Recent Advances in Magnetic Resonance Imaging

Douglas C. Noll Department of Biomedical Engineering, University of Michigan

http://www.eecs.umich.edu/~dnoll/stuff.html

New Advances in MRI

Technology development in MRI continues to focus on the usual suspects...

- Speed of acquisition
 - Temporal and spatial resolution
- SNR
 - Spatial resolution
- Quantitation
- Contrast Mechanisms

Advances drive new applications (& vice versa)

Selected New Advances

- Parallel RF channels
 - Receive side: SENSE
 - Transmit side: Transmit SENSE
- Reduced Spatial Encoding
 - Projection imaging in MR angiography
 - Other subsampled trajectories
 - Exploiting unique temporal characteristics
- Very High Field MRI (7T and higher)
 - Technical challenges

Parallel RF Channels (Receive)

- Fourier encoding has dominated MRI acquisition since its inception.
- Until recently, only in limited applications has RF encoding been used.
 - E.g. localization in spectroscopy
- We start our description of the new uses of RF encoding with a brief review of Fourier encoding.

"Standard" Fourier Encoding in MRI

 A fundamental property of nuclear spins says that the frequency at which they precess (or emit signals) is proportional to the magnetic field strength:

$$\omega = \gamma B$$

- The Larmor Relationship

• Therefore, if we apply a gradient field, the precession frequency varies with spatial location.

Frequency Encoding

Fourier Transforms

- Images are reconstructed through the use of the Fourier transform.
- The Fourier transform breaks down each MR signal into its frequency components.
- If we plot the strength of each frequency, it will form a representation (or image) of the object in one-dimension.

Fourier Image Reconstruction (1D)

2D Imaging - 2D Fourier Transform

• Fourier encoding also works in 2 and 3 dimensions:

Localization in MR by Coil Sensitivity

• Coarse localization from parallel receiver channels attached to an array coil

Combined Fourier and Coil Localization

• SENSE (<u>SENS</u>itivity <u>E</u>ncoding)

- Pruessmann, et al. Magn. Reson. Med. 1999; 42: 952-962.

- SMASH (<u>SiM</u>ultaneous <u>A</u>cquisition of <u>Spatial Harmonics</u>)
 Sodikson, Manning. *Magn. Reson. Med.* 1997; **38**: 591-603.
- Basic idea: combining reduced Fourier encoding with coil sensitivity patterns produces artifact free images
 - Artifacts from reduced Fourier encoding are spatially distinct in manner similar to separation of the coil sensitivity patterns

SENSE Imaging – An Example

S_{1A}A

S_{1B}B

 $S_{3A}A$

S_{3B}B

Full Fourier Encoding Volume Coil

Unknown Pixel Values **A** & **B**

Full Fourier Encoding Array Coil

Fourier Encoding + Coil 1 Fourier Encoding + Coil 2

-S_{2B}B

Fourier Encoding + Coil 3 Fourier Encoding + Coil 4

S_{4B}B

SENSE Imaging – An Example

Reduced Fourier – Speed-Up R=2 Volume Coil

A+B-

Insufficient Data To Determine A & B

Reduced Fourier – Speed-Up R=2 Array Coil

Reduced Fourier + Coil 1

Reduced Fourier + Coil 2

Reduced Fourier + Coil 4

Extra Coil Measurements Allow Determination of A & B

 $-S_{2A}A+S_{2B}B$

 $-S_{4A}A+S_{4B}B$

SENSE Imaging – An Example

 $\begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \end{bmatrix} = \begin{bmatrix} S_{1A} & S_{1B} \\ S_{2A} & S_{2B} \\ S_{3A} & S_{3B} \\ S_{4A} & S_{4B} \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix}$

Solving this matrix equation leads to A & B and the unaliased image

Parallel Imaging Solutions

- Reduced Imaging Time

 Amount of k-space sampling is reduced
- Reduced Readout Length
 Reduced image distortions
- Increased Spatial Resolution

 For a fixed readout length, in-plane pixel dimensions reduced by 30-50%

Susceptibility Distortions from Long Readouts

TE = 10 ms, Thickness = 4 mm, Spiral Acquisition

Disadvantages of SENSE

• SNR penalty vs. array coil

- Penalty more severe for large speed factors
- However, SNR is often as good or better than head coil due to SNR advantages of array coil
- Raw data requirements are much larger
- Image reconstruction is more complicated
 Also need to acquire coil sensitivity patterns
- Requires some multiple (4-16) receiver channels

Example: Reduced Encoding in Spiral MRI

 Reduced Fourier encoding in spiral imaging leads to a more complicated artifact pattern than Cartesian sampled MRI, e.g.:

Full Fourier Data

Half Fourier Data

Iterative Image Reconstruction in Spiral SENSE

- Simple inversions do not work
 - Iterative image reconstruction methods are needed
 - Fast methods based on the conjugate gradient algorithm and nonuniform-FFT (Sutton et al., *IEEE TMI* 2003; 22:178-188) are used here:

Image Reconstruction in Spiral SENSE

- The k-space data for each coil are simulated:
 - From the current estimate of the object
 - Using prior information, and
 - Using the MRI signal equation:

Estimated Image is updated with each iteration

Spiral SENSE – An Example

Prior Information Needed for Image Reconstruction

Coil 3

Coil Sensitivity Maps (complex valued)

K-space Trajectory

Magnetic Field Maps (optional)

Spiral SENSE – An Example

Half Fourier, Coil 1

Half Fourier, Coil 1

Half Fourier, Coil 4

Received Signal For Coil k

Iterative Image Reconstruction

Prior Information

SENSE Recon

Spiral SENSE – Results

Head Coil4-Channel SENSE CoilReduced Susceptibility Artifact

Excellent Detail

Functional MRI using Spiral SENSE

4-Channel SENSE

Head Coil

Time Courses

Bilateral finger tapping, 20s off/on correlation threshold = 0.7

Parallel RF Channels (Transmit)

- Multidimensional RF pulses have applications in a number of domains:
 - Correction of susceptibility dephasing in functional MRI
 - Correction of B1 inhomogeneity at high fields
 - Excitation of specific volumes of interest
- These RF pulses are limited by their long length
 - Reduced time efficiency of acquisition
 - Effects of main field inhomogeneity
- We start our description of parallel RF excitation with a brief review of excitation k-space.

Small-Tip Angle Approximation

J. Pauly et al., JMR 81, 43 (1989).

For small tip angles the RF pulse (B_1) is proportional to Fourier transformation of desired magnetization M(r):

$$B_{1}(t) = i\Delta(\mathbf{k}(t))|\mathbf{g}\mathbf{G}(t)|\int M_{xy}(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}}d\mathbf{r}$$
$$\mathbf{k}(t) = -\mathbf{g}\int_{t}^{T}\mathbf{G}(s)ds$$

Slice Selection with RF Pulses

- The RF field B₁ excites spins within a "slice."
- The Fourier Transform of the RF "pulse" in conjunction with a gradient determines the slice thickness **D**z.

Dz

2D RF Pulses

Pulse

k-space

Profiles

A more defined slice profile requires more k-space coverage and a longer RF pulse.

3D RF Pulses

Susceptibility Artifact Reduction with 3D RF

(V. A. Stenger et al., MRM 44: 525-531 (2000)).

Susceptibility artifact results from signal cancellation from large phase variation through slice.

Design a 3D Tailored RF pulse excites slice with opposite the phase due to susceptibility.

T2*-Weighted Brain Images at 3T using 3D RF

No phase correction

Phase correction

B₁ Inhomogeneity Artifact Reduction with 3D RF

The 3D RF pulse excites a 3D volume with more amplitude on the edges to compensate for B_1 inhomogeneity.

Images at 3T using 3D RF

No Compensation

Compensation

Multi-Shot 3D Tailored RF Pulses

The sampling requirements of the 3D tailored RF pulses forces long pulse lengths: multi-shot implementation.

Susceptibility artifact compensated pulse:

B₁ inhomogeneity compensated pulse:

Two 12 ms shots.

Transmit SENSE 3D TRF

 Is there a way to excite a high resolution 3D slice in one shot?

 Sensitivity Encoding (SENSE) can be used to reduce the k-space of image acquisitions by using arrays of receivers.

• Multiple transmitters can be used to reduce the *k*-space needed for RF pulses: "Transmit SENSE."

Pruessmann *et al.*, MRM 42: 952-962 (1999). Katscher *et al.*, MRM 49: 144-150 (2003). Zhu, 10th ISMRM, 190 (2002).

Multiple Transmitters

- Typically, one coil for transmission and reception of RF energy.
- Phased array coils are used for reception and body coil for transmission
- One can also transmit and receive with a phased array

Sensitivity of Transmitter A localized coil will have a spatially varying transmit sensitivity:

Multiple Transmitters

The final slice profile will be the sum of the profiles from all transmitters.

 $M(x_m) = \sum s_n(x_m)m_n(x_m)$

Transmit SENSE Theory

Desired magnetization M(x) is sum of unknown magnetizations $m_n(x)$ excited by each coil with spatial sensitivity $s_n(x)$:

$$M(x_l) = \sum_n s_n(x_l) m_n(x_l)$$

Take the Fourier Transform of both sides:

$$M(k_l) = \sum_{n,p} s_n (k_l - k_p) m_n(k_p)$$

Write as a matrix equation:

$$M_l = \mathbf{s}_{l,np} m_{np}$$

Katscher et al., MRM 49: 144-150 (2003).

Inverse Problem

The individual RF pulses for each coil can be found by taking the regularized inverse of $s_{l,np}$:

The number of *k*-space points *p* needed for the RF pulses can be reduced by a factor equal to or less than the number of coils.

Transmit SENSE Example

The transmit sensitivities can be used to shorten the length of the RF pulses by reducing the needed k-space.

Slides courtesy of V. Andrew Stenger, Ph.D., University of Pittsburgh, Departments of Radiology and Bioengineering

- Transmit SENSE may be useful for reducing multidimensional RF pulse lengths, allowing for practical implementation.
- Still in its infancy; needs much development.
 - The inverse problem is often ill-posed, requiring preconditioning and regularization.
- Multiple decoupled transmitters are not commercially available:
 - 1. Amplifiers.
 - 2. RF waveform generators.
 - 3. Coils.

Reduced Acquisition Encoding

- Speed of acquisition remains a key target for MRI technology developers
- Opens the way to new applications:
 - Cardiac imaging
 - Time-resolved, contrast enhanced angiography
 - Functional MRI
- Doing more with less
 - Subsampling in k-space
 - Subsampling in hybrid k-/other space
 - (e.g. k-t space or k-slice space)

Reduced Encoding: MR Angiography

- Reduced k-space (Fourier) sampling
 - Can undersampling artifacts be made tolerable?
 - Projection imaging is promising
- High frequencies are undersampled or sampled less frequently
- Non-linear post-processing (MIP) help make artifacts more tolerable
- Example application: time-resolved, contrast enhanced MR angiography

Reduced Encoding: MR Angiography

- Undersampling using projection imaging
- MRA processed with Maximum Intensity Projections (MIP)

Undersampled PR

3D FT

D. Peters et al., Magn Res Med, 43:91-101, 2000.

Reduced Encoding: MR Angiography

- 3D projection imaging with low frequencies updated more quickly (4 s) than high frequencies (26 s)
- Takes advantage of high sampling density for low frequencies for 3D PR

A.V. Barger et al., *Magn Res Med*, 48:297-309, 2002.

Time-resolve contrast bolus

Reduced Encoding: Rosette Trajectories

- Reduced sampling in k-slice space
 - Simultaneous Multislice Acquisition using Rosette Trajectories (SMART)
 - 2D k-space is adequately sampled, but slices are superimposed
- Takes advantage of spectral selectivity of the acquisition trajectory to separate multiple slices in the image reconstruction.

Rosette k-space Trajectory

Gradient Waveforms

k-space

Spectral Properties of Rosette Acquisition

Simulation

Response at the Fat Resonance

Spectral Passband

Spectral Selectivity - Experimental Data

Water

SMART Imaging

1. Multiple slices are simultaneously imaged 2. A gradient give each slice its own frequency 3. Slices are individually demodulated to the on-resonance position Object Energy (normalized) 0

10

B0 Gz

Slice 1 Slice 2 Slice 3

Amount of Off-Resonance (in cycles)

Simultaneous Multislice Imaging

Single-Slice Imaging vs. SMART Imaging

3 Runs - Single-slice Rosette Imaging

1 Run - Triple-slice SMART Imaging

Slice 1

Slice 2

Slice 3

Is "noise" large in SMART Imaging?

1 Run – Triple-slice SMART Imaging

3 Runs – Single-slice Rosette Imaging

Background signal is stationary and therefore does not affect detection of dynamic information in fMRI.

Time 1

Time 2

Difference

Single-slice fMRI vs. SMART fMRI

3 Runs - Single-slice Rosette fMRI

1 Run - Triple-slice SMART fMRI

Interesting Features of SMART Imaging

- Dynamic (functional) information is preserved.
 - It is very important to remove systematic (multiplicative) sources of noise.
- Improvements might be gained through better image reconstruction

Exploiting Temporal Characteristics

Subsampling in k-t space

- Each time frame is subsampled in k-space, but combined multiple time frames are fully sampled
- UNFOLD technique by Madore et al. (Magn. Res. Med. 42:813-828, 1999)
 - Exploit unique temporal characteristics
 - Suppress spatial aliasing while maintaining temporal resolution

Reduced Encoding: UNFOLD

 Undersampled kspace data

 Different sampling patterns so that the aliased component varies in a specific manner

Madore et al., Magn. Res. Med. 42:813-828, 1999

Reduced Encoding: UNFOLD

Madore et al., Magn. Res. Med. 42:813-828, 1999

Reduced Encoding: UNFOLD

- Cardiac imaging is a good case where these temporal characteristics can be exploited
 - Heart is high bandwidth (desired)
 - Chestwall is narrow (undesired)

Madore et al., Magn. Res. Med. 42:813-828, 1999

Generalizations of k-t Space

- Object can be characterized in both space and spectrum (including harmonics for quasi-periodic objects)
- Sampling schedule can be optimized for optimal packing of desired object and aliases

Y. Bresler, IEEE ISBI, Washington, DC, 2002.

High Field MRI: Technical Challenges

- RF Challenges
 - Body more conductive
 - RF inhomogeneity
- Susceptibility Effects
 - Image distortions
 - Reduced T2*
 - Modulation of resonant frequency by motion (head, chest wall, etc.)
- Biophysical Effects
 - RF power deposition
 - Increased incidence of dizziness, nausea, etc.
 - But, U.S. FDA is considering increasing the non-significant risk designation to 7T

High Field MRI: RF Challenges

- High frequencies lead to dielectric effects in the human body
- Can lead to hyper- or hypointensities at very high fields

J.T. Vaughan et al., *Magn Res Med*, 46:24-32, 2001.

Increasing B1 \rightarrow

High Field MRI: RF Challenges

J.T. Vaughan et al., *Magn Res Med*, 46:24-32, 2001.

- Results uneven intensity and SNR
- Possible solutions: RF shimming

P. Ledden, 11th ISMRM, Toronto, Canada, 2003.

High Field MRI: Susceptibility Effects

Simulated susceptibility-induced image distortions vs. field strength

Simulated susceptibility-induced signal loss vs. field strength

High Field MRI: Susceptibility Effects

 The susceptibilityinduced field variations change with object motion (head position)

T.K. Truong et al., *Magn Res Imag*, 20:759-770, 2002.

High Field MRI: Susceptibility Effects

- The susceptibilityinduced field variations change with object motion outside the field of view (respiration)
 - Respiration related variations in the head.

J. Pfeuffer et al., Magn Res Med, 47:344-353, 2002.

Conclusions

- The preceding is only a partial list...
- MRI continues to be a fertile area for technological advances:
 - Signal Processing and Image Reconstruction
 - RF technology
 - Magnet technology
 - Contrast mechanisms

Acknowledgements

- My group:
 - Luis Hernandez
 - Scott Peltier
 - Brad Sutton
 - Alberto Vazquez
 - Sangwoo Lee
 - Valur Olafsson
 - Kelly Bratic
 - Kiran Pandey
 - Chunyu Yip

- Also...
 - Andy Stenger (Pittsburgh)
 - Fernando Boada (Pittsburgh)