
EECS 556, Winter 2002 Final Exam Solutions 1

Dear EECS 556 Class – Thanks for your attention and participation in class. I hope you learned
as much from taking this class as I did from teaching it. The class performance on this exam was
excellent and the median grade on the final was 91. Please accept my best wishes for an
enjoyable summer. Cheers, DN

1. Transforms and transform coding.

a. Consider the N-length Fourier transform coefficients:

∑∑
−

=

−

=

−

=

−=

1

0

1

0
2sin2cos)(

1
2exp)(

1
)(

N

n

N

n N
kn

i
N
kn

nx
NN

kn
inx

N
kX πππ .

For real valued x(n), we know that X(k) = X*(N-k). We also know that X(0) and X(N/2)
are real-valued. Thus, there are exactly N unique real-valued coefficients: X(0), X(N/2),
real{X(k)}, and imag{X(k)} for k=1, 2, … N/2-1. The transform kernel for each of these

is
N
1

 times [1 1 … 1], [1 -1 1 … -1],

N
kn

π2cos , and

−

N
kn

π2sin , respectively, for

n=0, 1, 2, … N-1. For an energy preserving transformation, we’ll need to normalize each
kernel to have unit energy. Ordering form highest to lowest energy usually means
ordering from lowest frequency to highest frequency. So, the 8x8 transformation matrix
is:

1 1 1 1 1 1 1 1

8
2cos2

n
π

−

8
2sin2

n
π

8
2

2cos2
n

π

−

8
2

2sin2
n

π

8
3

2cos2
n

π

−

8
3

2sin2
n

π

A =
8

1

1 -1 1 -1 1 -1 1 -1
 For n=0, 1, 2, … N-1.
b. Since the Fourier kernel is orthogonal and we have made the rows unit length, the A

matrix is unitary and thus, the inverse transform is the transpose of A: B = A’.
c. The 8x8 transformation of some subimage x is simply the transform of the columns of x

by A (e.g. y = Ax), followed by the transformation of the columns of y’ by A (e.g. X =
(Ay’)’). The net result is X = AxA’ .

d. The 8x8 inverse transformation of some transform block X is simply the transform of the
columns of x by A’ (e.g. y = A’X), followed by the transformation of the columns of y’ by
A’ (e.g. x = (A’y’)’). The net result is x = A’XA .

EECS 556, Winter 2002 Final Exam Solutions 2

e. See plots and code. This transform can be implemented in a similar manner to transforms
used in Homework #9. We could also get the transform coefficients directly from the
output of fft or fft2 and scale those appropriately. For larger blocks, this latter
approach may be desirable for computational reasons O(NlogN) vs. O(N2).

Matlab code:

% solution to final, problem 1
im = [1:8]'*[5:12];

% build transform matrix
N = 8; nn=[0:N-1]; rftmat = zeros([N N]);
rftmat(1,:) = ones([1 N]);
for lp = 1:N/2-1
 rftmat(lp*2,:) = sqrt(2)*cos(2*pi*lp*nn/N);
 rftmat(lp*2+1,:) = -sqrt(2)*sin(2*pi*lp*nn/N);
end
rftmat(N,:) = cos(2*pi*nn/2);
rftmat = rftmat./sqrt(N);

% inverse is rftmat' - this makes it a unitary (energy preserving) transform

% 2DFT
coeffs = zeros([8 8]);
iminv = zeros([8 8]);
% can do like solutions to HW#9 or compactly like this
coeffs = rftmat*im*rftmat';
coeffs = real(coeffs);

% 2D IDFT
iminv = rftmat'*coeffs*rftmat;

% check energy conservation and invertability
eim = sum(im(:).^2);
ecoeffs = sum(coeffs(:).^2);
mse = mean((im(:)-iminv(:)).^2);
subplot(221); imagesc(im); colormap(gray); colorbar;
title(['original image, energy = ' num2str(eim)]);
subplot(222); imagesc(coeffs); colormap(gray); colorbar;
title(['transform coeffs, energy = ' num2str(ecoeffs)]);
subplot(223); imagesc(iminv); colormap(gray); colorbar;
title(['inverted image, MSE = ' num2str(mse)]);

EECS 556, Winter 2002 Final Exam Solutions 3

2. Deblurring.
a. The time function of the aperture will take on the form: rect(t/T), where T is the exposure

time and the car (camera) position can be represented as x = vt. The image will then take

on the form ∫
−

−=
2/

2/

),(
1

),(
~ T

T

dtyMvtxf
T

yxf , where M is (de)magnification factor

associated with the cameras optics. We can write the above as

MvTWyWxrect
W

yxf

dxMvTxrectyxxf
MvT

dtTtrectyMvtxf
T

yxf

==

−=

−=

∫

∫
∞

∞−

∞

∞−

 where)()/(
1

**),(

')/'(),'(
1

)/(),(
1

),(
~

δ

W is the image blur (in pixels) in the x direction. There is no blur in y.
b. The FT of the above is)(sinc),(),(~ WuvuFvuF = . For the discretized space, we get

)2/sin(
)2/sin(

),(),(~

x

x
yxyx W

W
FF

ω
ω

ωωωω = or
)2/2sin(
)2/2sin(

),(),(~
NkW
NkW

lkFlkF
π

π
= .

The continuous function has zeros every 1/W. The discretized version has zeros every
N/W. From the first plot, we can see that there are zeros roughly every 14 2/3 frequency
bins and N=512. So, W = 512/(14 2/3) ≈ 34.9 pixels.

We also observe that rect blurring of step-like edges in an image will result in a ramp of
length equal to the width of the rect. Here we see that the ramp goes from roughly from
296 to 331, a width of 35 pixels.

Based on these two observations, our estimate for the blur is 35 pixels. This was the size
of the blur that was used in creating the blurred image.

EECS 556, Winter 2002 Final Exam Solutions 4

c. See code and figures:

d. The edge artifacts result from the fact that the blur happen by linear convolution and the

deblurring used circular convolution. Clearly, the circularity assumption was not real
good. In our discussion of convolution, we discussed numerous ways to treat edge
pixels. Zero padding will result in a discontinuity at the edge that is not desirable.
Replication of the edge pixel is not desirable because it doesn’t replicate the blurring
character, but would be better then zero padding or circular convolution. The best
solution is the replicate by mirroring around the edge. This only needs to be done in x.

e. The clipped/mirrored extension has the lowest MSE, but method 2 with mirrored

extensions is better visually (less ringing off of the edges).
f. The non-extended deblurring kernels were dominated by edge artifacts and the MSE was

not affected in a reliable way by the change in model parameters. For the extended
images, the MSE increased with change in model parameters. For the clipped/extended

method 5.4
)(

≈
dW
MSEd

 and method 2/ext. 2
)(

≈
dW
MSEd

 for a unit change in W. Thus,

method 2 is more robust to model errors. One can also plot MSE vs. W for these cases
and also see that method 2 is more robust.

EECS 556, Winter 2002 Final Exam Solutions 5

Matlab code:
load finalimage2;
% blurho is blurred image of house
% refim is to be used only for calculation of MSEs and comparison

bhwin = blurho.*(ones([480 1])*hanning(512)');
spec = sum(abs(fft(bhwin,[],2)),1);
figure(1)
subplot(211); semilogy(spec); title('Average spatial spectrum')
axis([115 165 1e2 1e4]); grid
subplot(212); plot(blurho(125,:)); title('Plot line 125')
axis([295 335 50 250]); grid

% find spectral response of blur
W = 35;
[sx sy] = size(blurho);
[xx yy] = ndgrid([-sx/2:sx/2-1]./sx, [-sy/2:sy/2-1]./sy);
B = sinc(W.*yy);

gam = 3; msk = 1./abs(B) < gam;
H1 = 1./B .*(msk + (1-msk).*abs(B).*gam);
a = 0.03;
H2 = (B(sx/2+1,sy/2+1)^2 + a)/(B(sx/2+1,sy/2+1)^2)*B./(B.^2+a);

HB = fftshift(fft2(blurho));

imres1 = real(ifft2(fftshift(HB.*H1)));
imres2 = real(ifft2(fftshift(HB.*H2)));

mseblur = mean((refim(:) - blurho(:)).^2);
msere1 = mean(mean((imres1-refim).^2));
msere2 = mean(mean((imres2-refim).^2));

figure(2)
subplot(221); imagesc(refim,[0 255]); colormap(gray);
title('Reference Image');
subplot(222); imagesc(blurho,[0 255]); colormap(gray);
title(['Blurred Image, MSE = ' int2str(mseblur)]);
subplot(223); imagesc(imres1,[0 255]); colormap(gray);
title(['Deblurred - Clipped, MSE = ' int2str(msere1)]);
subplot(224); imagesc(imres2,[0 255]); colormap(gray);
title(['Deblurred - Method 2, MSE = ' int2str(msere2)]);

% extend by mirrorred reflection (do in x only)
blurhoext = [blurho(:,256:-1:1) blurho blurho(:,512:-1:257)];

[sx sy] = size(blurhoext);
[xx yy] = ndgrid([-sx/2:sx/2-1]./sx, [-sy/2:sy/2-1]./sy);
B = sinc(W.*yy);

gam = 3; msk = 1./abs(B) < gam;
H1 = 1./B .*(msk + (1-msk).*abs(B).*gam);
a = 0.03;
H2 = (B(sx/2+1,sy/2+1)^2 + a)/(B(sx/2+1,sy/2+1)^2)*B./(B.^2+a);

HB = fftshift(fft2(blurhoext));

imres1ex = real(ifft2(fftshift(HB.*H1)));
imres2ex = real(ifft2(fftshift(HB.*H2)));
imres1ex = imres1ex(:,257:768);
imres2ex = imres2ex(:,257:768);

msere1ex = mean(mean((imres1ex-refim).^2));
msere2ex = mean(mean((imres2ex-refim).^2));

figure(3); clf
subplot(221); imagesc(imres1ex,[0 255]); colormap(gray);
title(['Deblurred - Clipped/Ext, MSE = ' int2str(msere1ex)]);
subplot(222); imagesc(imres2ex,[0 255]); colormap(gray);
title(['Deblurred - Method 2/Ext, MSE = ' int2str(msere2ex)]);

EECS 556, Winter 2002 Final Exam Solutions 6

3. VQ – Please see discussion of VQ in Lim, pp. 598-606.
a. Gain from using VQ is very large. This is a bi-variate Gaussian RV with a correlation of

0.9 between x1 and x2. The variance of x2, given x1 is greatly reduced (to (1 – ρ2)). This
means that many fewer bits are necessary to code of x2, once x1 is coded.

b. Gain from VQ is minimal or none. Since)()(),(2121 xfxfxxf = the RV’s are
independent and little gain can be made. A nominal gain might be achievable based on
packing considerations (e.g. see Lim, Fig. 10.13).

c. Again, since)()(),(2121 xfxfxxf = the RV’s are independent and little gain can be
made.

d. Here, a small to modest amount of gain can be achieved though VQ. x1 and x2 are
correlated, though not strongly (ρ = –1 /11)

e. Here, a large gain is possible through the use of VQ. There is a high degree of
correlation (ρ = 0.75) and we can see that ½ of the reconstruction levels are necessary for
the same distortion as scalar quantization.

4. Subband Coding.

a. Energy in original image and in subband coding image were both 6.8368e+009. It was
energy preserving.

b. See code. Error was zero – inversion was exact.
c. Using the bit allocation formula of Lim, Equation 10.15 we get optimal bit allocation of

5.2828, 1.2277, 1.2214, 0.2681, respectively. The bit allocation used is pretty close to
the optimal.

d. See code.
e. The optimal value for a is 30.9 and decision thresholds were +/- 15.45.
f. A Huffman code for {-a, 0, a} is {10, 0, 11}. The bit rate for IHL and ILH is 1.06

bits/pixel and thus we achieved our desired bit rate of 1.5 bits/pixel.

EECS 556, Winter 2002 Final Exam Solutions 7

g. The entropy was H = 0.3345, so our coding scheme did not come very close to the
optimal. There are lots of ways of getting closer to the entropy. First, we could
concatenate codes (like Shannon’s 1st Theorem) and derived a new codebook. Seeing the
spatial correlations of ILH in the figure below (Shannon’s result assumes independence),
one logically thinks of using alternate quantization techniques like VQ or coding schemes
that incorporate run length coding for efficient coding of the long runs of zeros.

h. The average bit rate here was (5 + 1.06 + 1.06 + 0)/4 = 1.78 bits/pixel (our target was 2
bits/pixel). The distortion was comparable to VQ encoded with 2 bits/pixel (Dsubband =
26.8 vs. DVQ = 26.4).

Matlab code:
% solution problem 4
load ../hw7image;
% forward transform
subimLL = (ho(1:2:end,1:2:end) + ho(2:2:end,1:2:end) + ho(1:2:end,2:2:end) +
ho(2:2:end,2:2:end))/2;
subimHL = (ho(1:2:end,1:2:end) - ho(2:2:end,1:2:end) + ho(1:2:end,2:2:end) -
ho(2:2:end,2:2:end))/2;
subimLH = (ho(1:2:end,1:2:end) + ho(2:2:end,1:2:end) - ho(1:2:end,2:2:end) -
ho(2:2:end,2:2:end))/2;
subimHH = (ho(1:2:end,1:2:end) - ho(2:2:end,1:2:end) - ho(1:2:end,2:2:end) +
ho(2:2:end,2:2:end))/2;
im2 = [subimLL subimLH; subimHL subimHH];
figure(1); imagesc(im2); colormap gray; title('Subband Coding')
eorig = sum(ho(:).^2)
etrans = sum(im2(:).^2)
% inverse transform
newho = zeros(size(ho));
newho(1:2:end,1:2:end) = (subimLL + subimHL + subimLH + subimHH)/2;
newho(2:2:end,1:2:end) = (subimLL - subimHL + subimLH - subimHH)/2;
newho(1:2:end,2:2:end) = (subimLL + subimHL - subimLH - subimHH)/2;

EECS 556, Winter 2002 Final Exam Solutions 8

newho(2:2:end,2:2:end) = (subimLL - subimHL - subimLH + subimHH)/2;
inverror = mean((ho(:)-newho(:)).^2)
% variacens and bit rates
vll = var(subimLL(:));
vhl = var(subimHL(:));
vlh = var(subimLH(:));
vhh = var(subimHH(:));
vm = (vll*vhl*vlh*vhh).^(1/4);
bll = (2 + 0.5*log2(vll/vm))
bhl = (2 + 0.5*log2(vhl/vm))
blh = (2 + 0.5*log2(vlh/vm))
bhh = (2 + 0.5*log2(vhh/vm))
% quantize HH and LL
subimHH = zeros(size(subimHH));
L = 2^5;
mn = min(subimLL(:));
mx = max(subimLL(:));
delt = (mx-mn)/L;
subimLL = round((subimLL - mn + delt/2)./delt).*delt - delt/2 + mn;

% find best a
dat = [subimHL(:); subimLH(:)];
mm = max(abs(dat));
a = 1; astep = 0.1;
qtest = zeros(size(dat));
qtest(find(dat > a/2)) = a;
qtest(find(dat < -a/2)) = -a;
mse = mean((dat - qtest).^2);
mseold = mse+1;
while (mseold > mse) % loop through values
 mseold = mse;
 a = a+astep;
 qtest = zeros(size(dat));
 qtest(find(dat > a/2)) = a;
 qtest(find(dat < -a/2)) = -a;
 mse = mean((dat - qtest).^2);
end
a = a-astep
qtest = zeros(size(dat));
qtest(find(dat > a/2)) = a;
qtest(find(dat < -a/2)) = -a;
% probabilities, average bit rate, entropy
pposa = sum(qtest > 0)/length(qtest)
pnega = sum(qtest < 0)/length(qtest)
pzero = sum(qtest == 0)/length(qtest)
bbar = pposa*2 + pnega*2 + pzero
h = -(pposa*log(pposa) + pnega*log2(pnega) + pzero*log2(pzero))
% quantize HL and LH
subimHL = reshape(qtest(1:end/2),size(subimHL));
subimLH = reshape(qtest(end/2+1:end),size(subimHL));
% inverse transform
newho = zeros(size(ho));
newho(1:2:end,1:2:end) = (subimLL + subimHL + subimLH + subimHH)/2;
newho(2:2:end,1:2:end) = (subimLL - subimHL + subimLH - subimHH)/2;
newho(1:2:end,2:2:end) = (subimLL + subimHL - subimLH - subimHH)/2;
newho(2:2:end,2:2:end) = (subimLL - subimHL - subimLH + subimHH)/2;
%distortion
D = mean((ho(:)-newho(:)).^2)
figure(2); subplot(221);
imagesc(ho); colormap(gray); colorbar; title('Original Image');
subplot(222); imagesc(newho); colormap(gray); colorbar;
title(['Quantized Image, D = ' num2str(D)]);
subplot(223); imagesc(ho-newho); colormap(gray); colorbar;
title(['Error Image, D = ' num2str(D)]);

EECS 556, Winter 2002 Final Exam Solutions 9

5. Systems and transforms.
a.)7(sinc)9(sinc63),(vuvuF =
b. Sampling with a 2D comb function yields:

∑∑

∑

∑

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

−−=−−=

−−=

−−=

lk

lk

lk
Y
l

X
k

s

mn

mn
s

vuvuGvuF

nnmynx

mYnXgmYynXxXYyxf

,
22

,

,

,

))(7(sinc))(9(sinc63),(),(

)7/2(rect)9/2(rect)2,2(4

),(),(),(

δ

δ

c. There are two correct answers for this part. First, we can the appropriate substitutions
into),(vuFs :

∑
∞

−∞=

==

−−=

=

lk

xx

Y
v

X
u

syxd

lk

vuF
XY

F
yx

,

2
,

2

))
24

(7(sinc))
24

(9(sinc
4

63

),(
1

),(

π
ω

π
ω

ωω

π

ω

π
ω

Alternatively, we can recognize that rect(2n/9)rect(2m/7) =

 ≤≤

otherwise
mn

0
1,21

, which

transforms to)3,(diric)5,(diric15
)2/sin(

)2/3sin(

)2/sin(
))2/5sin(

),(xx
y

y

x

x
yxdF ωω

ω

ω

ω
ω

ωω ⋅== or to

))cos(21))(2cos(2)cos(21(),(yxxyxdF ωωωωω +++= . While these three answers

look very different, they are in fact exactly the same.
d. Using the Dirichlet form from part c., the discrete Fourier series coefficients can be

written as:
)sin(

)
3

sin(

)sin(

))
5

sin(
),(),(

~
2

,
2

M
l

M
l

N
k

N
k

FlkF
M

l
N

kyxd
xx π

π

π

π

ωω π
ω

π
ω

==
==

e. The DFT can be written as:

 −=−=

=
otherwise

MlNklkF
lkF

0
1,...,0,1,...,0),(

~
),(.

