Signals and Systems: Summary 1
 November 16, 1999, 15:24
 J. Fessler

Circuits: $v(t)=R i(t), v(t)=L \frac{d}{d t} i(t), i(t)=C \frac{d}{d t} v(t)$
Notation: $x(t)=\left\{\begin{array}{ll}e^{-t}, & t>2, \\ 0, & \text { otherwise }\end{array}=e^{-t} u(t-2)\right.$
Time transformation: $x\left(\frac{t-t_{0}}{w}\right)$.
First scale according to w, then shift according to t_{0}.
Integrator system $y(t)=\int_{-\infty}^{t} x(\tau) d \tau=x(t) * u(t)$
Even symmetry: $x(-t)=x(t)$
Odd symmetry: $x(-t)=-x(t)$
$\operatorname{Ev}\{x(t)\}=\frac{1}{2}(x(t)+x(-t))$
$\operatorname{Od}\{x(t)\}=\frac{1}{2}(x(t)-x(-t))$
$x(t)=\operatorname{Ev}\{x(t)\}+\operatorname{Od}\{x(t)\}$.

Average value: $A \triangleq \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x(t) d t$
Energy: $E \triangleq \int_{-\infty}^{\infty}|x(t)|^{2} d t$
Average power: $P \triangleq \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|x(t)|^{2} d t$
Energy signal: $E<\infty, P=0$.
Power signal: $E=\infty, 0<P<\infty$.
Power of periodic signal: $P=\frac{1}{T_{0}} \int_{0}^{T_{0}}|x(t)|^{2} d t$

Step function: $u(t)=1$ for $t>0$.
Rect function: $\operatorname{rect}(t)=1$ for $-1 / 2<t<1 / 2$
$\operatorname{rect}(t)=u(t+1 / 2)-u(t-1 / 2)=$
Impulse functions

- Sifting property:
$\int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) d t=x\left(t_{0}\right)$ if $x(t)$ is continuous at t_{0}
- Sampling property: $x(t) \delta\left(t-t_{0}\right)=x\left(t_{0}\right) \delta\left(t-t_{0}\right)$ if $x(t)$ is continuous at t_{0}
- unit area property: $\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) d t=1$ for any t_{0}
- scaling property: $\delta(a t+b)=\frac{1}{|a|} \delta(t+b / a)$ for $a \neq 0$.
- symmetry property: $\delta(t)=\delta(-t)$
- support property: $\delta\left(t-t_{0}\right)=0$ for $t \neq t_{0}$
- relationships with unit step function: $\delta(t)=\frac{d}{d t} u(t), u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau$

Continuous-time system properties

- Stability (BIBO):
all bounded input signals produce bounded output signals
- Invertibility:
each output signal is the response to only one input signal
- Causal: output signal value $y(t)$ at any time t depends only on present and past input signal values.
- Static (memoryless): output at any time only depends on input signal at the same time. (otherwise dynamic)
- Time invariant: $x(t) \xrightarrow{\mathcal{T}} y(t) \quad$ implies that $x\left(t-t_{0}\right) \xrightarrow{\mathcal{T}} y\left(t-t_{0}\right)$

Linear systems:

- superposition property:
$\mathcal{T}\left[\sum_{k} a_{k} x_{k}(t)\right]=\sum_{k} a_{k} \mathcal{T}\left[x_{k}(t)\right]$
- additivity property:
$\mathcal{T}\left[x_{1}(t)+x_{2}(t)\right]=\mathcal{T}\left[x_{1}(t)\right]+\mathcal{T}\left[x_{2}(t)\right]$
- scaling property: $\mathcal{T}[a x(t)]=a \mathcal{T}[x(t)]$

LTI systems

input-output relationship described by convolution integral:

$$
y(t)=\int_{-\infty}^{\infty} x(t-\tau) h(\tau) d \tau=\int_{-\infty}^{\infty} h(t-\tau) x(\tau) d \tau
$$

Properties:

- Commutative property: $x(t) * h(t)=h(t) * x(t)$
- Associative property:
$\left[x(t) * h_{1}(t)\right] * h_{2}(t)=x(t) *\left[h_{1}(t) * h_{2}(t)\right]$
- Distributive property:
$x(t) *\left[h_{1}(t)+h_{2}(t)\right]=\left[x(t) * h_{1}(t)\right]+\left[x(t) * h_{2}(t)\right]$
- The order of serial connection of LTI systems does not affect the overall impulse response.
- $x(t) * \delta(t)=x(t)$
- Delay property: $x(t) * \delta\left(t-t_{0}\right)=x\left(t-t_{0}\right)$
- $\delta\left(t-t_{0}\right) * \delta\left(t-t_{1}\right)=\delta\left(t-t_{0}-t_{1}\right)$
- Time-invariance: If $y(t)=x(t) * h(t)$, then $x\left(t-t_{0}\right) * h\left(t-t_{1}\right)=y\left(t-t_{0}-t_{1}\right)$

LTI system properties

- causal: $h(t)=0$ for all $t<0$
- static: $h(t)=k \delta(t)$, otherwise dynamic
- stable: $\int_{-\infty}^{\infty}|h(t)| d t<\infty$
- invertible: $h(t) * h_{i}(t)=\delta(t)$ for some $h_{i}(t)$

If $h(t) * x(t)=0$ for some nonzero signal $x(t)$, then not invertible

- step response: $h(t)=\frac{d}{d t} s(t)$, where $u(t) \xrightarrow{\text { LTI }} s(t)$

Linear, constant coefficient, differential equation systems

- LTI, causal, dynamic unless $N=M=0$
- homogenous solution, natural response:
$y_{h}(t)=\sum_{l} C_{l} e^{s_{l} t}$, where s_{l} 's are the N roots of the characteristic polynomial $\sum_{k=0}^{N} a_{k} s^{k}=0$.
- particular solution, forced response:

$$
y_{p}(t)=P_{0} x(t)+P_{1} \frac{d}{d t} x(t)+\cdots
$$

