Homework \#8

Due Date: Apr. 9, 2002

1. [10 each] Lim, Problems 10.11, and 10.22.
2. [20] Lim, Problems 10.9. Let the training vector be $\left(f_{1}, f_{2}\right)=(1,-1),(0,2),(-1,1),(-2,0)$. Use initialization vectors of $[(1,-1),(-1,1)],[(-2,0),(0,0)]$, and $[(-2,0),(-.5,1.5)]$. Do these yield the same answer? Why? Compare the results, which is best?
3. [10] Pyramid coder. Suppose we have a 257×257 image that we wish to quantize using pyramid coding. We will quantize the following images using the following bit rates:

$e_{0}(n, m)$	$1 \mathrm{bit} /$ pixel
$e_{1}(n, m)$	$2 \mathrm{bit} / \mathrm{pixel}$
$e_{2}(n, m)$	$4 \mathrm{bit} / \mathrm{pixel}$
$f_{3}(n, m)$	$6 \mathrm{bit} / \mathrm{pixel}$

e_{0} is the base of the pyramid and f_{3} is the top level image.
a. What are the sizes of the these four images to be coded?
b. What is the average bit rate for this example.
4. [50] Vector Quantization (VQ). Download the template hw8_template.mplus files kmeans.m and dist $2 . \mathrm{m}$ for use in this problem. This problem will again use the house image from homework \#7. We will implement VQ for 2×2 regions of the image (length 4 vectors).
a. For an average of 1 bit/pixel quantization, how many reconstruction levels, L, are required.
b. Choose 1000 training image vectors at random and use them to create an "optimal" set of reconstruction levels.
c. Quantize the entire image in to a code vector (one number for every 2×2 block of the image). Use the hist function to plot the frequency of each reconstruction level.
d. Reconstruct the image (Matlab code for this is already there) can calculate the average distortion. Display reconstructed image and error image using imagesc.
e. Repeat steps a.-d. for an average of 2 bits/pixel quanitization.
5. [50] PCM with Robert's pseudonoise technique. Using the same image as the VQ problem, we will investigate distortion .
a. Implement PCM with the Robert's pseudonoise technique for 2 bits/pixel on the image of the house. Determine the average distortion.
b. Implement PCM without the Robert's pseudonoise technique for 2 bits/pixel on the image of the house. Determine the average distortion.
c. Display reconstructed images and error images for each method.
d. Repeat part a. for 2-7 bits/pixel. Compare to distortion measures to those of VQ.

