© J. Fessler, January 29, 2024, 10:19 (class version)

Eng. 100: Music Signal Processing
DSP Lecture 4
Lab 3: Signal Spectra

Curiosity

® https://www.youtube.com/watch?v=rtR63-ecUNo (OSCi”OSCOpe art)

® http://musicmachinery.com/2010/05/21/the-swinger (musical style modulation)

Announcements:

e Lab2 due Friday

o HW1 due Friday

e HW?2 due next Friday

e Finish Projectl in Lab this week (at latest)

e Project 1 presentations in discussion sections next week.

e Start reading Lab 3 for next week — it is longer!


https://www.youtube.com/watch?v=rtR63-ecUNo
http://musicmachinery.com/2010/05/21/the-swinger
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Part O: Lab 2 summary
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Lab 2 summary

What you learned (hopefully)
e Frequencies of musical tones in “"The Victors':

392, 440, 494, 523, 587, 659 Hz (rounded to nearest integer)

e Semi-log plot revealed missing frequencies:
415, 466, b54, 622, 698, 740 Hz (mostly accidentals).

e 12 frequencies with common ratio about 1.06

The exact ratio is 2/12 ~ 1.059463094359295

Twelve such “half steps” in an “octave’ leads to a frequency ratio
of 2, i.e., the frequency doubles each octave. More later...

Q0.1 What model relates piano key number to frequency?
A: exponential B: power C: None of these
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Outline

e What: The spectrum of a signal (first class)
o Part 1. Why we need spectra
o Part 2. Periodic signals x(r) = co + Y ckcos (25t — 6;)
o Part 3. Band-limited signals, K = | BT |

e How: Methods for computing spectra (second class)
o Part 4. Sampling rate § > 2B
o Part 5. By hand by solving systems of equations
o Part 6. Using general Fourier series solution
o Part 7. Using fast Fourier transform (FFT), e.g., in Julia

e Why: Using a signal’s spectrum (third class)
o to determine note frequencies: f = %S
o to remove unwanted noise
o to visualize frequency content (spectrogram)

o lLab 3
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Learning objectives

e Understand concepts of spectra and Fourier series for periodic signals
e Convert between spectra plot and equation form

e Understand band limited signal spectra

e Determine band limit given spectra plot or Fourier series equation

e Understand Nyquist-Shannon sampling requirement S > 2B
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Part 1. Why we need spectra
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Project 1 Transcriber for ideal sinusoid (works!)

Sinusoidal signal:
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



0.456
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Project 1: Transcriber limitations
What are limitations of transcribers implemented in Project 17

We need more sophisticated method(s)
for finding the (fundamental) frequency of a music signal.
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Project 1 Transcriber for noisy sinusoid (stinks!)

Sinusoidal signal with noise (e.g., in any audio recording):

frequency estimate [Hz]

Method:
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}


0.72
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Project 1 Transcriber for clarinet (stinks!)

Clarinet signal (roughly G below middle C):

S=11025 Hz
f=?Hz
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}


0.52244896
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Project 1 Transcriber for polyphony (stinks!)

Clarinet and guitar duet (even more challenging case): play

1

051

- OMWW%
-0.5 T

_1 | |
0.3 0.305 0.31 0.315
t [sec]

e Methods that use the “time domain" are very unlikely to work when
two instruments play simultaneously.

e We need to use the "frequency domain”
aka the spectrum of a signal. (Human ears work this way!)

e The concept of spectra is used widely in engineering.



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}


0.94040823

http://en.wikipedia.org/wiki/Spectrum

© J. Fessler, January 29, 2024, 10:19 (class version) 12

Engineering strategy: Divide and conquer

Clarinet

S =11025 Hz
f=?Hz

0 0.005 0.01
t [sec]

0.015

This signal x(¢) looks complicated.
(Bamboo reed vibrations are approximately a square wave.)

Engineering strategy:

o Make complicated things by combining simpler things.
o Use tools from mathematics (and physics) as needed.

Mathematics provides us with a perfect tool in this case:
Fourier series.
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Part 2. Spectra of periodic signals

13



© J. Fessler, January 29, 2024, 10:19 (class version)

Joseph Fourier laid the foundation for DSP

Joseph Fourier, 1768-1830

He died after falling down the stairs at his home.

e Fourier series theory developed circa 1807
(Modern compared to our trigonometry method.)

e Motivating application: heat propagation in metal plates.

14


http://en.wikipedia.org/wiki/Joseph_Fourier
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Periodic signals are the key to music DSP

Clarinet

S =11025 Hz

f=?Hz
05k

x(®)
o

-05F

| |
0 0.005 0.01
t [sec]

0.015

Key property of musical signals (over short time intervals):
periodicity.
A periodic signal (aka repeating signal) with period =T satisfies
x(t)=x(t+T)=x(t+2T)=--- for all .

Example: x(¢) = cos(279¢) is periodic with period T =1/9 sec.
It is also periodic with period T =1/3 sec.
The smallest period (T = 1/9 sec here) is the fundamental period.


http://en.wikipedia.org/wiki/Periodic_function
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Periodic_function
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Exercise

Q0.2 What is the (approximate) period of the clarinet signal shown on
the previous slide (in sec)?

A: 0.001 B: 0.005 C: 0.010 D: 0.015 E: 0.5
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Fourier series of periodic signals

Amazing fact #1 (discovered by Joseph Fourier 200+ years ago):
Any real-world periodic signal with period = T can be expanded
(i.e., expressed mathematically as a sum) as follows:

> k
x(t) = co+ Z{ Cj. COS (Zn?t — 9k>

k=

1 2
= ¢o -+cicos (27rft — 91> + €5 COS (27r?t — 92> + ...

—~—
DC term ~ ~~ - ~~
DC value fundamental (first) harmonic
DC constant period =T period = T /2
frequency = 1/T frequency = 2/T
o {ci} called amplitudes We can write even a “complicated"
o {k/T} called frequencies clarinet or guitar signal using such a

o {6} called phases “simple” sum of sinusoidal signals.
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Example: Triangle wave

cos + COS 3t

cos(t) + cos(3t)/ 3% 4 cos(5t)/ cos(t) + ... + cos(9t)/
cos(t) + ... + cos(19¢t) /19 cos(t) + ... + cos(99t) /99

More terms in sum — closer approximation to triangle wave.

(Nice audio demo on wikipedia.)

18


http://en.wikipedia.org/wiki/Triangle_wave
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Example: Square wave

sm + sm 3t

sin(t) + sin(3t)/3 + sin(5t)/ sin(t) + ... + sin(15t)/15
sin(t) NI sin(49t) /49 sin(t) T sin(999t) /999
1L ' 1k
= o0 I 0
8
-1F 1 1 | -1F 1 1 |
0 5 10 15 0 5 10 15

Sums of sinusoids can make “interesting signals, like a square wave.
What is T in this example?


http://en.wikipedia.org/wiki/Square_wave
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Example: Sawtooth wave

component sum

1r b; sin(2w 1/T t) * 1+ ]

o b N 0 W |

Ll | Al ] play
0 7.5 0 7.5

1F b, sin(2n 2/T t) B 1 B

0k o 0 W |

-1+ . -1+ . p ay
0 7.5 0 7.5

1 b; sin (2w 3/T t) N 1 .

| N |

|- | play
0 7.5 0 7.5

1 b, sin(2m 4/T t) : 1 [ ]

N ) ] play
0 7.5 0 7.5

1 b. sin(2m 5/T t) . 1 ‘ ‘ N

ol : 0 W

-1r ! ! B -1r ! ! B play
0 2.5 5 7.5 0 2.5 5 7.5

t [msec] t [msec]

As we build this sawtooth wave, does the sound pitch sound change?
Fundamental frequency (in Hz)?



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}


0.8881633


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}


0.7554286


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}


0.757551


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton7'){ocgs[i].state=false;}}


0.8446259


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton8'){ocgs[i].state=false;}}


0.8439184

http://en.wikipedia.org/wiki/Sawtooth_wave
http://en.wikipedia.org/wiki/Pitch_(music)
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The spectrum of a periodic signal

Every periodic signal can be written in the same form!
x(t) = co+cjcos (27T%t — 91) 45 COS (Zn%t — 92) 4 ...

So how do electric guitar and clarinet signals differ?
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The spectrum of a periodic signal

Every periodic signal can be written in the same form!
x(t) = co+cjcos (27T%t — 91) 45 COS (Zn%t — 92) 4 ...

So how do electric guitar and clarinet signals differ?

Definition. The spectrum of a signal x(¢) is just a stem plot of

the amplitudes {c;} versus the frequencies {k/T} in Hertz.

o The phases 6 are unimportant for monophonic music.

o The DC term ¢g cannot be produced or heard either.

o Coefficients {ci} define timbre (TAM-ber) of sound aka “tone color”


http://en.wikipedia.org/wiki/Spectrum
http://en.wikipedia.org/wiki/Timbre
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Spectra of periodic signals

In ENGR 100, we define spectra only of periodic signals. Why?
e Musical instruments produce approximately periodic signals.

e Definition and computation are much easier.

e Real-world non-periodic signals can be viewed as part
of a periodic signal with a very long period.
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Example: AM Radio Signal

Two Michigan AM Radio stations are:
o WSDS, 1480 kHz, 3800W, Salem Township
o WABJ, 1490 kHz, 1000W, Adrian, Ml

It WSDS broadcasts a 3000 Hz sinusoidal test tone

and WABJ broadcasts a 2000 Hz sinusoidal test tone, then
(you can learn in EECS 216) that an antenna in Saline
that can pick up both stations would receive this signal:

x(t) = 40cos(271480000¢ ) +20 cos(271483000¢ ) +20 cos (271477000t

+ 10cos(271490000¢) 45 cos (271492000t 45 cos (2714880007 ) .

What is the spectrum of this signal?

24
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Example: AM Radio Signal Spectrum

AM radio signal (expressed as mathematical formula):
x(t) = 40cos(2m1480000¢) +20cos(271483000¢) +20cos (2w 1477000¢ )

+ 10cos(27w1490000¢ ) +5 cos(271492000¢ ) +5 cos (214880001 ) .

Spectrum of this signal x(z):

40
20 20
10
l \ : ;
" ,
1477 1480 1483 1488 1490 1492 f[kHZ]

So the spectrum of a signal is a graphical representation.
Graphical representations are often beneficial.

Converting between these representations is a learning objective.

25
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Exercise

Find a formula for the signal that has the following spectrum.

5
2
300 400 7 [H]
Could an audio signal (music) have this spectrum? play

(Working forwards and backwards...)




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton9'){ocgs[i].state=false;}}


0.94040823
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Spectrum of a general periodic signal

A periodic signal with period T has a spectrum that looks like:

0 Cl
=
C C4
rEU 0 C3 l Cs
l n i |
0 123 45 f 1]
‘DC T T T T T

e The frequency components are 0, 1/T, 2/T, ...

e The height of each line in the spectrum is an amplitude ¢
- . _ 1 2
lgnoring phase: x(f) = co+ ¢y cos (277:7t) +c,c0os (271;71) 4...

What units are along the horizontal axis for a spectrum?
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Example: Clarinet spectrum

Clarinet signal

1 T T T T T T T T
0.5 i
B .
-0.5F
_1 | | | | | | | |
0 2 4 6 8 10 12 14 16 18
t [msec]
Clarinet spectrum
T T T T T
0.4 .
X 031 .
S
E
2 02f ]
[&]
(0]
[oN
n
)l L MJ\JL A A _
0 At ML A__r A A
0 195 585 975 1755 2535
f[Hz]

First significant peak: fundamental frequency = 1/T ~ 195 Hz
(Perfectly) periodic signals have (perfect) line spectra.

play

28



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton10'){ocgs[i].state=false;}}
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29
Example: Clarinet synthesized
1 T T T T T T T T
0.5 f S _
7\ [ I\ | ‘ I\
. : | I I\ I \ /I
= 0 \ I I ' T
< ’ | (l \\
\ ’ LA | iy | N
=051/ J ATRTEN I V TRIEAL
_1 | | | | | | | |
0 2 4 6 8 10 12 14 16 18
t [msec]
T T T T T

90.4— o -
3
2 0.3F -
o o)
o
e 02 .
2
i3]
2011 .

0 ? P91

0 195 585 975 1755 2535

f [Hz] p|ay

Synthesized using 8 largest peaks in spectrum.
Sounds more interesting than Project 1 synthesizer? Why?



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton11'){ocgs[i].state=false;}}


0.47020411


© J. Fessler, January 29, 2024, 10:19 (class version) 30

Example: Clarinet Fourier series

Expressing a complicated signal in terms of simple signals:

x(t) ~ 0.382cos(2m 195.07+41.35)+0.237cos(2mw 584.9¢+0.48) +
0.169cos(2w 974.81+0.30) 4+0.151 cos(2w 1754.6¢t — 1.35) +
0.066cos(27m2534.5¢t —1.41)4+0.061 cos(2m2144.6¢ +2.40) +
0.057 cos(2w2339.5¢+0.40) +0.041 cos(2m 1364.7t 4+ 1.32)

e Guitar signal would have different amplitudes and phases,
even if playing the same note.

e MP3 audio coding exploits the "line” nature of music spectra.

e How did | make the spectrum plot on previous slide?

e How did | get all the numbers above?
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Part 3: Band-limited signals:
towards computing a signal’'s spectrum

31
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Fourier Series: Trigonometric form

Fourier Series: Sinusoidal form:
1 2
x(t) = co+ ¢y cos (27r?t — 91) +c5 COS <27rft _ 92) 4.,

Fourier Series: Trigonometric form:

1 2
x(t) = ap+aj cos (27tft> +a; cos (ant) 4.

. 1 , 2
+ by sin (Zn?t> +b, sin <2n?t) 1.

Coefficients in these two forms are related by:
aogp = Co
dr = C,COS Qk
bk = Ck sin Gk

ck =y/ai+b; (need this to plot spectra)
tan 6, = bk/ak
because (Lab 1): cos(t — 0) = cos(0)cos(t)+sin(0)sin(t)

We will focus on finding the ay; and by values for music signals.
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About those dots:

Example.
If x(¢) has period =T = 0.01 seconds then x(t) has expansion:
x(t) = ap + ajcos(2w100¢) + a,cos(2w200¢) + azcos(2mw300¢) + - - -
+ by sin(27100¢) + bysin(2mw200¢) + b3sin(27300z) + - - -
fundamental = 1st harmonic 2nd harmonic 3rd harmonic
(DC) (100 Hz) (200 Hz) (300 Hz)
e Mathematical perspective: What does "---" mean?

* Engineering perspective:
Practical signals are, or can be made to be, band limited.
o Physical limits
o Perception limits
o Anti-alias filters in A/D converters


http://en.wikipedia.org/wiki/Bandlimiting
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Band-limited signals have a maximum frequency

Definition. A signal is band limited to B Hz if it has no frequency com-
ponents higher than B Hz.

Example.
If x(¢) has period =T = 0.01 seconds and is band-limited to 800 Hz
then x(¢) has (finite!) Fourier series expansion:

x(t) = ap + ajcos(2m100¢) + apcos(2m200¢) + --- + agcos(27800¢)
+ by sin(27100¢) + bysin(2m200f) + --- + bgsin(278007)
fundamental = 1st harmonic 2nd harmonic highest harmonic

(DC) (100 Hz) (200 Hz) (800 Hz)

8
Finite sum: x(t) = ag+ Y (axcos(2w100kr) +by sin(27w100kz))
k=1

This periodic, band-limited signal is “characterized completely”
by the frequency (100 Hz) and just 17 other numbers:

{a07a_17a27a37a47a57a67a77a87b17b27b37b47b57b67b77b8}-
How do we find those values, called coefficients?


http://en.wikipedia.org/wiki/Bandlimiting
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Exercise

A periodic signal x(¢) has period T = 0.02 seconds and is known to be
band-limited to 200 Hz.

How many (possibly nonzero) Fourier series coefficients does it have
(in trigonometric form), including the DC coefficient?

Recall:

1 2
x(t) = dg + a1 CoS (27rft> —+a» COS (27r?t> R

1 2
+ b;sin (27‘5?t> +b, sin (ant) 4.
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How many coefficients?

In general, if a signal has period T and is band-limited to B Hz,
how many Fourier series coefficients {ag,ay,b1,a3,b,,...} are needed?

36
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Spectrum of a band-limited periodic signal

A periodic signal with period T, that is band-limited to B Hz,
has a spectrum that looks like:

q) ¢1 2

_-E_ €o €4 Cx

= 1 I I S

0 1 2 3 4 K B £ [Hz]
‘DCT T T T T T

e No frequency components above B Hz
e No lines in spectrum past B Hz
e K =BT if it is an integer (# of sinusoids) (units of BT'7)
e K = | BT | more generally, | x| = largest integer that is < x

| x| called floor function (below)
e Example: T =0.01 sand B=360 Hz =— K=13.6| =3



© J. Fessler, January 29, 2024, 10:19 (class version)

38

Spectrum review: A non-music example

The following figure / demo illustrates a hypocycloid

that is one special case of a spirograph.

Hypocycloid, R=5 r=1

demo: fig_spirographl.jl

Formula:

x(t) = (R—r)cos(2mt) +rcos(2n%1)
y(t) = (R —r)sin(2xr) —rsin(27%1)
Here, R =15 (outer circle)

and r =1 (inner circle).

Recall: a signal is any time-varying quan-
tity...

Exercise.

Sketch spectrum of x(t) (or y(1)).
s x(¢) band-limited?

What is the band-limit B?


http://en.wikipedia.org/wiki/Hypocycloid
http://en.wikipedia.org/wiki/Spirograph
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Computing a signal’'s spectrum

39
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Signal sampling

|dea. To determine 2BT + 1 Fourier coefficients of a signal with period
T that is band-limited to B Hz, we try taking at least N > 2BT + 1
samples of the signal over one period, e.g., the interval [0,T).

In other words, take N > 2BT samples: x[0],x[1],...,x|N —1].

x(1)
M//\
T t

T T 1
What will be th ing interval? A= — < = —.
at will be the sampling interva N <2BT — 2B
f | N 2BT
The sampling rate is: § = # of samples =—>—=2B.

time interval T T

Sample faster than twice the maximum frequency: ||S > 2B.
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2B or not 2B

The formula |§ > 2B] is one of the most important in DSP!
It is the foundation for all digital audio and video and more.
CD players use a sampling rate of 44.1 kHz. Why?

Where did T go?

The period T need not affect the sampling rate!
We can choose T arbitrarily large.

Amazing fact #2 (discovered by Claude Shannon 60+ years ago):
Nyquist-Shannon sampling theorem:
f we sample a band-limited signal x(¢) at a rate § > 2B, then
we can recover the signal from its samples x|n] = x(n/S). (EECS 216)

Conversely:
sampling too slowly can cause bad effects called aliasing.
Example: wagon wheels in Western movies.


http://en.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem
http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem#Aliasing
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Claude Shannon: Father of information theory

1916-2001
Born in Petosky, raised in Gaylord, MI.

UM EE Class of 1936.
Claude Shannon's statue is outside EECS.

http://www.computerhistory.org/collections/accession/102665758 circa 1980

cf. finite element models used by, e.g., mechanical and aero engineers


http://en.wikipedia.org/wiki/Claude_Shannon
http://www.computerhistory.org/collections/accession/102665758
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