
1

Image Compression

or
How to squeeze lots of pictures into an iPod

Jeffrey A. Fessler

EECS Department
The University of Michigan

Engin 110

2008-03-27

2

Cell Phones Everywhere

Notice anything funny about this picture?

3

What is Inside an iPod?

This talk concerns the invisible algorithms executing inside the chips,
within iPods, digital cameras, cell phones, ...

4

Digital Camera Basics

������������

������������

A/D

Digitizer

10010110

Light

A/D 11001001

.

.

.

SensorLensScene
Data
(Binary)

DIGITAL CAMERA BASICS

Key component: analog-to-digital converter

5

Analog-to-Digital (A/D) Conversion

Photo
Sensor Current

~ Linear Operating Range

0

~

Light

Light

Electrical

LSB

MSB

Binary Voltages

Representing 0 or 1

(High or Low)

Saturation

max
Current

Analog−to−Digital Conversion (A/D)

Q
U

A
N

T
IZ

E
R

(8 bit)

Key component: quantizer

6

Quantizer

1 0 0 1 1 0 0 1
MSB LSB

Least Significant Bit

Analog Signal

Digital Signal

8−bit Quantizer

27 26 25 24 23 22 21 20

These 8-bit binary values represent:

27 +24 +23 +20 = 128+16+8+1 = 153

Smallest 8-bit digital value = 0. Largest 8-bit digital value = ?

7

Quantization

1
2
3

0

.

.

.

255

.

min max

.
.

Analog Signal

Digital Signal

8

Digital Gray scale (B/W) Image

129 7 13 ...

1

2 1

253

250

... 2 200

252

251

0

1 0 0 0 0 0 10
0 0 0 0 0 1 1 1
0 10 0 0 1 1 0

0 0 0 0
1 1

0 0 1 0
0 0 1 0 0 0

.

.

.

Bright

Dark

(As Displayed) (As stored) ’’Raw"

bits stored = # pixels ·# bits per pixel (bpp)

9

Lots of Bits...

Example: 3000×3000 pixel array (“9 Megapixel camera”)
8-bit quantizer

total # of bits = 3000 ·3000 ·8
= 72 ·106 bits
≈ 9 MB

9MB for a grayscale image is undesirably large.
And for a RGB color image we would need 3× more.

10

Image Compression aka Image Coding

A subfield within the field of data compression aka source coding.
Other data compression problems: audio compression (MP3), text
compression (zip, ...)

Goal: reduce the # bits, while trying to preserve image quality.
◦ Lossless image coding: perfectly reversible
◦ Lossy image coding: recover an approximation

Why? For storage, transmission, ...

Concept:

original
bits → coder →

fewer
bits · · · → decoder →

original
bits → user

The coder and decoder (“codec”) are designed together.

Examples: MP3, JPEG, MPEG4, AVI, ...

Q: How low can we go (how few bits per pixel?)
A: Claude Shannon’s information theory

11

Basic Image Compression by Rounding Down

Suppose for each pixel we discard the two least significant bits (LSBs),
i.e., we set them to 0.

MSB 0/1 0/1 0/1 0/1 0/1 0/1 0 0 LSB

Possible gray scale values are multiples of 4:

00000000 = 0
00000100 = 4
00001000 = 8
00001100 = 12
00010000 = 16
... ...
11111100 = 252

No need to store the two least-significant bits,
so now only 6 bits per pixel are stored, instead of 8.
25% data compression.
What happens to image quality?

12

Quantization Error for Rounding Down

Setting the two LSBs to 0 reduces memory, but induces error:

0 4 8 12
0

4

8

12

original value

si
gn

al
 v

al
ue

 w
ith

 2
 L

S
B

 =
 0

 <− quantization error

Ideal
Two LSB = 0

13

Average Quantization Error for Rounding Down

For discarding 2 bits:

average error =
0+1+2+3

4
= 1.5 gray levels

For discarding d bits, where 0 ≤ d < 8:

average error =
0+1+2+ · · ·+2d−1

2d
=

2d −1
2

gray levels

As we discard more bits, the error increases.
Shannon called this the rate-distortion tradeoff.

Next we see what it looks like.

14

Original Image
Original: using all 8 bits per pixel

Average error: 0.00 gray levels
0

255

15

Compressed Image 1
Discarding 1 least significant bits

Average error: 0.50 gray levels
0

254

16

Compressed Image 2
Discarding 2 least significant bits

Average error: 1.49 gray levels
0

252

17

Compressed Image 3
Discarding 3 least significant bits

Average error: 3.48 gray levels
0

248

18

Compressed Image 4
Discarding 4 least significant bits

Average error: 7.79 gray levels
0

240

19

Compressed Image 5
Discarding 5 least significant bits

Average error: 14.61 gray levels
0

224

20

Compressed Image 6
Discarding 6 least significant bits

Average error: 31.09 gray levels
0

192

21

Compressed Image 7
Discarding 7 least significant bits

Average error: 42.44 gray levels
0

128

22

Rate-Distortion Tradeoff for Rounding Down

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

40

45

bits per pixel

av
er

ag
e

er
ro

r
[g

ra
y

le
ve

ls
]

Rate−Distortion Tradeoff for Rounding Down

Can we design a better image compression method?
(What does better mean?)

23

Mark Rothko’s “White and Black on Wine”

24

Jeff Fessler’s “With Apologies to Rothko”

This image has only four distinct gray levels: 15, 120, 180, 230.
How many bits per pixel are needed to encode it?

25

Coding an image with a few distinct gray levels

Reasonable binary code:

value code
15 00

120 01
180 10
230 11

With this code, only 2 bits per pixel are needed for this image.
(Plus a few bits overhead to store the code table for the decoder.)

Can we do even better?

26

Variable-Length Codes

So far we have been using fixed-length codes,
where every value is represented by the same number of bits.
(2 bits per value in preceding example.)

Consider (international) Morse Code (1840s):

A . -
B - . . .
C - . - .
D - . .
E .
F . . - .

G - - .
H
I . .
J . - - -
K - . -
L . - . .
M - -

N - .
O - - -
P . - - .
Q - - . -
R . - .
S . . .
T -

U . . -
V . . . -
W . - -
X - . . -
Y . - . -
Z - - . .

Why only a single “dot” for “E” ?

Idea of variable-length codes: use fewer bits
for values that occur more frequently.

27

Variable-Length Code: Example

15

230

180

120

Improved (variable-length) code:
value proportion code

15 9.8 % 0 1 1
120 47.5 % 1
180 30.5 % 0 0
230 12.2 % 0 1 0

How many bits per pixel on average are needed with this code?

0.098 ·3+0.475 ·1+0.305 ·2+0.122 ·3 = 1.745

Less than 2 bits per pixel! How is it stored?

This is a Huffman code (see Matlab’s huffmandict command).

Can we do even better?

28

Shannon’s Source Coding Theory

To encode numerous signal values that lie in a set with N elements
with proportions (probabilities) p1, p2, . . . , pN, on average we need at
least H bits per value, where H is the entropy:

H = −

N

∑
i=1

pn log2 pn.

Example: for our image with N = 4 gray levels, the entropy is:

H = −(p1 log2 p1 + · · ·+ p4 log2 p4)
= −(0.098log2 0.098+0.475log2 0.475

+0.305log2 0.305+0.122log2 0.122)
≈ 1.7313 bits per pixel

Our Huffman code came remarkably close to this lower limit.

This type of “theoretical bound” is very important for practical design.

29

More Complicated Images?

Original: using all 8 bits per pixel

Average error: 0.00 gray levels
0

255

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03
Histogram of Cameraman Image

pixel value

pr
op

or
tio

n
p

i

H = − Σ
i
 p

i
 log

2
 p

i
 = 7.01 bpp

This image’s pixel values also lie a finite set: 0,1,2, . . . ,255.
So Shannon’s entropy bound applies.
For this image, need at least 7.01 bits per pixel.
Can we do better?

30

Coding Pixel Relationships

So far we have coded the individual pixel values directly.
This does not give much data compression for most images.

For better image compression, we must consider the relationships
between pixel values.
For example, neighboring pixel values tend to be similar.

31

Coding Pixel Differences

Horizontal pixel differences

−255 0 255
0

0.05

0.1

0.15

0.2

pixel values in difference image

pr
op

or
tio

n

Histogram of Difference Image

H = − Σ
i
 p

i
 log

2
 p

i
 = 5.06 bpp

The horizontal difference image has pixel values that lie in a finite
set: −255,−254, . . . ,0, . . . ,255.
So Shannon’s entropy bound applies.
For this image, need at least 5.06 bits per pixel.

32

Modern Transform-Based Image Coding

• Capture pixel relationships using:
◦ discrete Cosine transform (JPEG)
◦ wavelet transform (JPEG 2000)

• Substantial compression by discarding small DCT coefficients
• Lossy vs lossless compression
• For video coding,

◦ use DCT within each frame
◦ and differences between frames

33

JPEG Image Compression and the DCT

DCT = discrete cosine transform
relative of the discrete Fourier transform (DFT)
practical thanks to the fast Fourier transform (FFT)
digital equivalent of an optical prism

34

Original Image
Original: using all 8 bits per pixel

35

JPEG Compressed Image 1: 100%
JPEG with 0.685 bits per pixel

Average error: 0.62 gray levels

36

JPEG Compressed Image 2: 95%
JPEG with 0.390 bits per pixel

Average error: 1.32 gray levels

37

JPEG Compressed Image 3: 80%
JPEG with 0.185 bits per pixel

Average error: 2.85 gray levels

38

JPEG Compressed Image 4: 25%
JPEG with 0.071 bits per pixel

Average error: 5.40 gray levels

39

JPEG Compressed Image 5: 5%
JPEG with 0.030 bits per pixel

Average error: 10.01 gray levels

40

JPEG Compressed Image 6: 1%
JPEG with 0.024 bits per pixel

Average error: 13.76 gray levels

41

Rate-Distortion Tradeoff for JPEG

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

bits per pixel

av
er

ag
e

er
ro

r
[g

ra
y

le
ve

ls
]

Rate−Distortion Tradeoff for JPEG

Recall that for compression by rounding,
at 1 bbp the average error was 40 gray levels.

42

Summary

• EEs are responsible for the principles that underly modern digital
audio and video
◦ both the devices / technologies (applied physics)
◦ and the algorithms that they execute (applied math)

• Data compression is a very active research area
• Other considerations in data compression

◦ complexity
◦ hardware implementations
◦ color
◦ progressive encoding
◦ ...

• To learn more about signals / systems / sampling / quantization:
◦ EECS 216, 401, 451, 452, 455 (design / implement)
◦ EECS 550, 551, 556, 650, 651, 750 (invent next generation)

