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Eng. 100: Music Signal Processing

DSP Lecture 5

Lab 3: Signal Spectra (Continued)

Curiosity (major to minor conversion)
•https://www.youtube.com/watch?v=oQPZikexR1Y (macabre macarena)
•https://www.youtube.com/watch?v=LbTxfN8d2CI (don’t worry, really?)
•https://www.youtube.com/watch?v=rGflu3TbREo (whymca)
•https://www.youtube.com/watch?v=aouKyslYMMg (roar)
•https://www.youtube.com/watch?v=uxfNmLW7v0o (viva la vida)

Announcements:
• Study Lab 3 carefully before lab!
• HW2 due Friday

https://www.youtube.com/watch?v=oQPZikexR1Y
https://www.youtube.com/watch?v=LbTxfN8d2CI
https://www.youtube.com/watch?v=rGflu3TbREo
https://www.youtube.com/watch?v=aouKyslYMMg
https://www.youtube.com/watch?v=uxfNmLW7v0o
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Outline

• What: The spectrum of a signal (first class)

◦ Part 1. Why we need spectra
◦ Part 2. Periodic signals x(t) = c0+∑

K
k=1 ck cos

(
2π

k
T t −θk

)
◦ Part 3. Band-limited signals, K = ⌊BT⌋

• How: Methods for computing spectra (second class)

◦ Part 4. Sampling rate S > 2B
◦ Part 5. By hand by solving systems of equations
◦ Part 6. Using general Fourier series solution
◦ Part 7. Using fast Fourier transform (FFT), e.g., in Julia

• Why: Using a signal’s spectrum (third class)

◦ to determine note frequencies: f = k
NS

◦ to remove unwanted noise
◦ to visualize frequency content (spectrogram)
◦ Lab 3
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Learning objectives

• Understand K = ⌊BT⌋ for band-limited, periodic signals
• Understand sampling requirement: S > 2B
• Understand spectra of band-limited, periodic signals
• Compute Fourier series coefficients {ak,bk} from signal samples
• Compute spectra using FFT
• Understand FFT output (determine frequency via FFT)
• Relate line spectra to stem plots of FFT
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Summary of previous class

• arccos method for finding frequencies is not robust enough
(non-sinusoids, noise, polyphony)
=⇒ need better frequency estimation methods to transcribe

• Signal properties:
◦ T -periodic signals: x(t) = x(t +T ) for “all” t
◦ band-limited signals: maximum frequency B

• Fourier series representations of T -periodic signals:

x(t) = c0+ c1 cos
(

2π
1
T

t −θ1

)
+c2 cos

(
2π

2
T

t −θ2

)
+ · · ·

ck =
√

a2
k +b2

k for k = 1,2, . . .

• The spectrum of a (periodic) signal defined to be:

stem plot of amplitudes {ck} versus frequencies fk =
k
T

for k = 0,1,2, . . .
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Harmonics / overtones / partials

[wiki]

http://en.wikipedia.org/wiki/Harmonic#Partials,_overtones,_and_harmonics
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Spectrum review: A non-music example

The following figure / demo illustrates a hypocycloid
that is one special case of a spirograph.

demo: fig_spirograph1.jl

Formula:
x(t) = (R− r)cos(2πt)+r cos

(
2π

R−r
r t

)
y(t) = (R− r)sin(2πt)−r sin

(
2π

R−r
r t

)
Here, R = 5 (outer circle)
and r = 1 (inner circle).

Recall: a signal is any time-varying quan-
tity...

Exercise.
Sketch spectrum of x(t) (or y(t)). ??

Is x(t) band-limited? ??

What is the band-limit B? ??

http://en.wikipedia.org/wiki/Hypocycloid
http://en.wikipedia.org/wiki/Spirograph
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Fourier series summary: Band-limited signals

Any signal that is
◦ periodic with period = T and
◦ band-limited with maximum frequency B
can be expanded as a finite sum of sinusoids:

x(t) = c0︸︷︷︸
DC term

frequency = 0

+c1 cos
(

2π
1
T

t −θ1

)
︸ ︷︷ ︸

fundamental
frequency = 1/T

+
K

∑
k=2

ck cos
(

2π
k
T

t −θk

)
︸ ︷︷ ︸

harmonics
frequencies = k/T

K = ⌊BT⌋ is number of non-DC sinusoidal components. (units?)

2K +1 = 2⌊BT⌋+1 coefficients that characterize the signal:

{c0,c1, . . . ,cK,θ1, . . . ,θK}

The summation formula above is precise but not “visual.”
Signal spectrum: graphical display of the coefficients {ck}.
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Spectrum of a T -periodic, band-limited signal

• This is called a line spectrum.
• Periodic signals have “equally spaced” lines.
• Some (or even many) of the amplitudes ck can be zero (no line).
• The phases {θk} are unimportant for monophonic music. (Stereo phase test.)

• The DC term (where f = 0) has amplitude c0 = 0 for music usually.
• To keep things simple, we will usually pick K = BT to be an integer,

i.e., assume B is an integer multiple of 1/T .

• More generally, the highest frequency component has frequency
K
T

,
where K = ⌊BT⌋ and ⌊x⌋ denotes the floor function.

• Example: T = 0.01 s and B = 360 Hz =⇒ K = ⌊3.6⌋= 3.

http://en.wikipedia.org/wiki/Spectral_line
http://www.audiocheck.net/audiotests_polaritycheck.php
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Example: Clarinet spectrum
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Clarinet spectrum

First significant peak: fundamental frequency = 1/T ≈ 195 Hz
(Perfectly) periodic signals have (perfect) line spectra.

http://en.wikipedia.org/wiki/Spectral_line
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Computing a signal’s spectrum

Part 4.

Sampling rate S > 2B
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Signal sampling

Idea. To determine 2BT +1 Fourier coefficients of a signal with period
T that is band-limited to B Hz, we try taking at least N ≥ 2BT + 1
samples of the signal over one period, e.g., the interval [0,T ).

In other words, take N > 2BT samples: x[0],x[1], . . . ,x[N −1].

t

x(t)

T

What will be the sampling interval? ∆ =
T
N
<

T
2BT

=
1

2B
.

The sampling rate is: S =
# of samples
time interval

=
N
T
>

2BT
T

= 2B.

Must sample faster than twice the maximum frequency: S > 2B.
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2B or not 2B

The formula S > 2B is one of the most important in DSP!
It is the foundation for all digital audio and video and more.
CD players use a sampling rate of 44.1 kHz. Why? ??

Where did T go?
The period T need not affect the sampling rate!
We can choose T arbitrarily large.

Amazing fact #2 (discovered by Claude Shannon 60+ years ago):
Nyquist-Shannon sampling theorem:

If we sample a band-limited signal x(t) at a rate S > 2B, then
we can recover the signal from its samples x[n] = x(n/S). (EECS 216)

Conversely:
sampling too slowly can cause bad effects called aliasing.
Example: wagon wheels in Western movies.

http://en.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem
http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem#Aliasing
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Claude Shannon: Father of information theory

1916-2001
Born in Petosky, raised in Gaylord, MI.
UM EE Class of 1936.
Claude Shannon’s statue is outside EECS.

http://www.computerhistory.org/collections/accession/102665758 circa 1980

cf. finite element models used by, e.g., mechanical and aero engineers

http://en.wikipedia.org/wiki/Claude_Shannon
http://www.computerhistory.org/collections/accession/102665758
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Computing a signal’s spectrum

Part 5.

By hand by solving systems of equations
(recommended reading)
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A small example: Problem statement

Given:
◦ x(t) is periodic with period T = 0.01 second.
◦ x(t) is band-limited with maximum frequency B = 100 Hz.

How many coefficients must we find? ??

x(t) = a0+a1 cos(2π100t)+b1 sin(2π100t)

What sampling rate is needed? ??

We choose S = 400 Hz, sample the signal, and observe:
n 1 2 3 4 · · · sample #
t = n/S 0.0025 0.0050 0.0075 0.0100 · · · seconds
x[n] = x(n/S) 40 10 20 50 · · · volts

Now we find the coefficients from these four signal samples.
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A small example: Problem solution

n 1 2 3 4 sample #
t = n/S 0.0025 0.0050 0.0075 0.0100 seconds
x[n] = x(n/S) 40 10 20 50 volts

Recall: x(t) = a0+a1 cos(2π100t)+b1 sin(2π100t) .
Substituting sample times t = n/S into Fourier series expansion:

x(n/400) = a0+a1 cos(πn/2)+b1 sin(πn/2) .

x(1/400) = a0+a1 cos(π1/2)+b1 sin(π1/2) = a0+b1 = 40
x(2/400) = a0+a1 cos(π2/2)+b1 sin(π2/2) = a0−a1 = 10
x(3/400) = a0+a1 cos(π3/2)+b1 sin(π3/2) = a0−b1 = 20

Solve (by hand!) for 3 unknowns from 3 equations:
a0+b1 = 40
a0−a1 = 10
a0−b1 = 20

=⇒ a0 = 30, b1 = 10, a1 = 20
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Computing a signal’s spectrum

Part 6.

Using general Fourier series solution
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General Fourier series method

Signal x(t) has period=T seconds; band-limited to B Hz.
Signal is sampled at S > 2B samples/second, using t = n/S.
Given data x[n] = x(n/S) (N values from A/D converter):[

x
(1

S

)
, x

(2
S

)
, · · · x

(
N
S

) ]
(sampling every 1/S seconds, up to N/S seconds).

Solve for 2BT +1 unknowns from N equations.
To have a unique solution, we need N ≥ 2BT +1.

Replace t with sample times 1/S, 2/S, . . . ,N/S in the equation:

x(t) = a0+a1 cos
(

2π
1
T

t
)
+ · · ·+ak cos

(
2π

k
T

t
)
+ · · ·+aBT cos

(
2π

K
T

t
)

+b1 sin
(

2π
1
T

t
)
+ · · ·+bk sin

(
2π

k
T

t
)
+ · · ·+bBT sin

(
2π

K
T

t
)
.

where K = ⌊BT⌋.
The frequency of the “kth term” in this sum is f = k

T .
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General Fourier series solution

Amazing fact #3:
There is a closed-form solution (aka plug-and-chug)

to the linear system of equations.
Used by Carl Friedrich Gauss (the German “Prince of Mathematicians”)

in 1805 for interpolating asteroid orbits [1]. (We call it Fourier anyway.)

a0 =
1
N

N

∑
n=1

x[n] = average value of x[n]

ak =
2
N

N

∑
n=1

x[n]cos(2πnk/N), k = 1, . . . ,BT

bk =
2
N

N

∑
n=1

x[n]sin(2πnk/N), k = 1, . . . ,BT

◦ Gives us all 2BT +1 coefficients from N signal samples (LHS from RHS)

◦ Need number of samples N ≥ 2BT +1
◦ Where does this solution originate? Read the Appendix of Lab 3.

http://en.wikipedia.org/wiki/Closed-form_expression
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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Big picture for computing spectra

band-limited
analog signal

x(t)
→ Sample S > 2B

A/D converter → digital signal
x[n]

→ Fourier series
solution formula →

Fourier series
coefficients
{ak,bk}

→ ck =
√

a2
k +b2

k → spectrum

f [Hz]0
“DC”

1
T

2
T

3
T

4
T

... K
T

B

am
pl

itu
de

c0

c1 c2

c3

c4 cK
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A small example: Revisited (read)

Given:
n 1 2 3 4 sample #
x[n] = x(n/S) 40 10 20 50 volts

T = 0.01 sec, S = 400Hz
B = 100Hz

Find x(t) using the general solution with N = 4:

a0 =
1
N

N

∑
n=1

x[n] =
1
4
(40+10+20+50) = 30

a1 =
2
N

N

∑
n=1

x[n]cos
(

2πn
1
N

)
=

2
4

[
40cos

(
2π

1
4

)
+10cos

(
2π

2
4

)
+20cos

(
2π

3
4

)
+50cos

(
2π

4
4

)]
= 20

b1 =
2
N

N

∑
n=1

x[n]sin
(

2πn
1
N

)
=

2
4

[
40sin

(
2π

1
4

)
+10sin

(
2π

2
4

)
+20sin

(
2π

3
4

)
+50sin

(
2π

4
4

)]
= 10

Answer: x(t) = 30+20cos(2π100t)+10sin(2π100t) .
Check answer: What are the values of x(2/S), x(3/S), and x(5/S)?
??
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Plots for small example

t [sec]
0 0.01 0.02 0.03

x
(t
)

0

10

20

30

40

50

60

1/S 2/S 3/S 4/S 5/S

x[1]

x[2]

x[3]

x[4]

x(t) = 30 + 20 cos(2π100t) + 10 sin(2π100t)

f [Hz]0 100

am
pl

itu
de

30 √
500



© J. Fessler, February 4, 2024, 17:03 (class version) 23

General solution: Remarks

• Using general Fourier series solution is much easier than
solving by hand for 2BT +1 unknowns from N simultaneous
linear equations if N and 2BT are large!

• But calculating by hand is still slow, and so 1805...
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Computing a signal’s spectrum

Part 7.

Using fast Fourier transform (FFT), e.g., in Julia
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Shifting to the fast lane: FFT

If you counted how many multiplies are needed for the previous closed-
form solution it would be about N2.

Amazing fact #4:
There is a clever way to compute those summations
with only O(N log2 N) multiplies.

Called the Fast Fourier transform (FFT). (EECS 351)
• Made famous by 1965 publication

by James W. Cooley (1926-) and John W. Tukey (1915-2000)
• The motivating application for the Cooley–Tukey FFT was faster

sensors for nuclear arms monitoring during the cold war.
• Reinvention of a method that Carl Friedrich Gauss used (by hand!) in

1805. (Theoria interpolationis methodo nova tractata) [1]

http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://en.wikipedia.org/wiki/Cooley–Tukey_FFT_algorithm
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The Big 10 of algorithms
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Using Julia/ FFT to compute spectra

Given a 1D array x of N samples of a signal x(t):

x =
[

x
(0

S

)
, x

(1
S

)
, · · · x

(
N−1

S

) ]
Julia’s F=fft(x) computes the following 1D array of N values:

F[k+1] =
N−1

∑
n=0

x
(n

S

)
e−ı2πnk/N , k = 0, . . . ,N −1,

(with O(N log2 N) multiplies!) where Euler’s identity is eıθ = cos(θ)+isin(θ), i =
√
−1.

What you need to know:

a0 = mean(x) = 1st element of (1/N)*fft(x)
ak = element k+1 of (2/N)*real(fft(x)) , k = 1,2, . . . ,N/2
bk = element k+1 of (-2/N)*imag(fft(x)) , k = 1,2, . . . ,N/2
ck = element k+1 of (2/N)*abs.(fft(x)) , k = 1,2, . . . ,N/2.

We need to ensure S > 2B (maximum frequency of x(t)) and N ≥ 2BT +1.
Caution: Julia array index 1 to N, but math coefficient index starts at 0. Note “k+1.”
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Big picture for computing spectra via FFT

band-limited
analog signal

x(t)
→ Sample S > 2B

A/D converter → digital signal
x[n]

Julia 1D array
x → FFT

fft(x) → FFT
coefficients

→ ck =
√

a2
k +b2

k

use: (2/N)*abs.(fft(x))
→ spectrum

→ visualize
use stem plot
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Example - rough spectrum plot
# fig_train_spectrum1a.jl
using WAV: wavread
using FFTW: fft
using Plots: plot, default; default(markerstrokecolor=:auto, label="")

(y, S) = wavread("../synth/train-whistle.wav")
N = 2000; n = 0:N-1; t = n/S
x = y[8000 .+ n] # just 2000 samples of it

p1 = plot(t, x, marker=:circle, xlim=(0,0.03), ylim=(-1,1), xlabel = "t [sec]", ylabel = "x(t)")

p2 = plot(2/N*abs.(fft(x)), line=:stem, marker=:circle, color=:red,
xlabel = "index: l = k+1", ylabel = "train spectrum", xlim = (1,N), ylim = (0, 0.4),
xtick = [1, 173, 286, N/2, N+1-286, N]) #ytick = [0, 0.5],

plot(p1, p2, layout = (2,1)) #; savefig("fig_train_spectrum1a.pdf")

Q0.1 Periodic?
A: True B: False ??
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Mirror symmetry of fft output

fft output has some even/odd symmetry due to e−ı2πnk/N term.
For a real array x of length N in Julia:

(2/N)*real(fft(x)) gives
[2a0 a1 a2 . . . aN/2−2 aN/2−1︸ ︷︷ ︸ aN/2 aN/2−1 aN/2−2 . . . a2 a1︸ ︷︷ ︸]

(-2/N)*imag(fft(x)) gives
[0 b1 b2 . . . bN/2−2 bN/2−1︸ ︷︷ ︸ 0 −bN/2−1 −bN/2−2 . . . −b2 −b1︸ ︷︷ ︸]

(2/N)*abs.(fft(x)) gives
[2c0 c1 c2 . . . cN/2−2 cN/2−1︸ ︷︷ ︸ cN/2 cN/2−1 cN/2−2 . . . c2 c1︸ ︷︷ ︸]

angle.(fft(x)) gives
[0(or π) −θ1 . . . −θN/2−1︸ ︷︷ ︸ 0(or π) θN/2−1 . . . θ2 θ1︸ ︷︷ ︸]

For plotting spectra, ignore the redundant 2nd half of the fft output array!

http://en.wikipedia.org/wiki/Even_and_odd_functions
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A small example: Julia/ FFT approach (read)

Given:
n 1 2 3 4 sample #
x[n] = x(n/S) 40 10 20 50 volts T = 0.01 sec, S = 400 Hz

Recall that for N = 4, the FFT needs this array of samples:

x =
[

x
(0

S

)
x
(1

S

)
x
(2

S

)
x
(3

S

) ]
Wait, no x(0) in our table!?
But because x(t) is T -periodic: x

(
N
S

)
= x

(
ST
S

)
= x(T ) = x(0) .

Here x(0) = x(4/S) = 50.

x = [50, 40, 10, 20]
2/4 * real(fft(x))
gives: [60 20 0 20] cf. [2a0 a1 a2 a1] =⇒ a0 = 60/2 = 30 and a1 = 20

-2/4 * imag(fft(x))
gives: [0 10 0 -10] cf. [0 b1 0 −b1] =⇒ b1 = 10

Answer: x(t) = 30+20cos(2π100t)+10sin(2π100t) .
Using fft is the easiest way of all to find Fourier series coefficients!
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Frequencies for Julia/FFT spectra

The frequency of the kth term in a Fourier series is

f =
k
T
.

This formula is not so helpful if the period T is unknown!
In music transcription or pitch tracking, the pitch is unknown,
so the (fundamental) period is unknown.

Fact. When applying the FFT to N samples of signal using sampling rate
S, the frequency of the kth term is:

f =
k
N

S, k = 0, . . . ,N/2.

Caution. The kth term appears as Julia index l = k+1.

array [2c0 c1 c2 . . . cN/2−1 cN/2 cN/2−1 . . . c2 c1]
index 1 2 3 . . . N/2 N/2+1 N/2+2 . . . N −1 N
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Example. Spectrum of unknown signal

We have N = 10 samples of a signal at S = 500 Hz stored in x .

(2/N)*real(fft(x)) gives [0 0 0 7 0 0 0 7 0 0]

(-2/N)*imag(fft(x)) gives [0 0 0 0 0 0 0 0 0 0]

What is the signal? Recall: [2a0 a1 a2 a3︸ ︷︷ ︸ a4 a3 a2 . . . a1︸ ︷︷ ︸]
Here a3 = 7. Caution: 4th element of array is 7.
Julia index l=4 corresponds to frequency term k = 3.
Using f = k

NS = 3
10500 = 150:

x(t) = 7cos(2π150t)

which is a 150Hz sinusoidal signal.
Ignore the other 7 in array index N +1− k = 10+1−3 = 8.
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Spectrum and FFT of a single sinusoid

Example. x(t) = 7cos(2π440t)

What is its spectrum? ??

What happens if we use Julia’s fft to find its spectrum?

using FFTW: fft
using Plots: plot
N = 2000; t = (0:N-1)/1000
x = 7 * cos.(2π * 440 * t) # type \pi<tab>
plot((2/N) * abs.(fft(x)), line=:stem)



© J. Fessler, February 4, 2024, 17:03 (class version) 35

What will the stem plot look like?

Hint. Determine S and N and use f = S k
N .

??

Q0.2 Enter one of the crucial values along the horizontal axis.
??

The two figures are closely related, but differ.
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Using Julia/ FFT to compute spectra

Given a vector x of N samples of a signal x(t) taken at rate S:

x =
[

x
(0

S

)
, x

(1
S

)
, · · · x

(
N−1

S

) ]
,

Julia’s fft can compute amplitudes {ck} and phases {θk}:

(2/N)*abs.(fft(x)) gives

[2c0 c1 c2 . . . cN/2−2 cN/2−1︸ ︷︷ ︸ cN/2 cN/2−1 cN/2−2 . . . c2 c1︸ ︷︷ ︸
mirror image

]

angle.(fft(x)) gives

[0(or π) −θ1 . . . −θN/2−1︸ ︷︷ ︸ 0(or π) θN/2−1 . . . θ2 θ1︸ ︷︷ ︸
mirror image

]
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In other words (note “index = k+1”):

c0 = mean(x) = 1st element of 1/N*(fft(x))
ck = (k+1)th element of 2/N*abs.(fft(x)) , k = 1,3, . . . ,N/2

frequency of kth term: f =
k
N

S.
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Spectrum of real signal #1

See Julia code on p. 29.
Full x(t). play
2000-point snippet x[t]. play
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3 big peaks in spectrum at Julia indexes 173 217 286


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



1.3583672


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}


0.3254694
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Fourier series approximation of train signal

Xf = fft(x)
k1 = [173, 217, 286]
2/N*abs.(Xf[k1])
resulting amplitudes (ck): 0.13 0.21 0.38

angle.(Xf[k1])
resulting phases (−θk in radians): 1.75, -1.49, -0.66

(k1 .- 1) / N * S
resulting frequencies ( fk in Hz): 705, 885, 1167

Thus a 3-term Fourier series approximation is x(t)≈ z(t) where
z(t) = 0.13cos(2π705t +1.75)+0.21cos(2π885t −1.49)+0.38cos(2π1167t −0.66) .

Aside: 705, 885, 1167 Hz roughly correspond notes F5 A5 D6
Aside for musicians: What chord? ??
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Spectrum of synthesized train whistle signal
z = 0.13 * cos.(2π*705*t .+ 1.75) + 0.21 * cos.(2π*885*t .- 1.49) +

0.38 * cos.(2π*1167*t .- 0.66)

play


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}


0.32217687
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Mission accomplished

We just found the frequencies of 3 notes in a chord
for a real-world music signal that was:
• not a pure sinusoid,
• consisted of multiple notes (a chord),
• and was recorded with a microphone so contains noise.

The FFT is a key tool for music transcription by computers.

Required more complicated math than previous arccos method.
But the final FFT method is very practical.

MP3 encoders, pitch trackers, tempo converters, vocal auto-tune, ...
all use FFT-type methods based on a signal’s spectrum.
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Spectrum of a live recorded signal

Basic audio recording with Julia:
using Sound: record, sound
using Plots: plot
using FFTW: fft
record(0.001) # warm-up
println("begin")
x, S = record(5)
x = x[1:2:end]; S ÷= 2 # reduce memory
Nx = length(x)
t = (1:Nx)/S
p0 = plot(t, x, xlabel="t [s]", ylabel="x(t)")

This records 5 seconds of monaural audio sampled at 8000 Hz and stores
the results in vector x . Requires a microphone.

Key formula: f =
k
N

S [wiki]

(guitar “transcription” demo here using fig/l05/record2-fft1.jl fig/l05/record2-fft2.jl )

http://en.wikipedia.org/wiki/Piano_key_frequencies
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Plotting code
using Plots: plot!, default; default(label="")
n = Int[2.0 * S] .+ (1:2000)
p1 = deepcopy(p0)
plot!(p1, t[n], x[n], color=:magenta)
y = x[n]; Ny = length(y) # segment
p2 = plot(y, xlabel="n (sampling rate $S Hz)", ylabel="y[n]")
lmax = 81
p3 = plot(2/Ny * abs.(fft(y)), line=:stem,

title="spectrum of y (zoomed), fmax=$((lmax-1)/Ny*S) Hz",
xlabel="frequency index l=k+1", xlims=(0,lmax))

plot(p1, p2, p3, layout=(3,1))
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DSP, FFT and “Stairway to heaven”
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play

Fundamental frequency
of first note: f = k

NS =
110
20008000 = 440Hz.

Q0.3 What is the lowest (nonzero) frequency (in Hz) we could find here?
??


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}


2.46


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}


0.432
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Summary so far

• Periodic signals (including musical notes) can be expanded in a Fourier
series.

• The signal is a sum of sinusoids at frequencies that are integer multiples
of 1/T

• If signal is both band-limited and periodic,
◦ the Fourier series has only a finite # of terms
◦ we can compute coefficients from its samples if S > 2B

• There is a closed-form solution to the resulting linear system;
• Julia can compute it easily using fft .

• Use f =
k
N

S to get frequency, where k = l −1 (l = array index).
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Aliasing: audio example

S = 8192; t = 0:1/S:0.3
x = 0.9*[cos.(2pi*2800*t); cos.(2pi*3800*t)] play

y = 0.9*[cos.(2pi*3800*t); cos.(2pi*4800*t)] play

0 1 2 3 4 5 6

x 10
−4

−1

−0.5

0

0.5

1

t

y
(t

)

 

 
samples

4800 Hz

3392 Hz

arccos method says 3392 Hz, not 4800 Hz for last part of this example

Q0.4 Is S > 2B here?
A: Yes B: No ??


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}


0.62693876


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}


0.5485714
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