. (φ nonnegative)

By the bounded difference inequality,

Pr(φn(S)− E[φn(S)] ≥ ε) ≤ e−nε
2/2.

Fix ε > 0. By weak consistency, ∃N s.t. n ≥ N ⇒ Eφn(S) < ε
2 . Then for n ≥ N ,

Pr(φn(S) ≥ ε) ≤ Pr(φn(S)− Eφn(S) ≥ ε/2) ≤ e−nε
2/8.

This upper bound decrease geometrically. Therefore

∞∑
n=1

Pr(φn(S) ≥ ε) <∞

and Borel-Cantelli implies φn(S)→ 0 a.s.

Exercises

1. Make sense of the third remark after the proof of L2 consistency.

2. What does Bernstein’s inequality imply about 1
n

∑
Zi in the proof of Lemma 2? Is this observation

useful in any way?

3. Remove the assumption in Theorem 3 that f has compact support.
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