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Analysis of Passive Circuits by FT Methods
1st-order example

The following RC circuit is a classic 1st-order lowpass filter.
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This document describes, by example, how to analyze passive circuits using Fourier transform methods, both “by hand” and by
using MATLAB . The methods applygenerallyto diffeq systems.

This 1st-order example is simple enough that both the time-domain and frequency-domain approaches have comparable effort. But
for more complicated (higher-order) systems, the frequency-domain method is often easier than solving diffeqs and/or convolution.
Therefore, this 1st-order example serves to illustrate the methods in the simplest possible setting.

The key FT properties used are:convolution property, linearity , and (time-domain)differentiation property .
• Find diffeq from circuit (210).
• Find frequency responseH(ω)from circuit.
• Find frequency responseH(ω)from diffeq.
• Find diffeq from frequency responseH(ω).
• Find impulse responseh(t) from frequency responseH(ω).
• Find step response fromH(ω).
• Find response to eternal sinusoid.
• Find response to causal sinusoid.
• Compute and plot all of the above using MATLAB .

Find diffeq from circuit

By KCL and KVL: i(t) = C ddty(t). x(t) = vR(t) + y(t) = Ri(t) + y(t) = RC
d
dty(t) + y(t).

So we have derived the following diffeq by time-domain circuit analysis:

y(t) + RC
d

dt
y(t) = x(t). (RC-1)

Find frequency responseH(ω) from circuit

Basic idea: SinceX(ω) → LTI H(ω) → Y (ω) = H(ω)X(ω), we can rearrange above formula to getH(ω) = Y (ω)/X(ω).

Treat the above circuit as avoltage divider using complex impedances. Using KCL:

I(ω) =
Y (ω)

ZC (ω)
=

X(ω)

R+ ZC(ω)

so cross dividing:

H(ω) =
Y (ω)

X(ω)
=

ZC (ω)

R+ ZC(ω)
=

1
jωC

1
jωC + R

=
1

1 + jωRC
. (RC-2)

Find frequency responseH(ω) from diffeq

Taking the FT of both sides of the diffeq above using linearity and differentiation property yields:Y (ω) + RCjωY (ω) = X(ω).
Thus[1 + jωRC]Y (ω) = X(ω), so cross dividing yields

H(ω) =
Y (ω)

X(ω)
=

1

1 + jωRC
.
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Find diffeq from frequency responseH(ω)

Cross multiplying the above expression forH(ω) = Y (ω)/X(ω) yieldsY (ω) + RCjωY (ω) = X(ω). Now take theinverseFT
of both sides using linearity and differentiation property to yield the diffeq:

y(t) + RC
d

dt
y(t) = x(t).

Find impulse responseh(t) from frequency responseH(ω)

Approaches to findingh(t) fromH(ω):
• Use inverse FT integral:h(t) = 1

2π

∫∞
−∞H(ω)e

jωt dω.
• Use FT properties and FT tables.
• For rationalH(ω) (ratios of polynomials injω) usepartial fraction expansions. (See Appendix of book.)

General idea. First note that

H(ω) =
1

1 + jωRC
=

1/RC

jω + 1/RC
.

Recall thate−atu(t)
F
←→ 1

jω+a if real(a) > 0. SoH(ω) is already in a form that can use that result. So by “table lookup:”

h(t) =
1

RC
e−t/RCu(t). (RC-3)

For higher-order systems, one usually needs PFE to simplifyH(ω) before taking the inverse FT to findh(t).

Find step response

Time-domain convolution approach
Useful if impulse responseh(t) is known and easily integrated.

u(t)→ h(t) → s(t) = h(t) ∗ u(t) =

∫ t
−∞
h(τ ) dτ

Frequency-domain approach

Sinceu(t) F
←→ U(ω) = πδ(ω) + 1

jω
, by the convolution property of the FT and the sampling property ofδ(), the FT of the step

response is

S(ω) = H(ω)U(ω) = H(ω)

[
πδ(ω) +

1

jω

]
= πH(0)δ(ω) +

1

jω
H(ω)

= H(0)

[
πδ(ω) +

1

jω

]
+
1

jω
[H(ω)−H(0)] = H(0)U(ω) +

1

jω
[H(ω) −H(0)],

where the second line is small simplifying trick. Taking the inverse FT we see that the general form of the step response is

s(t) = H(0)u(t) + z(t), where Z(ω) =
1

jω
[H(ω)−H(0)].

To complete the analysis, we must findz(t) fromZ(ω).

For our example, we haveH(0) = 1, so

Z(ω) =
1

s

(
1/RC

s+ 1/RC
− 1

)∣∣∣∣
s=jω

.

Simplifying:
1

s

(
1/RC

s+ 1/RC
− 1

)
=
1

s

(
1/RC − (s+ 1/RC)

s+ 1/RC

)
=

−1

s+ 1/RC
.
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(This step requires PFE for higher-order systems.) Thus

Z(ω) =
−1

jω + 1/RC
,

so taking the inverse FT (by table lookup) we get the following (transient) response:

z(t) = −e−t/RCu(t).

Thus the system step response is:
s(t) = H(0)u(t) + z(t) = u(t)− e−t/RCu(t). (RC-4)

To check this answer, we should be able to differentiate the step response and get back the impulse response. Applying the product
rule and sampling property:

h(t) =
d

dt
s(t) = δ(t) −

[
e−t/RCδ(t)−

1

RC
e−t/RCu(t)

]

= δ(t) − e0δ(t) +
1

RC
e−t/RCu(t) =

1

RC
e−t/RCu(t).

Find response to eternal sinusoid

Time domain approach: tedious convolution.

Frequency domain approach (derived using Fourier series):

x(t) = cos(ω0t+ θ)→ LTI H(ω) → |H(ω0)| cos(ω0t+ θ +\H(ω0)),

so in this particular example the response tox(t) = cos(ω0t+ θ) is

y(t) =

∣∣∣∣ 1

1 + jω0RC

∣∣∣∣ cos
(
ω0t + θ + \

1

1 + jω0RC

)
=

1√
1 + (ω0RC)2

cos
(
ω0t+ θ − tan

−1 ω0RC
)
, (RC-5)

since

\
1

1 + jω0RC
= \

1− jω0RC

(1 + jω0RC)(1− jω0RC)
= \

1− jω0RC

1 + (ω0RC)2
= \1− jω0RC = − tan

−1 ω0RC.

Find response to causal sinusoid

Time domain approach: very tedious convolution (at least for higher-order systems).

Frequency domain approach

The response to aneternalsinusoid is thesteady stateportion of the response to a causal sinusoid,i.e. x(t) = cos(ω0t)u(t). To
find the complete response to acausalsinusoid, we can work in the frequency domain, which usually by applying the PFE method.

Since

cos(ω0t+ φ)u(t)
F
←→

π

2
[ejφδ(ω − ω0) + e

−jφδ(ω + ω0)] +
jω cos φ− ω0 sinφ

(jω)2 + ω20
,

the response of an LTI system to a causal sinusoidx(t) = cos(ω0t)u(t) is

Y (ω) = X(ω)H(ω) =

[
π

2
[δ(ω − ω0) + δ(ω + ω0)] +

jω

(jω)2 + ω20

]
H(ω)

=
π

2
[H(jω0)δ(ω − ω0) +H(−jω0)δ(ω + ω0)] +

jω

(jω)2 + ω20
H(ω)

= |H(ω0)|
π

2
[ejφδ(ω − ω0) + e

−jφδ(ω + ω0)] +
jω

(jω)2 + ω20
H(ω)

= |H(ω0)|

[
π

2
[ejφδ(ω − ω0) + e

−jφδ(ω + ω0)] +
jω cos φ− ω0 sinφ

(jω)2 + ω20

]
+ Z(ω)

Z(ω) =
jω

(jω)2 + ω20
H(ω) − |H(ω0)|

jω cosφ− ω0 sinφ

(jω)2 + ω20
=
jωH(ω) − |H(ω0)|[jω cos φ− ω0 sinφ]

(jω)2 + ω20
,
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whereH(jω0) = |H(ω0)|ejφ, and the last step is a simplifying trick. Thus

y(t) = |H(ω0)| cos(ω0t+ φ) + z(t),

where we must findz(t) from the inverse FT ofZ(ω).

For our RC circuit,H(ω) = 1
1+jωRC , so |H(ω0)| = 1√

1+q2
whereq = ω0RC, andφ = \H(jω0) = − tan

−1 q so cosφ =

1√
1+q2

= |H(ω0)| and sosinφ = − q√
1+q2

= −|H(ω0)|q. Thus

Z(ω) =
1

(jω)2 + ω20

[
jω

1 + jωRC
−
jω + ω0q

1 + q2

]

=
1

(jω)2 + ω20

(
jω[1 + q2]− (1 + jωRC)(jω + ω0q)

(1 + jωRC)[1 + q2]

)

=
1

(jω)2 + ω20

(
jω + jωq2 − jω − ω0q − (jω)2RC − jωRCω0q

(1 + jωRC)[1 + q2]

)

=
1

(jω)2 + ω20

(
−RC[ω20 + (jω)

2 ]

(1 + jωRC)[1 + (ω0RC)2]

)

=
−RC

(1 + jωRC)[1 + (ω0RC)2]
=

(
−1

1 + (ω0RC)2

)
1

jω + 1/RC
.

(PFE is required here for higher-order systems.) Thus

z(t) =
−1

1 + (ω0RC)2
e−t/RCu(t),

so

y(t) = |H(ω0)| cos(ω0t+ φ)u(t)−
1

1 + (ω0RC)2
e−t/RCu(t). (RC-6)

The first part is thesteady stateresponse, and the second part is thetransient response, which decays away at a rate associated
with the time-constant of the RC circuit.
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Using MATLAB for diffeq analysis

A diffeq system (such as an RLC circuit) iscompletelyspecified by the coefficients of the diffeq. For such systems, MATLAB has
built-in commands for the following calculations.
• freqs(b,a)

Plot the frequency responseH(ω)(magnitude and phase)
• sys = tf(b,a); h = impulse(sys, t)

Determine the impulse responseh(t).
• sys = tf(b,a); y = lsim(sys, x, t)

Determine the responsey(t) to an input signalx(t).
• residue(b,a)

Perform partial fraction expansion of the ratio of two polynomialsB(s)/A(s).

We illustrateeach of these examples with complete self-contained MATLAB commands, assuming thatRC = 0.5 sec throughout.
For this choice, the diffeq (RC-1) can be written:

a0y(t) + a1
d

dt
y(t) = b0x(t),

wherea1 = 0.5, a0 = 1, andb0 = 1. To use these values in MATLAB , we construct coefficient arrays indescendingorder of
derivatives,i.e. [aN aN−1 . . . a0] and[bM bM−1 . . . b0]. If any of the coefficients are zero, then one must include those zeros in
the coefficient array in MATLAB .

M ATLAB plot of the frequency responseH(ω)

Here is how to plot magnitude and phase response over the range
0 to 10Hz (on a linear scale) using MATLAB ’s freqs command.
Note that thefreqs command expects radians/sec, not Hz, as the
units of the 3rd argument.

a = [0.5 1];
b = [1];
f = linspace(0, 10, 100);
H = freqs(b, a, 2*pi*f);
clf, subplot(211), plot(f, abs(H))
xlabel(’f [Hz]’), ylabel(’|H(2\pi f)|’)
title(’Magnitude response of RC circuit’)
text(8, 0.8, sprintf(’RC=%g’, a(1)))
subplot(212)
plot(f, angle(H))
xlabel(’f [Hz]’), ylabel(’\angle H(2\pi f)’)
title(’Phase response of RC circuit’)
print(’fig_rc_mag’, ’-deps’)

Here is the figure produced by the preceding code.

0 2 4 6 8 10
0

0.5

1

f [Hz]

|H
(2

π 
f)

|

Magnitude response of RC circuit

RC=0.5

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

f [Hz]

∠
 H

(2
π 

f)

Phase response of RC circuit



J. Fessler, November 8, 1999, 13:15 RC.6

M ATLAB plot of the impulse responseh(t)

The following code plots the impulse responseh(t) over the time
interval 0 to 5 seconds. All diffeq systems are causal (providedM ≤
N , which always occurs for real systems like RLC circuits), so we
only need to ploth(t) for t > 0.

a = [0.5 1];
b = [1];
t = linspace(0, 5, 100);
sys = tf(b,a);
h = impulse(sys, t);
clf, plot(t, h)
xlabel(’t’), ylabel(’h(t)’)
title(’Impulse response of RC circuit’)
print(’fig_rc_h’, ’-deps’)

Here is the figure produced by the preceding code.
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M ATLAB plot of the responsey(t) to a causal signalx(t)

Thelsim command simulates the diffeq to compute the responsey(t) to a user-supplied (causal) input signalx(t). Since MATLAB

can only handle arrays (not true continuous-time signals), the user must supply matlab with an arrayt of time sample points,
t = [t0, t1, . . .], and a corresponding array of input signal valuesx = [x(t0), x(t1), . . .]. To determine the output signal,
MATLAB must interpolate between the supplied input signal samples, so the sampling interval should be small enough to capture
the details of the input signal.

The following example uses thelsim command to compute the responsey(t) to the input signalx(t) = cos(3t)u(t) over the
interval 0 to 4 seconds. Three signals are plotted: the analytical output signal (RC-6), MATLAB ’s numerical result, and finally the
steady-state response (RC-5).

rc = 0.5;
a = [rc 1];
b = [1];
t = linspace(0, 4, 100);
om0 = 3;
x = cos(om0 * t);
sys = tf(b,a);
ymat = lsim(sys, x, t); % numerical convolution

% analytical formula
H0 = 1 / (1 + j*om0*rc);
yt = abs(H0) * cos(om0*t + angle(H0)) - 1/(1 + (om0*rc)ˆ2) * exp(-t/rc);

% steady state
yss = abs(H0) * cos(om0*t + angle(H0));

clf, plot(t, ymat, ’-’, t, yt, ’--’, t, yss, ’:’)
xlabel(’t [sec]’), ylabel(’y(t)’)
legend(’y(t) Matlab’, ’y(t) analytical’, ’steady state’)
title(’Response to various sinusoids’)
print(’fig_rc_cos’, ’-deps’)

Here is the figure produced by the preceding code. The analytical result (RC-6) and the simulated output oflsim are indistin-
guishable. The responsey(t) settles into steady state by about 2 seconds,i.e. about 4 time constants.
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Response to input signal with rational FT

Suppose we want to find the response to the input signalx(t) = e−3 cos(5t)u(t), which has FTX(ω) =
jω + 3

(jω + 3)2 + 52
. Then

by the convolution property of the FT:

Y (ω) = H(ω)X(ω) =

(
1/RC

s+ 1/RC

)
s+ 3

(s+ 3)2 + 52

∣∣∣∣
s=jω

.

To findy(t), we must first expandY (ω) using PFE. We do this for RC=0.5:

(
2

s+ 2

)
s+ 3

(s+ 3)2 + 52
=

2s+ 6

(s+ 2)[(s+ 3)2 + 52]
=

2s+ 6

s3 + 8s2 + 46s+ 68
.

MATLAB ’s residue command will automatically find the poles (roots of denominator) and residues (numerators) for this poly-
nomial. The following commands:

b = [2 6]
a = [1 8 46 68]
[r,p,k] = residue(b,a)

returns the following output:

r =
-0.0385 - 0.1923i
-0.0385 + 0.1923i
0.0769
p =
-3.0000 + 5.0000i
-3.0000 - 5.0000i
-2.0000
k =
[]

The p’s and r’s come in pairs, each corresponding to a single term in the PFE as follows:

Y (ω) =
−0.0385− j0.1923

s− (−3.0000 + j5)
+
−0.0385 + j0.1923

s− (−3.0000− j5)
+
0.0769

s− (−2)

∣∣∣∣
s=jω

.

Typingabs(r(1)), angle(r(1)) yields0.1961, -1.7682 , sor1 = 0.1961e−j1.7682. Taking the inverse FT yields:

y(t) = 0.1961e−j1.7682e(−3+j5)tu(t) + 0.1961ej1.7682e(−3−j5)tu(t) + 0.0769e−2tu(t)

= 0.3922e−3t cos(5t− 1.7682)u(t) + 0.0769e−2tu(t).

The first term is theforced response, and the second term is thetransient response.


