
© J. Fessler, March 5, 2024, 22:05 (class version) 1

Eng. 100: Music Signal Processing

DSP Lecture 8

Project 3: Music signal processing team project

Curiosity:
• https://www.youtube.com/watch?v=Q3oItpVa9fs (sound and matter - Nigel Stanford)
• https://paris.cs.illinois.edu/demos (audio source separation)
• Stable Audio AI (generated jazz)

Announcements:
• Project 2 (report and code) due this week (extended to Monday, but...)
• Read Project 3 description before discussion/lab this week

(Google Drive under “TC assignment details”)
• Prepare P3 ideas for feedback in lab this week
• HW 4 due Friday
• Midterm course feedback
• Midterm Mar. 20; “practice” on https://w2p.eecs.umich.edu/fessler1

https://www.youtube.com/watch?v=Q3oItpVa9fs
https://paris.cs.illinois.edu/demos
https://www.stableaudio.com/1/share/c5b6849e-16d8-4506-b29f-8f71044feec6
https://drive.google.com/drive/folders/1v2vbfilLHDXtCGaqpC_SYRuzghsiGwrD
https://umich.bluera.com/umich
https://w2p.eecs.umich.edu/fessler1

© J. Fessler, March 5, 2024, 22:05 (class version) 2

Learning objectives

• Understand P3 possibilities and expectations
• Learn some simple audio DSP tools: sound mixing, basic reverb
• Learn autocorrelation method for finding pitch
• Understand git purpose and basics

© J. Fessler, March 5, 2024, 22:05 (class version) 3

Outline

• Part 0: P3 examples

• Project 3 “classic”

◦ Part 1: Illustration of a “baseline” music synthesizer

→ song.wav

◦ Part 2: Illustration of a “baseline” music transcriber

song.wav → transcriber →
0 61

0

1

2

3

4

◦ Part 3: Transcriber approaches (new DSP methods)

→ pitch identification → 787.5 Hz

• Part 4: Git

P3 is an engineering design project, so there is considerable room for creativity and originality.
(lifelong learning...)

© J. Fessler, March 5, 2024, 22:05 (class version) 4

F13 Projects
• Spectrum modifications

◦ Effects processor: flange / reverb / pitch shift
◦ Effects processor: echo (delay) / flange / tone control
◦ Audio equalizer (bass boost etc.)
◦ Track mixer (with volume and tone controls)
◦ Pitch shifter (with effects: echo / chipmunk ...)
◦ Pitch and tempo shifter with phase vocoder
◦ Flute autotuner

• Spectrum analyzers
◦ Pitch analyzer and tuner
◦ Tuner and metronome

• Synthesizers
◦ Synthesizer with several instruments and tone controls
◦ Synthesizer with attack/decay controls and chords
◦ Synthesizer with selectable harmonics and other effects (tremolo, “ET”)
◦ Hammond B-3 organ synthesizer (with vibrato)

•Other
◦ Audio compressor
◦ Speech recognition system (spoken numbers)

© J. Fessler, March 5, 2024, 22:05 (class version) 5

F13 example GUI

© J. Fessler, March 5, 2024, 22:05 (class version) 6

F14 Projects

• Spectrum analyzers / modifiers
◦ Pitch / tempo shifter
◦ Pitch tracker / synthesizer
◦ Real-time effects (flange, reverb, etc.)

• Synthesizers
◦ Synth with controls
◦ Synthesizer / transcriber with rests and chords
◦ Synth with controls
◦ Synth with 8-bit sounds and random composer / transcriber
◦ Synth with keyboard input
◦ Loop synth with many options
◦ Polyphonic looping synth
◦ Synthesizer with chords / transcriber
◦ Drum machine / tempo tracker

© J. Fessler, March 5, 2024, 22:05 (class version) 7

F14 example GUI

© J. Fessler, March 5, 2024, 22:05 (class version) 8

W22 project component examples

© J. Fessler, March 5, 2024, 22:05 (class version) 9

© J. Fessler, March 5, 2024, 22:05 (class version) 10

© J. Fessler, March 5, 2024, 22:05 (class version) 11

Project 3 “classic”
Part 1: Basic music synthesizer

© J. Fessler, March 5, 2024, 22:05 (class version) 12

Basic synthesizer overview

• Synthesize (at least) two octaves
• Instrument choices (at least 5):

◦ Electric guitar
◦ Trumpet
◦ Clarinet
◦ Tone
◦ Brass section
◦ Your team’s own sound(s), at least one of which must use additive synthesis

• Synthesizer GUI
◦ Instrument selector (e.g., pull-down menu)
◦ Note durations (at least 3): whole, half, quarter (think carefully about UX)

• Polyphony / mixing (optional)
◦ Create individual tracks separately for different instruments.
◦ Add them together in Julia,

e.g., x = 0.7 * x_guitar + 0.4 * x_trumpet .
◦ Use soundsc not sound to play the sum signal!
◦ The basic transcriber is not required to handle polyphony

(but that would be impressive and has been tackled by some past teams).

© J. Fessler, March 5, 2024, 22:05 (class version) 13

Music synthesis: Instruments

• Download project3.wav from Canvas (3.4 Mb).
(x, S) = wavread("project3.wav"); soundsc(x,S)

• Contents:
◦ Sound snippets: Length N = 32768 each, S = 44100 Hz.
◦ Electric guitar, clarinet, trumpet, tone; 13 notes each.

• Additive synthesis: Create your own instrument. Be creative!
• Brass section: Reverb (add delayed copies) of trumpet.

https://umich.instructure.com/courses/646958

© J. Fessler, March 5, 2024, 22:05 (class version) 14

Music Synthesizer: Instrument selection in Gtk.jl

Many options in Gtk:
• buttons (use a lot of screen area)
• “pull-down” menus / “pop-up” menus / “combo boxes”
• ??? think carefully and creatively about UX

https://juliagraphics.github.io/Gtk.jl/latest/manual/combobox

https://juliagraphics.github.io/Gtk.jl/latest/manual/combobox

© J. Fessler, March 5, 2024, 22:05 (class version) 15

Music Synthesizer: Note duration hack

One simplifying approach uses the following note durations.

Note Whole Half Quarter 1 second
Length 32668+100 16284+100 8092+100 S = 44100

Simplification: the final 100 samples of each note are zeros,
to provide duration information to transcriber.
Is 100 zeros a problem musically? ??

Example of (obsolete) basic music transcriber output with note duration spacing:

1 5 7 9 15 17 21 41 43 57 61

0

1

2

3

4

time [quarter notes]

© J. Fessler, March 5, 2024, 22:05 (class version) 16

Basic music synthesizer: GUI example

Simplification: “performer” selects duration manually.
Clicking “end” button causes song to be played
and writes song to a .wav file. (Do not use a .mat file!)

© J. Fessler, March 5, 2024, 22:05 (class version) 17

Music Synthesizer: GUI example on Mac/Matlab

Suggestion: Start with just a few notes; add more later.
Use for loops and functions!

© J. Fessler, March 5, 2024, 22:05 (class version) 18

Music Synthesizer: Reverb

• To add “reverb” (reverberation, i.e., echo) to a sampled signal x
with N=length(x) try this:
y = x[1:N-2*D] + x[1+D:N-D] + x[1+2*D:N]

• Try delay D ≈ 1000. (units?)
• Use many more than 3 echoes to make it sound good.
• Random delay values can sound more realistic.
• Example. play

Trumpet signal x followed by “reverberated” signal y
• Somewhat like a “marching band” or “trumpet section”

with multiple trumpets.
See https://github.com/nantonel/ImageMethodReverb.jl

Later lectures will discuss more advanced music synthesis techniques.

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

1.671836

https://github.com/nantonel/ImageMethodReverb.jl

© J. Fessler, March 5, 2024, 22:05 (class version) 19

Basic synthesizer summary

Minimum features:
• At least two octaves
• Multiple instruments (at least 5)
• At least one instrument based on Fourier synthesis (explained later)
• At least 3 note durations: quarter, half, whole
• 100 samples of zeros after each note to aid transcriber is allowed

The first letter of “Basic” is B...

© J. Fessler, March 5, 2024, 22:05 (class version) 20

Part 2: Basic Music Transcriber

© J. Fessler, March 5, 2024, 22:05 (class version) 21

Basic transcriber overview

• Read .wav file produced by your synthesizer (or other music source).
(x, S) = wavread("song.wav")

• Generate musical staff notation as in Project 1.
◦ BUT: Also must depict note duration, e.g., by separation (or sym-

bol).
◦ BUT: Must work for music sounds, not just sinusoids!

• Otherwise, same as Project 1 transcriber specs.
• Does not have to include bass clef, e.g., for guitar.
• Does not have to work for polyphonic music (stretch goal!)
• Must have some test process, typically like error rate versus SNR plot,

as in Project 2, for multiple (at least 5) instruments.

© J. Fessler, March 5, 2024, 22:05 (class version) 22

Basic music transcriber simplifications

• Output: Musical scale & notes using stem (Project 1) (aim higher!)

• Duration: Shown in output by separation between notes:
Note Type Whole Half Quarter
Separation 3 extra spaces 1 extra space 0 extra space

• Use reshape (more details in later lecture)
◦ columns ending in 100 zeros help indicate note lengths
◦ Find indexes I of those columns;
◦ can ignore the other columns for finding frequencies f .
◦ As in Project 1: frequencies =⇒ MIDI value =⇒

table lookup to specify vertical staff position
◦ Stem plot or (preferably) more advanced graphics

• Do not need display the (bass) guitar tones.
• Do need an error rate versus SNR plot, as in Project 2.

© J. Fessler, March 5, 2024, 22:05 (class version) 23

Example error rate vs SNR plot

−30 −25 −20 −15 −10 −5 0 5
0

10

20

30

40

50

60

70

80

SNR [dB]

E
rr

o
r

R
a
te

 [
%

]

trumpet

tone

clarinet

TeamSound1

band

(These are hypothetical values for illustration only.)
• Put at least 5 instruments on one plot. (Extra instruments not required here.)

• Vary the SNR enough that the error rates range from 0% to at least 50% for every instrument.
Is the example plot above adequate? A. Yes, or B. No. ??

© J. Fessler, March 5, 2024, 22:05 (class version) 24

Part 3: Transcriber approaches

© J. Fessler, March 5, 2024, 22:05 (class version) 25

Transcriber possibilities: Previous methods

• Arccos? ??

• Spectrogram: Look for peaks.
Conceptually simple & most comprehensive and suitable for polyphony;
probably requires the most advanced programming.

• Correlation using a set of candidate signals (P2).
Probably works for your synthesizer only?

• Correlation using a set of candidate sinusoids (P2).
Might match a harmonic rather than the fundamental?

© J. Fessler, March 5, 2024, 22:05 (class version) 26

Transcriber possibilities: New methods

• Autocorrelation of waveform segment with itself:
y[m] = ∑n x[n]x[n−m] has sharp peak at m=period.

• Harmonic product spectrum (HPS):
Down-sample spectra multiple ways and multiply;
this process emphasizes 1st harmonic.

• Combinations / variations of the above methods.

All of these methods have been used previously.

© J. Fessler, March 5, 2024, 22:05 (class version) 27

Spectrogram of “The Victors:” Sinusoids

"note index"

fr
e

q
u

e
n

c
y
 i
n

d
e

x
 (

k
+

1
)

N=16384 S=32768

Spectrogram of "The Victors:" Sinusoids

1 60
1

197

221

248

263

295

331

play

Durations are evident, except for two subsequent sinusoids of the same frequency.

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

6.084

© J. Fessler, March 5, 2024, 22:05 (class version) 28

Spectrogram of “The Victors:” Trumpet

"note index"

fr
e

q
u

e
n

c
y
 i
n

d
e

x
 (

k
+

1
)

N=8192, S=44100

Spectrogram of "The Victors:" Trumpet

1 60
1

82

600

play

Finding fundamental frequency of each note here is possible but more challenging.

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

11.2065115

© J. Fessler, March 5, 2024, 22:05 (class version) 29

Example: Trumpet Waveform

Pitch detection: Find period of periodic waveform. Given S = 44.1kHz.
• By eye/hand: what is frequency here? ?? [wiki]
• How can we automate? (Think about what we did by eye.)

http://en.wikipedia.org/wiki/Piano_key_frequencies

© J. Fessler, March 5, 2024, 22:05 (class version) 30

Autocorrelation method

Recall: the correlation of one signal x[n] with another signal y[n] is the sum of their
product: correlation = ∑n x[n]y[n].

The autocorrelation of signal x[n] is the correlation of x[n] with a time-shifted version
of itself, i.e., the “other signal” is a time-shifted version of x[n].

The auto-correlation value depends on the shift amount m:
autocorr[m] = ∑n x[n]x[n−m]. (Units of shift m? ??)

http://en.wikipedia.org/wiki/Autocorrelation

© J. Fessler, March 5, 2024, 22:05 (class version) 31

Autocorrelation illustrated

Given x = [x[1] x[2] . . . x[N]], autocorr[10] = ∑
N
n=11 x[n]x[n−10]

In Julia: sum(x[11:end] .* x[1:end-10])

© J. Fessler, March 5, 2024, 22:05 (class version) 32

Autocorrelation illustrated

autocorr[m] = ∑n x[n]x[n−m] is large when shift m = a period.
For which shift is autocorrelation largest? ??

© J. Fessler, March 5, 2024, 22:05 (class version) 33

Autocorrelation properties

Cauchy-Schwarz inequality:
Maximum value of autocorrelation is ∑n x2[n], i.e.,

autocorr[m] = ∑
n

x[n]x[n−m]≤ ∑
n

x2[n].

For which m does autocorr[m] equal that largest value? ??

Fast way to compute (normalized) autocorrelation for all shift values m:

using FFTW: fft, ifft
autocorr = real(ifft(abs2.(fft([x; zeros(size(x))])))) / sum(abs2, x) # normalize

With this normalization, autocorrelation values are between -1 and 1.

(Take EECS 351 to learn why these FFT (!) commands yield autocorrelation values.
Related to Wiener–Khinchin theorem.)

http://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality
http://en.wikipedia.org/wiki/Wiener–Khinchin_theorem

© J. Fessler, March 5, 2024, 22:05 (class version) 34

Example: Trumpet autocorrelation / autocorrelogram

A plot of all autocorrelation values is an autocorrelogram:

using FFTW: fft, ifft
autocorr = real(ifft(abs2.(fft([x; zeros(length(x))])))) / sum(abs2, x) # normalize
plot(0:length(autocorr)-1, autocorr, marker=:circle, markersize=3, color=:orange)

To find frequency use f = 1/T where T = m∆ = m/S so f = S/m for m > 1.

Highest peak always at m = 0 (array index 1 in Julia)
Second largest peak away from zero at index = m = 56 =⇒ T =

m
S

=⇒ Frequency =
1

period
=

S
m

=
44100 Hz

56
= 787.5 Hz. (high G)

http://en.wikipedia.org/wiki/Correlogram

© J. Fessler, March 5, 2024, 22:05 (class version) 35

Vocal demo

Live demo (automatic!?) with singing vowel sound (AEIOU)

© J. Fessler, March 5, 2024, 22:05 (class version) 36

l/fig/p3/demo-autocorr1.jl

using Sound: record, sound
using FFTW: fft, ifft
using Plots: plot, plot!, default, gui
default(label="", markerstrokecolor=:auto, markersize=3, ytick=-1:1, widen=true)
record(0.001) # warm-up
x, S = record(5)
x = x[1:2:end] / maximum(abs, x); S ÷= 2 # reduce memory
#f0 = 540; S = 44100; x = cos.(2π*f0*(1:5S)/S).^3 # test code
Nx = length(x)
t = (1:Nx)/S
p0 = plot(t, x, xlabel="t [s]", ylabel="x[n] = x(n/S)")

Ny = 800
n = Int(2.0 * S) .+ (1:Ny)
p1 = plot!(deepcopy(p0), t[n], x[n], color=:magenta, xlims=extrema(t[n]))
y = x[n] # small segment for plot
p2 = plot(y, xlabel="n", marker=:circle, title="Signal", yaxis = ("y[n]", (-1,1)))
autocorr = real(ifft(abs2.(fft([x; zeros(length(x))])))) / sum(abs2, x)
p3 = plot(0:length(autocorr)-1, autocorr, marker=:circle, color=:orange,
xaxis = ("shift m", (0,Ny)), yaxis = ("autocorrelation", (-1,1), [-1, 0, 0.8, 1]),
title = "Normalized autocorrelogram")

big1 = autocorr .> 0.8 # find large values
big1[1:findfirst(==(false), big1)] .= false # ignore peak near m=0
peak2start = findfirst(==(true), big1)
peak2end = findnext(==(false), big1, peak2start) # end of 2nd peak
m = peak2start:peak2end; plot!(m, autocorr[m], color=:black, marker=:circle)
big1[peak2end:end] .= false # ignore everything to right of 2nd peak
m = argmax(big1 .* autocorr) - 1
#m = argmax(i -> autocorr[i], peak2start:peak2end) - 1 # alternative way
f = round(S/m, digits=2)
plot!([m], [autocorr[m+1]], marker=:square, color=:red, xticks=((0:6) * m),
annotate=(Ny/2, -0.5, "f = S/m = $S/$m = $f"))

plot(p2, p3, layout=(2,1)); gui()
tone = cos.(2π*f*(1:2S)/S); sound([tone; x], S)

© J. Fessler, March 5, 2024, 22:05 (class version) 37

Arduino water flow meter

From [1]: “So my first challenge was to program an Arduino
attached to the magnetometer to transform that noisy mag-
netic signal into a flow rate. I toyed with the idea of using
a Fourier transform to pick out the dominant frequency cor-
responding to the flow rate, but instead I plumped for auto-
correlation. That is, the program multiplies a short sample
of the signal by a time-lagged version of itself and sums up
the results. To find the dominant frequency, the Arduino
code increments the lag between the two samples and looks
for a peak in the summed results. That requires much less
processing and seems pretty robust with respect to noise and
harmonics.”

© J. Fessler, March 5, 2024, 22:05 (class version) 38

Example: Trumpet spectrum

By Project 1, the fundamental frequency is

f =
k
N

S =
587−1
32768

44100 Hz = 788.7 Hz (high G).

BUT: here the 2nd peak is higher than the 1st peak.
=⇒ Using simple argmax function may locate the wrong peak!
If we do not use argmax how do we avoid small noise peaks?

© J. Fessler, March 5, 2024, 22:05 (class version) 39

Harmonic product spectrum (HPS)

Multiply spectrum by down-sampled versions of itself, aka decimation.

X = abs.(fft(x)) # spectrum
M = N ÷ 3 # here we use three copies
hps = X[1:M] .* X[1:2:2M] .* X[1:3:3M]; hps ./= maximum(hps) # normalized

• HPS emphasizes harmonics over other stuff, so easier to find peaks in noise.
• Now the highest peak matches the fundamental frequency.
• (HPS may not always work as well as in this example.)
• Note that we down-sampled the spectrum, not the signal !

http://en.wikipedia.org/wiki/Decimation_(Roman_army)
http://musicweb.ucsd.edu/~trsmyth/analysis/Harmonic_Product_Spectrum.html

© J. Fessler, March 5, 2024, 22:05 (class version) 40

Transcriber: Other helpful (?) ideas

• Filtering out unwanted signals (noise)
◦ If we are interested in only 1 octave of pitches,

then can filter out all signals not in that octave (Lab 3).
◦ Can help for some approaches, but not for others.

Transcriber: frequencies

• Prof. Yagle generated the sounds in project3.wav
using circle of fifths and multirate filtering (advanced topics).

• Frequencies differ slightly from equal temperament tuning.
• If needed, use the “tone” signal to determine tuning.
• Alternatively, round MIDI number to the nearest integer:

MIDI = 69 + round (12 log2(frequency in Hertz/440))

http://en.wikipedia.org/wiki/Circle_of_fifths
http://en.wikipedia.org/wiki/Multirate_filter_bank_and_multidimensional_directional_filter_banks

© J. Fessler, March 5, 2024, 22:05 (class version) 41

Project 3 challenges

• The octave problem:
how to distinguish G (392 Hz) from G (784 Hz).
(Trumpet has this problem.)

• Use pattern recognition to identify instrument type from the pattern
of harmonics? Not required, but will impress...

• Your team must sell/defend your choice of method(s)
in both your final oral presentations and written reports.

© J. Fessler, March 5, 2024, 22:05 (class version) 42

Some P3 tools / resources

• Real-time spectrum analyzer
https://github.com/JuliaAudio/PortAudio.jl/blob/master/examples/spectrum.jl

• Some Julia audio tools: https://github.com/JuliaAudio

• Unicode music symbols: https://unicode-table.com/en/blocks/musical-symbols

• Survey paper on music transcription http://doi.org/10.1109/msp.2018.2869928

• Phase vocoder: https://en.wikipedia.org/wiki/Phase_vocoder

• Audio data sets (mostly from past students):
◦ https://medleydb.weebly.com

◦ https://freesfx.co.uk

◦ https://philharmonia.co.uk/resources/sound-samples

◦ https://imslp.org/wiki/Main_Page

◦ https://mixkit.co

https://github.com/JuliaAudio/PortAudio.jl/blob/master/examples/spectrum.jl
https://github.com/JuliaAudio
https://unicode-table.com/en/blocks/musical-symbols
http://doi.org/10.1109/msp.2018.2869928
https://en.wikipedia.org/wiki/Phase_vocoder
https://medleydb.weebly.com
https://freesfx.co.uk
https://philharmonia.co.uk/resources/sound-samples
https://imslp.org/wiki/Main_Page
https://mixkit.co

© J. Fessler, March 5, 2024, 22:05 (class version) 43

Real-time spectrum demo
fig/p3/spectrum.jl Plot a real-time spectrum.
cf https://github.com/JuliaAudio/PortAudio.jl/blob/master/examples/spectrum.jl

using Plots: plot, gui
using FFTW: fft
using PortAudio: PortAudioStream
using SampledSignals: domain, Hz, (..)

const N = 1024 # buffer size
const stream = PortAudioStream(1, 0)
const buf = read(stream, N)
const fmin = 0Hz
const fmax = 10000Hz
const fs = Float32[float(f) for f in domain(fft(buf)[fmin..fmax])]

while true
read!(stream, buf)
plot(fs, abs.(fft(buf)[fmin..fmax]), label="",
xaxis = ("f [Hz]", (fs[1], fs[end])),
yaxis = ("Spectrum", (0, 100))); gui()

end

© J. Fessler, March 5, 2024, 22:05 (class version) 44

P3 conclusion

• I am not telling you how to do this project!
Music transcription is not a solved problem;
different approaches have pros/cons.

• Apply what you have learned in the course.
• Research on music synthesis/transcription.

pitch detection algorithms
• There are many interesting P3 possibilities beyond the basic synthesizer

and basic transcriber described here. Baseline level of sophistication...
• Your presentations of the results (tech comm)

are as important as results themselves.
This is very realistic for real-world engineering.

http://en.wikipedia.org/wiki/Pitch_detection_algorithm

© J. Fessler, March 5, 2024, 22:05 (class version) 45

Part 4: git

© J. Fessler, March 5, 2024, 22:05 (class version) 46

Git is the way to collaborate for code!

• What is git?
• “a distributed version control system that tracks changes in any

set of computer files, usually used for coordinating work among
programmers who are collaboratively developing source code during
software development.” 2024-03-05

• Like “google docs” for collaborative code editing
• Originally authored by Linus Torvalds in 2005

• Why use git?
• Archives all (committed) code changes (cf. lab notebook)

• Track changes
• Cloud backup via github.com, unlike VS Live Share

Use in tandem: LS for concurrent work on a file; git to sync/backup
• Code review
• >90% of developers report it as their primary version control system

http://en.wikipedia.org/wiki/Git
https://github.com
https://visualstudio.microsoft.com/services/live-share
https://en.wikipedia.org/wiki/Git#Adoption

© J. Fessler, March 5, 2024, 22:05 (class version) 47

Powerful tools do have a learning curve

https://xkcd.com/1597

https://xkcd.com/1597

© J. Fessler, March 5, 2024, 22:05 (class version) 48

Recommendations

• All team members create (free) personal account at github.com

◦ Follow GitHub instructions
◦ Think professionally (future employers)

◦ Configure 2FA security
◦ Study GitHub’s Hello World tutorial

• One team member:

◦ Create private repo (code repository) for P3 at github.com
◦ Add group members
◦ Add JeffFessler and your lab instructor
◦ Peer instruction for using git please!

• An effective approach for teamwork is the github-flow process.

https://github.com
https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github
https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github#next-steps
https://github.com
https://docs.github.com/en/get-started/quickstart/github-flow

© J. Fessler, March 5, 2024, 22:05 (class version) 49

Interacting with git and GitHub

• VS Code includes native Git support with nice tutorials
• GitHub Desktop (free) app
• Shell commands

◦ git clone
◦ git branch
◦ git checkout
◦ git add
◦ git commit
◦ git push
◦ git pull

https://code.visualstudio.com/docs/editor/versioncontrol
https://desktop.github.com

© J. Fessler, March 5, 2024, 22:05 (class version) 50

Illustration

https://github.com/JeffFessler/Sound.jl/pull/3

https://github.com/JeffFessler/Sound.jl/pull/3

© J. Fessler, March 5, 2024, 22:05 (class version) 51

References

[1] D. Schneider. Water stats on tap. IEEE Spectrum, 52(12):22–23,
December 2015.

	Outline
	Past projects
	Part 1: Basic Synthesizer
	Part 2: Basic Transcriber
	Part 3: Transcriber approaches
	Autocorrelation method
	Demo
	HPS
	P3 tools
	Part 4: git

	fd@rm@2:
	fd@rm@1:
	fd@rm@0:

