## Eng. 100: Music Signal Processing DSP Lecture 2: Lab 2 overview

Curiosity: http://www. youtube.com/watch?v=qybUFnY7Y8w

Announcements:

- DSP lecture notes on Google Drive
- Lab 1
- Finish RQ on Canvas by Thu. at 10:30AM (usually due before lab)
- Finish Lab 1 this week; due Friday 5PM on Gradescope (grace)
- Read Lab 2 before next week's lab!

Finish RQ on Canvas by next Thu. at 10:30AM.

- Midterm (on schedule): Wed. Mar. 20, in class
- See syllabus for office hours. Come say hi!


## Outline

- Previous class summary (TC, A/D, frequency, Julia)
- Part 0. Lab 1 questions? (cut-and-paste vs understanding / HWO)
- Part 1: Terminology


## Lab 2: Computing and visualizing the frequencies of musical tones

- Part 2. Sampling signals, especially sinusoids
- Part 3: Computing the frequency of a sampled sinusoid (with a computer, rather than by hand and eye like in previous class)
- Part 4: Visualizing, modeling and interpreting data using semi-log and log-log plots
- Part 5: Basic dimension analysis (units)

Part 1: Terminology

## Terminology

Help me remember to define each new term!
(First overview class may have been rushed but not now...)
Course title: Music Signal Processing
What is a signal?
Wikipedia (electronics) 2012:
a signal is any time-varying or spatial-varying quantity
2021: "In signal processing, a signal is a function that conveys information about a phenomenon."

Q0.1 Common use of "signal" ? (short answer; introduce neighbors)

## Part 2: <br> Sampling analog signals, especially sinusoidal signals

## Sinusoidal "pure" tones (simple signal)



From Lab 1:

$$
x(t)=2 \cos (2 \pi 5(t-0.02))=2 \cos (2 \pi 5 t-\pi / 5)
$$

- Amplitude: $A=2$
- Frequency: $f=5 \mathrm{~Hz}$ (cycles per second)
- Period: $T=1 / f=0.2 \mathrm{~s}$
- Phase: $\theta=-\pi / 5$ radians
"musical?" (cf. instruments, cf. hearing range)


## Sinusoidal signal at 500 Hz



Q0.2 What is the period of this signal (in seconds)?
A: 2
B: 0.2
C: 0.02
D: 0.002
E: 500

## Learning pyramid

The Learning Pyramid


## Sampling an analog signal

Analog signal (continuous-time signal): $x(t)$, where $t$ can be any real number. Units of " $t$ " are seconds.

$$
\underbrace{x(t)}_{\begin{array}{c}
\text { analog: } t \in \mathbb{R} \\
(\text { e.g., vinyl) }
\end{array}} \rightarrow \underbrace{\text { A/D converter }}_{\begin{array}{c}
\text { digital: } \\
\text { (e.g., } n \in \mathbb{C D}, \mathrm{MP3})
\end{array}} \rightarrow \underbrace{x[n]}
$$

Crucial "system" quantities for an A/D converter (i.e., for sampling):

- Sampling rate: S. Units: $\frac{\text { Sample }}{\text { Second }}$ or Hz
- Sampling interval: $\Delta=1 / S$. Units: seconds

On paper, or in software, sampling means: substitute $t=n / S$.
Digital signal (discrete-time signal):

$$
x[n]=x(n / S)=x(n \Delta)
$$

where $n$ can be any integer.

Q0.3 What are the units of " $n$ " above? (Choose best answer.) $\begin{array}{llll}A \text { : unitless } & B & \text { : seconds } & C: H z \\ D & \text { Sample } & \text { E: none of these }\end{array}$

Q0. 4 What are the units of " $n / S^{\prime \prime}$ ?
A: unitless $\quad B$ : seconds $\quad C: H z \quad D: \frac{\text { Sample }}{\text { Second }} \quad \mathrm{E}$ : none of these ? ?
Analog signal $x(t)$ and digital signal $x[n]$ are related but quite different!

Terminology:
Q0. 5 Common use of term sample or sampling?
$? ?$

## Example: Sampled sinusoidal signal

Analog signal

$$
x(t)=2 \cos (2 \pi(5 \mathrm{~Hz}) t-\pi / 5)
$$

Choose sampling rate: $S=50 \mathrm{~Hz}$.
Q0. 6 What is the sampling interval $\Delta$ ?

| A: 20 | B: 2 | C: 0.2 | D: 0.02 |
| :--- | :--- | :--- | :--- | E: None of these

Mars Climate Orbiter loss 1999-08-23 ( $\approx \$ 190 \mathrm{M}$ ) https://science.nasa.gov/mission/mars-climate-orbiter

Analog signal:

$$
x(t)=2 \cos (2 \pi(5 \mathrm{~Hz}) t-\pi / 5)
$$

For $S=50 \mathrm{~Hz}$, we substitute $t=n / S=n /(50 \mathrm{~Hz})$ to emulate A/D.
Digital signal:

$$
\begin{aligned}
x[n]=x(0.02 n) & =2 \cos (2 \pi(5 \mathrm{~Hz})(n / 50 \mathrm{~Hz})-\pi / 5) \\
& =2 \cos (0.2 \pi n-\pi / 5) \text { after simplifying }
\end{aligned}
$$



Q0.7 What are the units of " $0.2 \pi n-\pi / 5$ " above? (Choose best.)
A: unitless
B: radians
$\mathrm{C}: \mathrm{Hz}$
D: $\frac{\text { Sample }}{\text { Second }}$
E: degrees

## Example: Sampled sinusoidal signal (continued)

Digital signal as a formula: $x[n]=2 \cos (0.2 \pi n-\pi / 5)$
Digital signal as a plot:


But in a computer (or DSP chip in phone) it is an array (list) of numbers:

$|$| $n$ | $x[n]$ <br> (value) | $x[n]$ <br> (formula) |
| :---: | :---: | :---: |
| 0 | 1.62 | $2 \cos (0.2 \pi 0-\pi / 5)$ |
| 1 | 2.00 | $2 \cos (0.2 \pi 1-\pi / 5)$ |
| 2 | 1.62 | $2 \cos (0.2 \pi 2-\pi / 5)$ |
| 3 | 0.62 | $\vdots$ |
| 4 | -0.62 |  |
| 5 | -1.62 |  |
| $\vdots$ | $\vdots$ |  |

(Actually stored in binary (base 2) not in decimal.)

## Sampling a sinusoid in general

Given a pure sinusoidal (analog) signal: $\quad x(t)=A \cos (2 \pi f t+\theta)$. Q0. 8 Units of the product $f t$ ? (not feet) A: unitless
$B$ : seconds
C: Hz
D: $\frac{\text { Sample }}{\text { Second }}$
$E$ : none of these
If we sample it at $S \frac{\text { Sample }}{\text { Second }}$ (by substituting $t=n / S$ ), we get a digital sinusoidal signal (formula):

$$
x[n]=A \cos (2 \pi f n / S+\theta)=A \cos \left(2 \pi \frac{f}{S} n+\theta\right)
$$

Q0. 9 Units of $f / S$ ?
A: unitless $\quad B$ : seconds $\quad C: H z \quad D: \frac{\text { Sample }}{\text { Second }} \quad E$ : none of these
The quantity $\Omega=2 \pi f / S$ is called the digital frequency in DSP.

## Sampling a sinusoid - summary

> Analog sinusoidal signal

Real world:

- A computer sound card samples a microphone input signal.
- Applications like Shazam/Zoom/TikTok use digital audio signals.

Basic music transcription requires that we reverse this process!

$$
\begin{gathered}
\text { Digital sinusoidal signal } \\
\times[n]
\end{gathered} \rightarrow \begin{gathered}
\text { DSP } \\
\text { magic }
\end{gathered} \rightarrow \underset{f}{\text { frequency (pitch) }}
$$

## Part 3: <br> Computing the frequency of a sampled sinusoidal signal

## Reconstructing a sinusoid from its samples

Given samples of a digital sinusoid in a computer:

$$
x[n]=A \cos (\Omega n+\theta), \quad n=1,2, \ldots, N .
$$

(Stored as a list of $N$ numbers, not as a formula, for known rate $S$.)
How can we find the frequency $f$ of the original analog sinusoidal signal?

- Step 1. Determine the "digital frequency" $\Omega$
- Step 2. Relate $\Omega$ to the original (analog) frequency. (cf. " $F=m a^{\prime \prime}$ ) This step is easy because $\Omega=2 \pi \frac{f}{S}$, so rearranging: $f=\frac{\Omega}{2 \pi} S$.

Example. $x[n]=3 \cos (0.0632 n+5)$ with $S=8192 \mathrm{~Hz}$.
Original frequency is $f=\frac{0.0632}{2 \pi} 8192 \mathrm{~Hz}=82.4 \mathrm{~Hz}$
But what if we are given an array of signal values instead of a formula?

## Finding a digital frequency

## (The computer or DSP chip perspective)

Given:

- Signal values:

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | $\cdots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x[n]$ | 1.62 | 2.00 | 1.62 | 0.62 | -0.62 | -1.62 | $\cdots$ |

- Sinusoidal assumption (model): $x[n]=A \cos (\Omega n+\theta)$

Goal: Determine the digital frequency $\Omega$, a model parameter.
This problem arises in many applications, including music DSP.
EE types have proposed many solutions.
Lab 2 uses an elegantly simple method based on trigonometry.
Everything in signal processing / data science / statistics starts with arrays of numbers (data) and uses models to extract (hopefully useful) information.

## Key trigonometric identities

Angle sum and difference formulas [wiki]

$$
\begin{aligned}
\cos (a+b) & =\cos a \cos b-\sin a \sin b \\
\cos (a-b) & =\cos a \cos b+\sin a \sin b
\end{aligned}
$$

Product-to-sum identities:

$$
\begin{aligned}
2 \cos a \cos b & =\cos (a-b)+\cos (a+b) \\
2 \sin a \sin b & =\cos (a-b)-\cos (a+b)
\end{aligned}
$$

Wikipedia says these identities date from 10th century Persia. [wiki]
We will use these (ancient) identities repeatedly!

## Practical example: Tuning a piano

Rewriting product-to-sum identity:

$$
\cos (a+b)+\cos (a-b)=2 \cos a \cos b
$$

Substitute $a=2 \pi 442 t$ and $b=2 \pi 2 t$ :

$$
\cos (2 \pi 444 t)+\cos (2 \pi 440 t)=2 \cos (2 \pi 442 t) \cos (2 \pi 2 t)
$$

The sum of two sinusoids having close frequencies is a sinusoid at the average of the frequencies with a (sinusoidally) time-varying amplitude!

$$
\begin{array}{ll|l|}
\text { 440: play 444: } & \text { play } & \text { 440\&444: } \\
& \text { 441: play } \\
\hline
\end{array}
$$

The combined (sum) signal gets louder and softer, "beating" with period $=0.25 \mathrm{sec}$. Why do we consider the sum? ??
The slower the period, the closer the 2 frequencies.
Why is this relevant to tuning a piano (or guitar or ...)? ??

## Back to finding a digital frequency

Repeating product-to-sum identity:

$$
\cos (a+b)+\cos (a-b)=2 \cos a \cos b
$$

As another practical application of this identity, some clever DSP expert suggested substituting $a=\Omega n+\theta$ and $b=\Omega$ :

$$
\cos (\Omega(n+1)+\theta)+\cos (\Omega(n-1)+\theta)=2 \cos (\Omega) \cos (\Omega n+\theta)
$$

Now use sinusoidal model assumption: $x[n]=A \cos (\Omega n+\theta)$, yielding:

$$
x[n+1]+x[n-1]=2 \cos (\Omega) x[n] .
$$

Rearranging yields $\cos (\Omega)=\frac{x[n+1]+x[n-1]}{2 x[n]}$, or equivalently:

$$
\Omega=\arccos \left(\frac{x[n+1]+x[n-1]}{2 x[n]}\right) .
$$

## Example: find a sinusoid's digital frequency

Q0.10 How many signal samples do we need to find $\Omega$ ?
A: 1
B: 2
C: 3
D: 4
E: 5

Earlier example: | $n[n]$ | 1.62 | 1 | 2.00 | 1.62 | 0.62 | -0.62 | -1.62 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $[\ldots$ |  |  |  |  |  |  |  |

Apply the arccos formula to this data using $n=2$ :

$$
\begin{aligned}
\Omega & =\arccos \left(\frac{x[n+1]+x[n-1]}{2 x[n]}\right)=\arccos \left(\frac{x[3]+x[1]}{2 x[2]}\right) \\
& =\arccos \left(\frac{0.62+2}{2 \cdot 1.62}\right)=\arccos (0.8086)=0.629 \approx 0.2 \pi .
\end{aligned}
$$

cf. sampled sinusoidal signal on p. 13.
Is this useful for a guitar tuner app yet?

## Example of finding a sinusoid's frequency

Recall from "Step 2" on p. 17 that $f=\frac{\Omega}{2 \pi} S$
Combining Step 1 and Step 2:

$$
f=\frac{S}{2 \pi} \arccos \left(\frac{x[n+1]+x[n-1]}{2 x[n]}\right) .
$$

Use this formula in Lab 2 to compute the frequency from a digital signal corresponding to samples of a sinusoid.

Example: $S=1500 \mathrm{~Hz}$ and $x[n]=(\ldots, ?, ?, ?, 3,7,4, ?, ?, ?, \ldots)$ The signal values denoted "?" are, say, lost or garbled. Solution: $f=\frac{1500}{2 \pi} \arccos \left(\frac{3+4}{2 \cdot 7}\right)=\frac{1500}{2 \pi} \arccos \left(\frac{1}{2}\right)=\frac{1500 \pi}{2 \pi}=250 \mathrm{~Hz}$.

## Exercise

Suppose $S=8000 \mathrm{~Hz}$ and the signal samples are $x[n]=(\ldots, 0,5,0,-5,0,5,0,-5,0, \ldots)$

Q0.11 What is the frequency $f$ of the sinusoid (in Hz )? A: 1000 B: $2000 \quad$ C: $4000 \quad$ D: $8000 \quad$ E: None of these

Hint. Here is the arccos frequency formula repeated for convenience:

$$
f=\frac{S}{2 \pi} \arccos \left(\frac{x[n+1]+x[n-1]}{2 x[n]}\right) .
$$

## Illustration

Stem plot of the signa $x[n]$ from previous page.


## (Dis)Advantages of this method

Many frequency estimation methods have been proposed. Apparently not everyone just uses this one; why not?

Advantages of this method:

- Very simple to implement, can use simple DSP chip.
- Fast tracking of sudden frequency changes.
- Can use outliers (weird values) to segment long signals.
- Requires knowledge of trigonometry only.

Disadvantages of this method

- Very sensitive to additive noise in the data $x[n]$.
- What if $x[n]=0$ for some $n$ ? Divide by 0 !
- Arc-cosine function is sensitive to small changes.

A useful starting point for music DSP...

Arc-cosine


## Part 4: <br> Visualizing, modeling, and interpreting data using semi-log and log-log plots

## Data visualization and modeling

Given: $N$ pairs of data values: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{N}, y_{N}\right)$
Goal: Find a relationship between the values (a model):

- $y=g(x)$

○ $y_{n}=g\left(x_{n}\right), n=1, \ldots, N$

- Example (Physics 140): $x=$ height above ground a ball is released $y=$ velocity on impact with ground.
- Example (Physics 240): $x=$ electrical current through a light bulb $y=$ energy released in the form of heat by the bulb
- Example (Engin 100-430):
$x=$ piano key "number" (1 to 88)
$y=$ frequency of note played by a key


## Visualizing data using scatter plots

Example (scatter plot of 5 pairs of data values):


Do your eyes try to "connect the dots?"
Your brain is trying to build a model!

## Making a scatter plot in Julia



```
using Plots; default(markerstrokecolor=:auto, markersize=8)
using LaTeXStrings # optional: for plot labels with equations
x = [1, 3, 4, 6, 7]
y = [5.00, 25.98, 40.00, 73.48, 92.60]
scatter(x, y; marker=:star, label="data", size=(500,200),
    xaxis=(L"x_n", (0,8), 0:8), yaxis=(L"y_n", (0,100)))
# savefig("scatter1.pdf")
```

Julia notes:

- The arguments $\mathrm{x}, \mathrm{y}$ here are called "positional arguments" and their order matters.
- The arguments xlabel=L"x_n" etc. are called named keyword arguments or named parameters or name-value pairs in Julia and Python. (Matlab has some such capability in recent versions.) They are optional and they can appear in any order (after the semicolon).
- The :star value here is a Symbol based on string interning.


## Common mathematical models

Linear model:

$$
y=a x
$$

one parameter: slope $a$
Affine model:

$$
y=a x+b
$$

two parameters: slope $a$ and intercept $b$
Quadratic (parabola) model: $\quad y=a x^{2}+b x+c$
Simple "power" model: $\quad y=b x^{p}$
power parameter $p$, scale factor $b$
Simple "exponential" model: $\quad y=b a^{x}$
Note that the independent variable $\boldsymbol{x}$ is in the exponent here.

Q0.12 How many parameters does the quadratic model have?
A: 0
B: 1
C: 2
D: 3
E: 4

Q0.13 Which model is appropriate for height/velocity example? (skip: Phys 140)
A: linear B: affine $\quad C$ : quadratic $D$ : power $\quad E$ : exponential

How do we choose among these models given data?

## Example: Linear or affine model?



## Example: Linear or affine model?



Any two points determine the equation for a line. Does a line fit this data?$? ?$

So we rule out both linear and affine models by visualization.

For power and exponential model, we need logarithms.

## Review of logarithms

- In Julia, C, C++, python, Matlab and in this class, log means natural $\log$, (base $e$ ), which might be $\ln$ on your calculator.
- For base-10 logarithm use $\log 10$ in Julia, C, C++, Matlab, python, ... , and write $\log _{10}$ on paper.
- Properties of logarithms (for any base $b>0$ ):
- $b^{\log _{b}(x)}=x$ if $x>0$ (the defining property)
- $\log _{b}(x y)=\log _{b}(x)+\log _{b}(y)$ if $x>0$ and $y>0 \quad$ log of product
- $\log _{b}\left(x^{p}\right)=p \log _{b}(x)$ if $x>0$
- Other related properties:
- $e^{\log (x)}=x$ and $10^{\log _{10}(x)}=x$ if $x>0$
- $\log (e)=1$ and $\log _{10}(10)=1$ and $\log _{b}(1)=0$
- $e^{a+b}=e^{a} e^{b}$

Q0.14 Exercise: Simplify $e^{c \log (z)}$ for $z>0$.
A: $z^{c}$
B: $c^{2}$
$C: z e^{c}$
D: $c z$
E: None of these

## Simple "exponential" model

$$
y=b a^{x}
$$

Take the logarithm (any base) of both sides:

$$
\begin{gathered}
\log (y)=\log \left(b a^{x}\right)=\log (b)+\log \left(a^{x}\right)=\log (b)+x \log (a) \\
\log (y)=\log (a) x+\log (b)
\end{gathered}
$$

This is the equation of a line on a log scale:


To see if the exponential model fits some data, make a scatter plot of $\log \left(y_{n}\right)$ versus $x_{n}$ and see if it looks like a straight line.

This is called a semi-log plot.

## Making a semi-log plot in Julia



```
using Plots; default(markerstrokecolor=:auto, markersize=8)
using LaTeXStrings
\(\mathrm{x}=[1,3,4,6,7]\)
\(y=[5.00,25.98,40.00,73.48,92.60]\)
scatter(x, log10.(y); marker=:star, size=(500,200), label="semi-log",
    xaxis=(L"x_n", (0,8), 0:8), yaxis=(L"\log_\{10\}(y_n)", (0,2.1)))
\# savefig("scatter2.pdf")
```

Q0.15 The exponential model provides a good fit for this data. A: True

B: False

## Simple "power" model

$$
y=b x^{p}
$$

Take the logarithm (any base) of both sides:

$$
\begin{gathered}
\log (y)=\log \left(b x^{p}\right)=\log (b)+\log \left(x^{p}\right)=\log (b)+p \log (x) \\
\log (y)=p \log (x)+\log (b)
\end{gathered}
$$

This is the equation of a line on a log-log scale:

$$
\underbrace{\log (y)}_{\tilde{y}}=\underbrace{p}_{\text {slope }} \underbrace{\log (x)}_{\tilde{x}}+\underbrace{\log (b)}_{\text {intercept }}
$$

To see if the power model fits some data, make a scatter plot of $\log \left(y_{n}\right)$ versus $\log \left(x_{n}\right)$ and see if it looks like a straight line.

What do you suppose this type of plot is called? ??

## Making a log-log plot in Julia



```
using Plots; default(markerstrokecolor=:auto, markersize=8)
using LaTeXStrings
x = [1, 3, 4, 6, 7]
y = [5.00, 25.98, 40.00, 73.48, 92.60]
scatter(log10.(x), log10.(y); marker=:star, size=(500,200), label="log-log",
    xaxis=(L"\log_{10}(x_n)", (-0.02,1), 0:0.1:1),
    yaxis=(L"\log_{10}(y_n)", (0.,2.1), [0, 0.7, 1.4, 1.6, 2]), )
# savefig("scatter3.pdf")
```

Q0.16 The power model provides a good fit for this data.

## Checking a log-log scatter plot in Julia


scatter! (log10.(x), log10.(y); smooth=true) \# along with other style args. smooth=true : adds "least squares best-fit line" to scatter plot

Yes! log-log plot lies along a line $\Longrightarrow$ power model is a good fit. Now we just need the parameters to write our equation model.

- intercept $\approx 0.7=\log _{10}(b) \Longrightarrow b=10^{0.7} \approx 5.0$

○ slope $=\frac{\Delta \tilde{y}}{\Delta \tilde{x}} \approx \frac{1.6-0.7}{0.6-0.0}=1.5 \Longrightarrow p=1.5$
Model: $y=b x^{p}=5 x^{1.5}$

## Checking a model

Recall given data:

$$
\begin{aligned}
& \mathrm{x}=[1,3,4,6,7] \\
& \mathrm{y}=[5.00,25.98,40.00,73.48,92.60]
\end{aligned}
$$

Model found on previous slide: $y=5 x^{1.5}$
To check model in Julia (using broadcast):
5 * (x .~1.5)
Output is:
5-element Vector\{Float64\}:
5.025 .98140 .073 .48592 .601

So our power model fits the given data very well.

## A semi-log example

```
using Plots; default(label="")
x = [0, 1, 3, 4, 6, 7]
y = [3, 12, 192, 768, 12288, 49152]
p1 = scatter(x, y; color=:red, marker=:star, smooth=true)
p2 = scatter(x, log10.(y); color=:blue, marker=:circle, smooth=true)
plot(p1, p2)
```




Q0. 17 Exercise: determine a model for this data.

## Summary of two important models

- Simple exponential model: $y=b a^{x}$

Use semi-log plot:

$$
\underbrace{\log (y)}_{\tilde{y}}=\underbrace{\log (a)}_{\text {slope }} x+\underbrace{\log (b)}_{\text {intercept }}
$$

- Simple power model: $y=b x^{p}$

Use log-log plot:


Even though Lab 2 uses these models for musical notes, they are ubiquitous in science and engineering and more.

## Models with missing data (read yourself)

Musical context: song without all 88 notes
Given: $y=[8,64,512,1000]$
Given: x is four values (in order) from the set $\{1,2,3,4,5\}$ i.e.: $[1,2,3,4]$ or $[1,2,3,5]$ or $[1,2,4,5]$ or $[1,3,4,5]$ or $[2,3,4,5]$

First try: $\mathrm{x}=1: 4$; scatter(log10.(x), $\log 10 .(\mathrm{y}))$


Looks like a "gap" or "jump" at 3rd value

## Example with missing data continued

Second try:
using Plots
$\mathrm{y}=[8,64,512,1000]$
$\mathrm{x}=[1,2,4,5]$


slope $=(3-0.9) /(0.7-0)=3=p$
intercept $=0.9=\log _{10}(b) \Longrightarrow b=10^{0.9}=8$
Model: $y=8 x^{3}$

Missing frequencies in "The Victors"


Missing: $136810111213 \ldots-1-2-3 \ldots$

## Lab 2 has lots of missing data!

"The Victors" only uses a few of the 88 keys on a piano.
Example: y $=[1,4,16,32,128,512]$ where each $x_{n}$ is one of the numbers in the set $\{0,2, \ldots, 87\}$

First try:
$\mathrm{x}=0: 5$
scatter (x, $\log 10 .(y))$
Lots of jumps!


## Lots of missing data continued

Second try:

```
y = [1, 4, 16, 32, 128, 512]
x = [0, 2, 4, 5, 7, 9]
scatter(x, log10.(y))
```


slope $=(2.7-0) /(9-0)=0.3=\log _{10}(a) \Longrightarrow a=10^{0.3}=2$ intercept $=0=\log _{10}(b) \Longrightarrow b=10^{0}=1$

Model: $y=2^{x}$
You will see a similar situation in Lab 2 (with different data).

## What you will do in Lab 2

- Download a sampled signal from Canvas site: A tonal version of the chorus of "The Victors."
- Load into Julia; segment (chop up) into notes using reshape.
- Apply arccos formula to compute frequency of each note.
- Make log-log and semi-log plots of frequencies.
- Determine the formula relating frequencies of notes.
- Note: "Accidentals" are all missing; but you can infer their existence \& frequencies from your plot!


## Part 5: <br> Basic dimension analysis by example

(read yourself if time runs out in class)

## Dimensional Analysis Example 1

- Goal: Determine formula for the period of a swinging pendulum, without any physics!
- Find ingredients: mass, length, gravity
- Model: Period $=(\text { mass })^{a}(\text { length })^{b} g^{c}$
where $g=$ acceleration of gravity $9.80665 \mathrm{~m} / \mathrm{s}^{2}$ $a, b, c$ are unknown constants to be found
- Approach: Find exponents using dimensional analysis:

$$
\text { time } \left.=(\text { mass })^{a}(\text { length })^{b}(\text { length } / \text { time })^{2}\right)^{c}
$$

- No "mass" on LHS so $a=0$
- No "length" on LHS so $0=b+c$
- For time: $1=-2 c \Longrightarrow c=-1 / 2$, so $b=1 / 2$

Model: period $=$ length $^{1 / 2} g^{-1 / 2}=(\text { length } / g)^{1 / 2}$
From physics: period $=2 \pi(\text { length } / g)^{1 / 2}$
( $2 \pi$ is a unitless constant; cannot be found from dimension analysis.)

## Dimensional Analysis Example 2

Prof. Yagle asks:

- If 1.5 people can build 1.5 cars in 1.5 days, how many cars can 9 people build in 9 days?
- Do problems like this give you a headache?
- Would you like to solve problems like this with minimal thinking?


## Dimensional Analysis Example 2

Prof. Yagle asks:

- If 1.5 people can build 1.5 cars in 1.5 days, how many cars can 9 people build in 9 days?
- Do problems like this give you a headache?
- Would you like to solve problems like this with minimal thinking?

Given:
(1.5 cars) / (1.5 days) / (1.5 people) $=2 / 3$ cars $/$ day $/$ people

Now match units:
( $2 / 3$ cars / day / people) (9 days) (9 people) $=54$ cars
Simply matching the units suffices.

## Summary

- Sampling: a computer can determine frequency of a pure sinusoid from 3 consecutive samples.
- Semi-log plot of $y=b a^{x}$ (exponential model) is a straight line.
- Log-log plot of $y=b x^{p}$ (power model) is a straight line.
- Dimensional analysis often gives you correct answers.

Assignment: Read Lab 2 before (next week's) lab!

## References

[1] M-Z. Poh, N. C. Swenson, and R. W. Picard. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans. Biomed. Engin., 57(5):1243-52, May 2010.

