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Analysis of Passive Circuits by FT Methods
1st-order example

The following RC circuit is a classic 1st-order lowpass filter.
i(t) R

This document describes, by example, how to analyze passive circuits using Fourier transform methods, both “by hand” and by
using MATLAB. The methods applgenerallyto diffeq systems.

This 1st-order example is simple enough that both the time-domain and frequency-domain approaches have comparable effort. Bu
for more complicated (higher-order) systems, the frequency-domain method is often easier than solving diffeqs and/or convolution.
Therefore, this 1st-order example serves to illustrate the methods in the simplest possible setting.

The key FT properties used a@nvolution property, linearity , and (time-domainflifferentiation property .
¢ Find diffeq from circuit (210).
¢ Find frequency respondé (w)from circuit.
¢ Find frequency respondé (w)from diffeq.
¢ Find diffeq from frequency respongé(w).
¢ Find impulse respongie(t) from frequency responsé (w).
e Find step response froi (w).
¢ Find response to eternal sinusoid.
¢ Find response to causal sinusoid.
e Compute and plot all of the above usingAM.AB .

Find diffeq from circuit

By KCL and KVL:i(t) = CLy(t). z(t) = vr(t) + y(t) = Ri(t) + y(t) = RCLy(t) + y(2).
So we have derived the following diffeq by time-domain circuit analysis:
d

y(t) + RCd—y(t) = xz(t). (RC-1)

Find frequency responseH (w) from circuit
Basic idea: Sinc& (w) — | LTl H(w) | = Y (w) = H(w)X (w), we can rearrange above formula to §efw) = Y (w)/ X (w).
Treat the above circuit asveltage divider using complex impedances. Using KCL:

_Yw) X
@) = 7o) = Bt Zo@)

so cross dividing:

Y = Zow)  Juo 1

H(w) = = = = :
@ =¥ =R+ Zow) I FR 1+jwRC

(RC-2)

Find frequency responseH (w) from diffeq

Taking the FT of both sides of the diffeq above using linearity and differentiation property y¥(ds:+ RCjwY (w) = X (w).
Thus[1 + jwRC]Y (w) = X (w), so cross dividing yields

Y(w) 1

X(w) 1+jwRC’

H(w) =
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Find diffeq from frequency responseH (w)

Cross multiplying the above expression ff(w) = Y (w)/ X (w) yieldsY (w) + RCjwY (w) = X (w). Now take thenverseFT
of both sides using linearity and differentiation property to yield the diffeq:

y(t) + RCdiy(t) = xz(t).

Find impulse responseh(t) from frequency responseH (w)

Approaches to finding(t) from H(w):
e Use inverse FT integrah(t) = o= [% H(w)el*" dw.
e Use FT properties and FT tables.
e Forrational H (w) (ratios of polynomials iw) usepartial fraction expansions. (See Appendix of book.)

General idea. First note that
1 1/RC

H(w) = - .
() 1+ jwRC  jw+1/RC

Recall thate = u(t) PN jwl—i-a if real(a) > 0. SOH (w) is already in a form that can use that result. So by “table lookup:”

h(t) = R—lce_t/Rcu(t). (RC-3)

For higher-order systems, one usually needs PFE to simfl{fy) before taking the inverse FT to firid¢).

Find step response

Time-domain convolution approach
Useful if impulse responsk(t) is known and easily integrated.

u(t) — s s(t) = h(t) *u(t) = /_ t h(r)dr

Frequency-domain approach

Sinceu(t) PN U(w) = 7d(w) + ]% by the convolution property of the FT and the sampling proper$(bfthe FT of the step
response is

S(w) = Hw)U(w)=H(w) [W&(w) + ]iw] =71H(0)6(w) + ]%H(w)
— H) [w(w) 4 ]iw] + )~ HO) = HOU() + - [H() - HO),

where the second line is small simplifying trick. Taking the inverse FT we see that the general form of the step response is

1

s(t) = H(0)u(t) + z(t), where Z(w) = j—w[H(w) — H(0)].
To complete the analysis, we must fin@) from Z(w).
For our example, we hav# (0) = 1, so
1/ 1/RC
Zw)= - —L—— -1
(W) S (5 + l/RC > s=jw

Simplifying:

(e ) (e o
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(This step requires PFE for higher-order systems.) Thus
—1

7 =
@) = 1Re

so taking the inverse FT (by table lookup) we get the following (transient) response:

2(t) = —e /ECu(1).
Thus the system step response is:

s(t) = H(0)u(t) + z(t) = u(t) — e /B u(t). (RC-4)

To check this answer, we should be able to differentiate the step response and get back the impulse response. Applying the produ
rule and sampling property:
1

h(t) = Es(t) = (S(t) _ e_t/RC(S(t) _ %e—t/RCu(t)
= §(t) —e%(t) + R—lce_t/Rcu(t) — R_lce—t/RCu(t).

Find response to eternal sinusoid
Time domain approach: tedious convolution.

Frequency domain approach (derived using Fourier series):

2(t) = cos(wot + 0) — m — |H (wo)| cos(wot + 0 + ZH (wy)),

so in this particular example the response (t) = cos(wot + ) is

1 1
t) = | ——————— t+04+/——— = cos(wot + 0 — tan " woRC R RC-5
y(t) ‘1 + jwoRC COS(“’O 1 +]wORC> 1+ (woRC)2 (o 0RC) (RC-5)
since
1 1-— jCUORC 1-— jCUORC

“ =< =7 — /1 jwpRC = — tan wyRC.
1+ jwoRC (1 + jwoRC)(1 — jwoRC) 1+ (woRC)? Jwo an” wo

Find response to causal sinusoid
Time domain approach verytedious convolution (at least for higher-order systems).
Frequency domain approach

The response to agternalsinusoid is thesteady stateportion of the response to a causal sinuso@,z(t) = cos(wot)u(t). To
find the complete response teaa@usalsinusoid, we can work in the frequency domain, which usually by applying the PFE method.

Since

cos(wot + G)u(t) <7 Z[eP6(w — wp) + € IP8(w + wo)] + it C(‘;.Sw";; :’igin ¢
the response of an LTI system to a causal sinuséifi— cos(wot)u(t) is
V(o) = X(HE) = |F —u)+ 0 +un) + A | )
= SUHGL0w — o) + H(=jun)b + w0 + ooz H ()
= H(w0) 55w —wo) + e I%6(w + wo)] + (jw)i—iu%m)
= V)] | e — o) + €98 + )] 4 ZLEE IR 7
2) = A () — oy RS0 000 _ jo () o) s i)
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whereH (jwo) = | H(wo)|e??, and the last step is a simplifying trick. Thus
y(t) = |H(wo)| cos(wot + ¢) + 2(t),

where we must find(t) from the inverse FT of (w).

For our RC circuit,H(w) = 5555a, SO |H (wo)| = \/11+—2 whereq = woRC, and¢ = ZH(jwy) = —tan™ ¢ SOcos¢ =
q

L = —|H(wp)l|g. Thus

i

= | H (w)| and sosin ¢ = ——-L—

Z(w) = 1 [ Jw _Jw+ WOQ]
(jw)? +wi |1+ jwRC 1+ ¢2
L1 el (4 JeRC) (e + wed)
(w4 < (14 jwRCO)[1+¢?] >
_ 1 Jw + jwq? — jw — woq — (jw)?RC — jwRCwyq
(jw)? + wg < (14 jwRC)[1 + ¢?] >
1 —RC W + (jw)?]
(jw)? + wd <(1 + jwRC)[1 4+ (woRC)2]>

_ —RC _ ~1 1
(14 jwRC)[1+ (wRC)? \1+ (wRC)?) jw+1/RC’
(PFE is required here for higher-order systems.) Thus

-1

Z(t) = We_t/Rcu(t),
SO
y(t) = [H(wo)| cos(wot + ¢)u(t) — We—f/mum. (RC-6)

The first part is thesteady stateresponse, and the second part istila@sient response, whichetays away at a rate associated
with the time-constant of the RC circuit.
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| Using MaTLAB for diffeq analysis

A diffeq system (such as an RLC circuit)desmpletelyspecified by the coefficients of the diffeq. For such systemsiiMB has
built-in commands for the following calculations.
o freqs(b,a)
Plot the frequency respong&(w)(magnitude and phase)
e sys = tf(b,a); h = impulse(sys, t)
Determine the impulse responsg).
esys = tf(b,a); y = Isim(sys, x, t)
Determine the respongét) to an input signak(t).
e residue(b,a)
Perform partial fraction expansion of the ratio of two polynomia(s)/A(s).

We illustrateeach of these examples with complete self-containeaiMs commands, assuming thRC' = 0.5 sec throughout.
For this choice, the diffeq (RC-1) can be written:

(t) + d
a ajl—
0Y 1dty
wherea; = 0.5, a9 = 1, andby = 1. To use these values in AtLAB, we construct coefficient arrays descendingrder of
derivativesj.e. [ay an—1 ... ag] and[bas basr—1 ... bol. If any of the coefficients are zero, then one must include those zeros in
the coefficient array in MTLAB.

(t) = bom(t) )

MATLAB plot of the frequency responseH (w)

Here is how to plot magnitude and phase response over the ran
0 to 10Hz (on a linear scale) usingAviLAB's freqs command.
Note that thdreqs command expects radians/sec, not Hz, as 1

Yere is the figure produced by the preceding code.

Magnitude response of RC circuit

units of the 3rd argument. RC=05

a = [0.5 1] 50.5

b = [1]; =

f = linspace(0, 10, 100);

H = fregs(b, a, 2*pi*f); % > " A s 10
clf, subplot(211), plot(f, abs(H)) Phase respohta 0t RC circuit

xlabel('f [Hz]), ylabelC|H(2\pi f)|) 0 . . .

titte('Magnitude response of RC circuit’) 0s

text(8, 0.8, sprintf(RC=%g’, a(1))) =)

subplot(212) T

plot(f, angle(H)) st

xlabel('f [Hz]), ylabel(\angle H(2\pi f)’) . . . .
titte(Phase response of RC circuit’) % 2 4 6 8 10

print(‘'fig_rc_mag’, '-deps’) f[Hz]
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MATLAB plot of the impulse responseh(t)

Here is the figure produced by the preceding code.

The following code plots the impulse resporisg) over the time __Impulse response of RE cireut
interval 0 to 5 seconds. All diffeq systems are causal (provided

N, which always occurs for real systems like RLC circuits), so w
only need to plot(t) for ¢t > 0.

a = [0.5 1]

b = [1];

t = linspace(0, 5, 100);
sys = tf(b,a);

h = impulse(sys, t);
clf, plot(t, h)

xlabel('t"), ylabel(h(t)")
title(Impulse response of RC circuit’)
print(fig_rc_h’, '-deps’)
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MATLAB plot of the responsey(t) to a causal signalz(t)

Thelsim command simulates the diffeq to compute the respg(¥9eo a user-supplied (causal) input signél). Since MATLAB

can only handle arrays (not true continuous-time signals), the user must supply matlab with an eftaye sample points,

t = [to, t1,...], and a corresponding array of input signal values= [z(to), x(t1), ...]. To determine the output signal,
MATLAB must interpolate between the supplied input signal samples, so the sampling interval should be small enough to capture
the details of the input signal.

The following example uses theim command to compute the responge) to the input signal:(t) = cos(3t)u(t) over the
interval 0 to 4 seconds. Three signals are plotted: the analytical output signal (RGB)a®Ms numerical result, and finally the
steady-state response (RC-5).

rc = 0.5;

a = [rc 1];

b = [1];

t = linspace(0, 4, 100);
om0 = 3;

x = cos(omQ * t);

sys = tf(b,a);

ymat = Isim(sys, X, t); % numerical convolution

% analytical formula
HO =1/ (1 + j*omO*rc);
yt = abs(HO) * cos(om0O*t + angle(HO0)) - 1/(1 + (omO*rc)"2) * exp(-t/rc);

% steady state

yss = abs(HO) * cos(omO*t + angle(HO));

clf, plot(t, ymat, -, t, yt, =, t, yss, ")

xlabel('t [sec]), ylabel('y(t)")

legend(’y(t) Matlab’, 'y(t) analytical’, 'steady state’)
titte(Response to various sinusoids’)
print(‘fig_rc_cos’, '-deps’)

Here is the figure produced by the preceding code. The analytical result (RC-6) and the simulated dsiput afe indistin-
guishable. The respongét) settles into steady state by about 2 secondsabout 4 time constants.

Response to various sinusoids
0.6 T T T

— y(t) Matlab
--- y(t) analytical

0.4f }
‘ steady state

-0.61

-0.8
0
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Response to input signal with rational FT
jw+3

———— Then
(oo + 3)2 + 57

Suppose we want to find the response to the input sigtal= e~ cos(5t)u(t), which has FTX (w) =
by the convolution property of the FT:

Y(w):H(w)X(w):< 1/RC > s+3

s+1/RC) (s+3)? +5%|,_,,
To find y(¢), we must first expan® (w) using PFE. We do this for RC=0.5:
2 s+ 3 _ 25+ 6 _ 25+ 6
s+2) (s4+3)2452  (s+2)[(s+3)2+52 s34 852+ 465+ 68

MATLAB'S residue  command will automatically find the poles (roots of denominator) and residues (numerators) for this poly-
nomial. The following commands:

b =1[2 6]

a =[1 8 46 68]

[r,p,k] = residue(b,a)
returns the following output:

r =
-0.0385 - 0.1923i
-0.0385 + 0.1923i
0.0769

p =

-3.0000 + 5.0000i
-3.0000 - 5.0000i
-2.0000

k =

I

The p’s and r's come in pairs, each copending to a single term in the PFE as follows:

—0.0385 — j0.1923  —0.0385 + j0.1923  0.0769
s — (—=3.0000+j5) ' s —(—3.0000—j5) ' s—(=2)|,_,,°

Y(w) =

Typingabs(r(1)), angle(r(1)) yields0.1961, -1.7682 ,sor; = 0.1961e~71-7682 Taking the inverse FT yields:

0.1961e 7 1-7682(=3+75)ty, (1) 4 0.1961e7 1 7682e(=3 =750t (¢) + 0.0769e > u(t)
0.3922¢ 3 cos (5t — 1.7682)u(t) + 0.0769e 2 u(t).

y(t)

The first term is théorced response and the second term is tkransient response



