Homework \#4

Due Date: Nov. 4, 2004

1. For magnetization vector \mathbf{M} and applied field \mathbf{B}_{0} with an angle α separating them, use the Bloch equations to show that the rate of precession of \mathbf{M} around \mathbf{B}_{0} is $\omega_{0}=\gamma \mathbf{B}_{0}$.

2. In class, we described quantum mechanical and classical properties of nuclear spin for the hydrogen nucleus, ${ }^{1} \mathrm{H}$. Let's look at what changes if we are interested in imaging carbon-13, ${ }^{13} \mathrm{C}$. Assume that $\gamma_{\mathrm{C}}=1 / 4 \gamma_{\mathrm{H}}$. Please describe the following for carbon in terms of the equivalent terms for hydrogen. Assume all other factors (B_{0}, temperature, etc.) are the same.
a. The difference in energy between spin-up and spin-down states, $\Delta \mathrm{E}$. (Please describe $\Delta \mathrm{E}$ for ${ }^{13} \mathrm{C}$ in terms of the $\Delta \mathrm{E}$ for ${ }^{1} \mathrm{H}$.)
b. The resonant frequency in the presence of applied field $\mathrm{B}_{0}, \omega_{0}$.
c. The number of excess nuclei that are spin-up vs. spin-down, $\mathrm{N}_{\text {diff. }}$
d. The length of the magnetic dipole for a single nuclear spin, $|\boldsymbol{\mu}|$.
e. The size of the equilibrium net magnetic dipole for 1 mole of the substance, $|\mathbf{m}|$.
3. Consider a magnetic dipole, \mathbf{M}, in the presence of an applied main magnetic field, $\mathbf{B}=\mathrm{B}_{0} \mathbf{k}$, where \mathbf{k} is the unit vector in the z-direction. Assume that initially, \mathbf{M} is at equilibrium, has length M_{0} and is aligned with the main magnetic field (along the z -direction). Describe (or sketch) the position of \mathbf{M} in a frame rotating at $\omega_{0}=\gamma \mathrm{B}_{0}$ for the following sequence of events. Please ignore the effects of any T 1 or T 2 relaxation.
a. At equilibrium.
b. A rotating magnetic field of strength B_{1} and rotational frequency ω_{0} is applied for a period of time $\tau=2 \pi /\left(4 \gamma B_{l}\right)$.
c. The main field is changed to $\mathbf{B}=\left(\mathrm{B}_{0}+\Delta \mathrm{B}\right) \mathbf{k}$ for a period of time $\mathrm{T}=\pi /(\gamma \Delta B)$.
d. A rotating magnetic field of strength B_{1} and rotational frequency ω_{0} is again applied for a period of time $\tau=2 \pi /\left(4 \gamma B_{I}\right)$. (Applied in the same direction as in b.)
4. Consider two materials, A and B with relaxation constants $\left(T_{1 A}, T_{2 A}\right)$ and $\left(T_{1 B}, T_{2 B}\right)$ respectively. Assume a 90 degree flip angle and at A, B have the same proton density.
a. Determine the time that maximizes $\left|\left|M_{x y, A}(t)\right|-\left|M_{x y, B}(t)\right|\right.$.
b. Determine the time that maximizes $\left|M_{z, A}(t)-M_{z, B}(t)\right|$.
c. Assuming these materials was white matter and gray matter at 1.5 T , determine the repetition time (TR) that maximizes T 1 contrast with a $\mathrm{TE}=0$ and determine the echo time (TE) that maximized T 2 contrast for $\mathrm{TR}=\infty$.
