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1 Introduction

Weakly supervised learning problems are between supervised and unsupervised learning problems. You
can think of them as supervised learning problems where some label information is missing or has been
contaminated in some way. We will focus on a specific weakly supervised learning problem, namely, binary
classification with one-sided label noise, although the ideas here can be brought to bear on more general
WSL problems, such as two-sided label noise [2], label noise in the multiclass case [3], and anomaly detection
[4]. The material described here appeared originally in [1].

2 One-sided Label Noise

Let P0, P1 be class-conditional distributions. Suppose:

X0
1 , ..., X0

n0

i.i.d.∼ P0

X1
1 , ..., X1

n1

i.i.d.∼ P̃1 = (1− κ)P1 + κP0. (1)

Both P0, P1 and the contamination proportion κ ∈ [0, 1] are unknown. We think of the second sample as
being labeled as belonging to class 1, but some of those labels are wrong.

We measure the performance of a classifier h using the class-conditional error probabilities

Ri(h) = Pi(h(X) 6= i).

If (X, Y ) are jointly distributed and Pr(Y = 1) = π, then the usual risk is R(h) = (1 − π)R0(h) +
πR1(h). Alternatively, we can use Rmax(h) = R0(h)∨R1(h) if we want to be non-Bayesian, or several other
performance measures defined in terms of R0 and R1.

Suppose we wish to establish a consistent sieve estimator over (Hk)k≥1. Then we need estimators R̂0,
R̂1 s.t.

sup
h∈Hk

|R̂i(h)−Ri(h)| → 0 i.p., i = 0, 1

as n ∧m = min{n,m} → ∞ with k = k(m,n) chosen appropriately.

The obvious estimate for R0 is

R̂0(h) =
1
n0

n0∑

i=1

1{h(X0
i )=1}.

There is no obvious estimate of R1, but we can estimate

R̃1(h) := P̃1(h(X) = 0) = (1− κ)R1(h) + κ(1−R0(h))

via
̂̃
R1(h) =

1
n

n1∑

i=1

1{h(X1
i )=0}.

1
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If κ < 1 and there exists a consistent estimator κ̂
i.p.→ κ, then it makes sense to estimate R1 via

R̂1(h) =
̂̃
R1(h)− κ̂(1− R̂0(h))

1− κ̂
.

Indeed, we have the following proposition:

Proposition 1. Let (Hk)k≥1 be a sequence of VC classes, where Vk < ∞. Let k(n,m) satisfy

Vk(n,m) log(n ∧m)
n ∧m

→ 0

as n ∧m →∞. If κ̂
i.p.→ κ < 1, then

sup
h∈Hk

|R̂i(h)−Ri(h)| → 0 i.p., i = 0, 1.

The proof is left as an exercise. If we additionally require k(m, n) →∞ and (Hk) to possess the universal
approximation property, it is straightforward to establish a consistent discrimination rule based on the sieve
estimator construction.

3 Irreducibility and the Maximum Mixture Proportion

From the above, it suffices to determine a consistent estimator κ̂ of κ. Note, however, that κ in (1) is not
identifiable (given P̃1 and P0) without additional assumptions. Indeed, if P̃1 = (1− κ)Q + κP0, then it also
true that P̃1 = (1− κ′)Q′ + κ′P0 for any κ′ ∈ [0, κ], where

Q′ =
(1− κ)Q + (κ− κ′)P0

1− κ′
.

Because we have no knowledge of P1, we cannot decide which representation is the correct one. Therefore,
to make κ identifiable (uniquely determined), we adopt the following assumption.

Definition 1. We say P1 is irreducible with respect to P0 if there exists no distribution Q and γ > 0 such
that P1 = (1− γ)Q + γP0.

Examples. 1. If P1 =
1
3
P0+

2
3
P
′
, where P

′
is an arbitrary distribution, then P1 is clearly not irreducible

wrt P0. See Fig. 1.

2. Suppose P0 = N(µ0, σ
2
0) and P1 = N(µ1, σ

2
1). If µ0 6= µ1 and σ0 ≥ σ1, then P1 is irreducible with

respect to P0. This can be checked by a property we will state below relating irreducibility and the
infimum of the likelihood ratio (see exercises below). See Fig. 2.

3. If supp(P0) 6⊂ supp(P1) then P1 is irreducible with respect to P0. See Fig. 3.

Definition 2. Given P̃1, P0, define κ∗(P̃1|P0) = sup
{

α ∈ [0, 1]
∣∣∣ ∃Q s.t P̃1 = (1− α)Q + αP0

}
.

Remark. P1 is irreducible with respect to P0 if and only if κ∗(P1|P0) = 0.

The following result is the main result concerning identifiability of κ in (1).
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Figure 1: P1 is not irreducible wrt P0.
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Figure 2: P1 is irreducible with respect to
P0.
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Figure 3: P1 is irreducible with respect to
P0.

Theorem 1. Consider a measurable space (X ,A) and two distributions P̃1 6= P0. Then there exists a unique
κ < 1 and a distribution P1 such that P̃1 = (1 − κ)P1 + κP0 and P1 is irreducible with respect to P0. If we
set κ = 1 when P̃1 = P0 then in all cases, we have

κ = κ∗(P̃1|P0) = inf
A∈A:P0(A)>0

P̃1(A)
P0(A)

.

Remarks. 1. From the theorem, if P̃1 = (1− κ)P1 + κP0 and P1 is irreducible with respect to P0, then
κ = κ∗(P̃1|P0) if κ < 1. Thus, irreducibility of P1 wrt P0 is sufficient for κ in (1) to be identifiable.

2. If P̃1 and P0 have Lebesgue densities f̃1 and f0, then

κ∗(P̃1|P0) = ess inf
f̃1(x)
f0(x)

:= inf

{
α : ∃A ∈ A s.t P0(A) > 0 and

f̃1

f0
≤ α on A

}
.

This is analogous to the last part of the theorem, and the proof is left as as exercise. This property
can be used to check irreducibility for specific densities.
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3. By this result, d(P̃1|P0) := 1− κ∗(P̃1|P0) is a statistical distance, meaning it is nonnegative and equal
to zero iff the two distributions are the same. This particular statistical distance has been known as
the separation distance in the study of Markov chains.

Proof. If P̃1 = P0 then it is clear that κ∗(P̃1|P0) = inf
A∈A:P0(A)>0

P̃1(A)
P0(A)

= 1. Henceforth, we will assume

P̃1 6= P0. Denote

a = inf
A∈A:P0(A)>0

P̃1(A)
P0(A)

.

Claim: a < 1. This is seen as follows. Since P̃1 6= P0, there exists a measurable set A ∈ A such that P̃1(A) 6=
P0(A). Consider three cases: If P0(A) = 1, then P̃1(A) < 1 = P0(A), so a < 1. If 0 < P0(A) < 1, then either
P̃1(A)/P0(A) < 1 or P̃1(Ac)/P0(Ac) < 1. If P0(A) = 0, then P1(A) > 0. Therefore, P0(Ac) = 1 > P1(Ac).
In all cases we see a < 1.

Now define the probability measure

P1 :=
P̃1 − aP0

1− a
,

which clearly satisfies P̃1 = (1 − a)P1 + aP0, from which we deduce that κ∗(P̃1|P0) ≥ a. Now from the
definition of inf we have

∀ε > 0, ∃A ∈ A such that P0(A) > 0 and
P̃1(A)
P0(A)

< a + ε. (2)

If P̃1 = (1− α)Q + αP0 then for all A ∈ A,
P̃1(A)
P0(A)

≥ α. Therefore, α ≤ a from (2), so κ∗(P̃1|P0) = a. Since

P̃1

P0
= (1− a)

P1

P0
+ a, (2) also implies

∀ε > 0, ∃A ∈ A such that P0(A) > 0 and
P1(A)
P0(A)

<
ε

1− a
. (3)

This implies that P1 is irreducible with respect to P0, for if P1 = (1 − γ)Q + γP0 for some γ > 0, then
P1(A)
P0(A)

≥ γ for all A ∈ A, contradicting (3).

Finally we establish uniqueness. Consider a distribution Q such that P̃1 = (1− γ)Q + γP0, where γ ≤ a.
Then (1− γ)Q + γP0 = (1− a)P1 + aP0 and so

Q =
1− a

1− γ
P1 +

a− γ

1− γ
P0.

Thus, if γ < a, Q is not irreducible with respect to P0, while if γ = a, we obviously have Q = P1. This
establishes uniqueness.

4 Connection to ROC Curves

Given α ∈ [0, 1], define

β̃(α) = sup
{

1− R̃1(h)
∣∣∣ R0(h) ≤ α

}
.
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We can think of β̃(α) as the the receiver operating characteristics (ROC) curve of the most powerful test of
size α for

H0 : X ∼ P0

H1 : X ∼ P̃1
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Figure 4: β̃(α) is an ROC, and when it is concave, κ∗ is the slope of this ROC at its right endpoint (note
the theory does not assume concavity).

Theorem 2.

κ∗(P̃1|P0) = inf
α∈[0,1)

{
1− β̃(α)

1− α

}
.

Proof. Denote κ∗ = κ∗(P̃1|P0). From Theorem 1, ∀ε > 0, we can find Aε ∈ A such that P0(Aε) > 0 and
P̃1(Aε)
P0(Aε)

< κ∗+ ε. Define the classifier hε(x) = 1{x/∈Aε}, and set αε = R0(hε) = 1−P0(Aε) < 1. Additionally,

R̃1(hε) = P̃1(Aε) = 1− (1− P̃1(Aε)) ≥ 1− β̃(αε). Therefore,

inf
α∈[0,1)

1− β̃(α)
1− α

≤ 1− β̃(αε)
1− αε

≤ P̃1(Aε)
P0(Aε)

< κ∗ + ε

ε was arbitrary, so

inf
α∈[0,1)

1− β(α)
1− α

≤ κ∗.

On the other hand, from Theorem 1,

κ∗ = inf
A∈A:P0(A)>0

P̃1(A)
P0(A)

= inf
α∈[0,1)

{
inf

A:P0(A)≥1−α

P̃1(A)
P0(A)

}
≤ inf

α∈[0,1)

{
inf

A:P0(A)≥1−α

P̃1(A)
1− α

}

= inf
α∈[0,1)

1− β̃(α)
1− α

.

This completes the proof.

This result suggests estimating κ∗(P̃1|P0) by estimating the slope of the ROC at its right endpoint, based
on an empirical ROC. The next section develops this idea.
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5 Consistent Mixture Proportion Estimation

We would like to establish a consistent estimator κ̂ of κ∗(P̃1|P0), which will be a consistent estimator of κ
in (1) when P1 is irreducible with respect to P0.

Let Hj , j ≥ 1, be VC classes with VC dimensions Vj < ∞. For i = 0, 1 let δi > 0 and denote

εi (j, δi) = 2

√√√√
2
Vj log (ni + 1) + log

(
2
δi

)

ni
. (4)

also define

κ̂ (j, δ0, δ1) = inf
h∈Hj

̂̃
R1 (h) + ε1 (j, δ1)(

1− R̂0 (h)− ε0 (j, δ0)
)

+

where (x)+ = max (x, 0) for any x ∈ R and the above ratio is defined to be +∞ if the denominator is 0.
Finally, define

κ̂ = κ̂ (δ0, δ1) = inf
j≥1

κ̂
(
j, δ0j

−2, δ1j
−2

)
.

The following is assumed about (Hj)j≥1.

Assumption 1. (Hj)j≥1 satisfies the following universal approximation property (UAP). For any distri-
bution Q, any positive ε and any classifier h∗ : X 7→ {0, 1}, there exist j ≥ 1 and h ∈ Hj such that
Q (h (X) 6= h∗ (X)) < ε.

Theorem 3. (Universal consistency) Let P̃1 and P0 be arbitrary distributions and consider the estimate κ̂

based on iid data drawn according to the one-sided label noise model. Denote κ∗ = κ∗(P̃1 |P0).

1. (One-sided confidence interval) For any δ0, δ1 > 0,

Pr (κ̂ (δ0, δ1) < κ∗) ≤ 2 (δ0 + δ1) . (5)

2. (Weak consistency). If δ0 = δ0 (n0) = 1
n0

and δ1 = δ1 (n1) = 1
n1

, then κ̂ → κ∗ in probability as
min (n0, n1) →∞.

3. (Strong consistency). If δ0 (n0, n1) = δ1 (n0, n1) = (n0n1)
−2, log n0 = o (n1) and log n1 = o (n0) as

min (n0, n1) →∞, then κ̂
a.s.→ κ∗.

Proof. (Part 1). Since
∞∑

j=1

j−2 = π2

6 < 2, the VC inequality and union bound imply that with probability

at least 1− 2 (δ0 + δ1), both

∀ j ≥ 1, ∀ h ∈ Hj

∣∣∣R̂0 (h)−R0 (h)
∣∣∣ < ε0

(
j, δ0j

−2
)

(6)

and

∀ j ≥ 1, ∀ h ∈ Hj

∣∣∣∣
̂̃
R1 (h)− R̃1 (h)

∣∣∣∣ < ε1
(
j, δ1j

−2
)

(7)

Thus, with probability at least 1− 2 (δ0 + δ1),

κ∗ = inf
α∈[0,1]

(
1− β̃ (α)

1− α

) (a0)
≤ inf

j≥1, h∈Hj

(
R̃1 (h)

(1−R0 (h))+

) (a1)
≤ inf

j≥1, h∈Hj

ˆ̃
R1 (h) + ε1

(
j, δ1j

−2
)

(
1− R̂0 (h)− ε0 (j, δ0j−2)

)
+

= κ̂ (δ0, δ1)
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where (a0) holds the infimum is taken over a restricted set and (a1) is an immediate consequence of deviation
inequalities (6) and (7).

(Part 2). Let 0 < ε ≤ 1. We previously saw in the proof of Theorem 2 that there exists a classifier hε

such that R0 (hε) < 1 and
( eR1(h)

1−R0(h)

)
≤ κ∗ + ε.

By Assumption 1, for any γ ∈ (
0, 1

2

)
, there exist

¯
j ≥ 1 and

¯
h ∈ H

¯
j such that

P̄ (hε (X) 6=
¯
h (X)) < γ

where P̄ = 1
2 (P0 + P1). Since P̄ ≥ 1

2P0 and P̄ ≥ 1
2P1, we have

P0 (hε (X) 6=
¯
h (X)) < 2γ, P1 (hε (X) 6=

¯
h (X)) < 2γ. (8)

We claim that |Ri (h)−Ri (h′)| ≤ Pi (hε (X) 6=
¯
h (X)) for i = 1, 2. To see this, observe

Ri (h)−Ri (h′) = Pi (h (X) = 1)− Pi (h′ (X) = 1)
= Pi (h (X) = 1, h′ (X) = 0)− Pi (h (X) = 0, h′ (X) = 1)
≤ Pi (h (X) = 1, h′ (X) = 0)
≤ Pi (h (X) 6= h′ (X))

To see the inequality in the reverse direction, just interchange the roles of h and h′.
For brevity, we use ε0 and ε1 instead of ε0

(
¯
j, δ0

¯
j−2

)
and ε1

(
¯
j, δ1

¯
j−2

)
. Combining the above, we have

that with probability at least 1− 2 (δ0 + δ1),

κ̂ ≤
̂̃
R1 (

¯
h) + ε1(

1− R̂0 (
¯
h)− ε0

)
+

≤ R̃1 (
¯
h) + 2ε1

(1−R0 (
¯
h)− 2ε0)+

≤ R̃1 (hε) + 2 (ε1 + γ)
(1−R0 (hε)− 2 (ε0 + γ))+

. (9)

Note that the first inequality in (9) is a direct consequence of the first part of the theorem, and the
last inequality is obtained by the combination of our previous claim and inequality (8). Now choose γ =

ε
4(1+ε) (1−R0 (hε)) and let N be such that n0, n1 ≥ N implies max (ε0, ε1) ≤ γ (possible since ε0 and ε1 tend
to zero as n0 and n1 go to infinity). Therefore, by using the inequality (9), the following string of inequalities
fails with probability at most 2 (δ0 + δ1) for n0, n1 ≥ N :

κ̂ ≤ R̃1 (hε) + 2 (ε1 + γ)
(1−R0 (hε)− 2 (ε0 + γ))+

≤ R̃1 (hε) + 4γ

(1−R0 (hε)− 4γ)+
= (1 + ε)

R̃1 (hε) + 4γ

1−R0 (hε)

= (1 + ε)
R̃1 (hε)

1−R0 (hε)
+

4γ (1 + ε)
1−R0 (hε)

= ε + (1 + ε)
R̃1 (hε)

1−R0 (hε)
≤ ε + (1 + ε) (κ∗ + ε) ≤ κ∗ + 4ε.

Combining the above bound and that of Part 1, which together hold with probability at least 1− 2(δ0 + δ1)
(because they are based on the same uniform deviation bound), we have that for n0, n1 ≥ N ,

Pr (|κ∗ − κ̂| ≥ 4ε) ≤ 2
(

1
n0

+
1
n1

)
→ 0.

Thus, κ̂ is a weakly consistent estimator of κ∗.
(Part 3). In order to show strong consistency, we need the following generalization of the Borel-Cantelli

lemma, whose proof is left as an exercise.

Lemma 1. If Zn0,n1 is a random process indexed by n0 and n1, and for all ε > 0 there exists N such that
∑

n0,n1≥N

Pr (|Zn0,n1 − Z| ≥ ε) < ∞,

then Zn0,n1 → Z almost surely as min{n0, n1} → ∞.
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In the last inequality of Part 2, we have seen that for any ∆ > 0, there exists N > 0 such that
Pr (|κ∗ − κ̂| ≥ ∆) ≤ 2 (δ0 + δ1) = 4 (n0n1)

−2 for any n0, n1 ≥ N . Hence,

∑

n0,n1≥N

Pr (|κ∗ − κ̂| ≥ ∆) ≤ 4
∑

n0,n1≥N

(n0n1)
−2 ≤ 4

(
π2

6

)2

< ∞

The result now follows from Lemma 1.
Note the following subtle point: In the argument from Part 2, we need both ε0 and ε1 to tend to zero

as min{n0, n1} → ∞. In the strong consistency case, where we choose δ0 = δ1 = (n0n1)−2, we must have
log n0 = o (n1) and log n1 = o (n0) to guarantee this property. For instance,

ε0
(
j, δ0j

−2
)

= 3

√
Vj log (n0 + 1) + 2 log n0 + 2 log n1 + log 2

n1
→ 0

provided, log n0 = o (n1).

Exercises

1. Prove Proposition 1 and use it to construct a consistent discriminiation rule with respect to the
probability of error performance measure.

2. Verify the second remark after Theorem 1

3. Verify the second example (about Gaussian densities) using the likelihood ratio characterization of κ∗.

4. Verify the generalization of the Borel-Cantelli Lemma used in the proof of Theorem 3.

5. Instead of defining κ̂(δ0, δ1) as an inf over j of κ̂(j, δ0j
−2, δ1j

−2), does the consistency result still hold
if we define

κ̂(δ0, δ1) = κ̂(j(n0, n1), δ0, δ1)

where j(n0, n1) → ∞ at an appropriate rate? If so, does one estimator have any advantage over the
other?
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