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Examples of EECS 401 Prerequisite Material (Not Necessarily Completely Inclusive)

Differentiation from First Principles

d

dx
f(x) = lim

δ↘0+

f(x+ δ)− f(x)

δ
= lim
δ↘0+

f(x)− f(x− δ)

δ
, if f(·) is continuous atx and the limits are equal,

whereδ ↘ 0+ meansδ approaches 0 from the right (positiveδ)

Riemann Integration
If f is a continuous function on[a, b], then

∫ b
a

f(x) dx = lim
n→∞

a− b

n

n∑
i=1

f

(
a+
i

n
(b − a)

)
.

Similarly, if δ is small, then ∫ a+δ
a

f(x) dx ≈ δ · f(a).

Multivariate Integration (Especially Double Integration Limits)

If A = {(x, y) : x2 + y2 ≤ 2, x ≥ 0, y ≥ 1}, then

∫∫
A

xy dxdy =

∫ √2
1

∫ √2−y2
0

xy dxdy =

∫ √2
1

1

2
(2 − y2)y dy =

1

2
(y2 −

1

4
y4)

∣∣∣∣
√
2

1

=
1

2
(2− 1)−

1

2
(1−

1

4
) = 1/8

Simple Matrix Inversion [
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
if ad 6= bc

Leibniz’s Rule

If G(x) =
∫ b(x)
a(x)

h(x, y) dy then
d

dx
G(x) = h(x, b(x))

d

dx
b(x)− h(x, a(x))

d

dx
a(x) +

∫ b(x)
a(x)

∂

∂x
h(x, y) dy

Geometric Series
n∑
i=0

an =
1− an+1

1− a
, if a 6= 1;

∞∑
i=0

an =
1

1− a
, if |a| < 1

Proof:S = a0 + a1 + · · ·+ an soaS = a1 + a2 + · · ·+ an+1 so(1− a)S = S − aS = a0 − an+1.
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Fourier Transform
If h(t) = e−atu(t), for a > 0, then

H(ω) =

∫ ∞
−∞
h(t)e−jωt dt =

∫ ∞
0

e−ate−jωt dt =

∫ ∞
0

e−(a+jω)t dt =
−1

a+ jω
e−(a+jω)t

∣∣∣∣
∞

0

=
1

a+ jω

Discrete-Time Fourier Transform (DTFT)
If hk = a|k|, for |a| < 1, then

H(ω) =

∞∑
k=−∞

hke
−jωk =

∞∑
k=−∞

a|k|e−jωk =

−1∑
k=−∞

a−ke−jωk +

∞∑
k=0

ake−jωk =

∞∑
k=1

(aejω)k +

∞∑
k=0

(ae−jω)k

=
aejω

1− aejω
+

1

1− ae−jω
=

1− a2

1− 2a cosω + a2

Convolution: Continuous Time
If h(t) = e−atu(t), for a > 0, andx(t) = e−btu(t), for b > 0, then

y(t) = (h ? x)(t) =

∫ ∞
−∞
h(t− τ)x(τ) dτ =

∫ ∞
−∞
e−a(t−τ)e−bτu(t− τ)u(τ) dτ =

(∫ t
0

e−a(t−τ)e−bτ dτ

)
u(t)

= e−at
(∫ t
0

e−(b−a)τ dτ

)
u(t) = e−at

(
−1

b− a
e−(b−a)τ

∣∣∣∣
t

0

)
u(t) =

e−at − e−bt

b− a
u(t)

Convolution: Discrete Time
If hk = 2δk − δk−1 andgk = δk + δk+1, thenhk ? gk =

∑∞
j=−∞ hjgk−j = 2δk+1 + δk − δk−1.
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Ch. 2 Basic Concepts of Probability

Conceptual Framework
Every discipline has one.
Circuits: impedanceless resistors, resistanceless capacitors, ...
Linear Systems: impulse or delta functions, infinite duration sinusoids, ...
Abstractions + Math→ Predictions (often agree with physical experiments despite simplifications) if not, the problem is abstrac-
tions (assumptions), not math (if done right)
Probability theory is math

Terminology

Random Experiment or Chance Experiment
A random phenomena (or experiment) having a known set of possibleoutcomes, for which the particular outcome on a giventrial
is unpredictable, and that can be (conceptually) repeated arbitrarily often under (essentially) identical circumstances.

Examples: roll a dice, disk controller receiving instruction to access a particular sector

A trial is a single instance of an experiment.
Repeated trialsare multiple instances under identical conditions.

Result of an experiment is called theoutcomeor sample point, denotedζ (zeta) by text. (I will uses).

The set of all possible outcomes is theuniversal setor (only universal in the context of this experiment) orsample space, and is
denoted S.

Example: Coin Toss
S ={H,T}
S ={H,T,edge}
S ={H,T,edge,vaporized by meteor}

Probability theory is self-consistent for any of the above choices; whether the theory predicts reality depends on whether an
appropriate choice is made.

Example: Toss 2 Die
S ={(1,1), (1,2), (2,1), . . . , (6,6)}

Example: Number of hairs on 34th birthday
S ={0,1,2,. . .}

Example: AC Voltage at random time instant
S = [−120

√
2, 120

√
2]
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Often we are more interested in aggregate phenomena, such as winning a game of poker, than about the specific outcome (exactly
which hand).

Event
An event is a collection (set) of outcomes.
A simple eventor elementary eventis a set consisting of a single outcome, e.g. A ={H} in coin toss experiment.
A compound eventis a set consisting of more than one outcome.

Example: Single Die
Sample space: S ={1,2,. . . ,6}
Event “even face” isA = {2, 4, 6}. NoteA ⊆ S

Example: Toss 3 Coins
Sample space: S ={HHH,HHT,HTH,. . . ,TTT}Q?: size =23

Event “two heads” isA = {HHT,HTH,THH}

Example: AC Voltage and Heart Attack (e.g. if voltage exceeds 100V)
A = [−120

√
2,−100) ∪ (100, 120

√
2]

Unfortunately, for uncountable sample spaces, notall subsets of S can be called events for a rigorous and self-consistent probability
theory. Fortunately, all subsets ofpractical interest can be called events, so we won’t worry about this in EECS 401.)

Clearly, to describe events we needset theory.
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Probabilities are numbers we assign toevents that indicate how “likely” it is that the events will occur when performing an
experiment.

To be useful in practice, probabilities should agree with the “relative frequency” concept.

Experiment: roll fair die. Event: A ={Roll 5}

Then for a “large” number of trialsN we would hope that however we defineP (A) it would satisfy:

P (A)
?
=
NA

N
=

# trialsA occurred
# trials (total)

.

So if we roll it N = 120 times, we expect aboutNA = 20 trials where we roll a 5. But not exactly, because it is a random
phenomena!

Properties of Relative Frequency

Since0 ≤ NA ≤ N , we have

0 ≤
NA

N
≤ 1

so apparently we want0 ≤ P (A) ≤ 1.

The next property is calledadditivity .

LetA = {Roll 5 or Roll 6} = A5 ∪A6 whereA5 = {Roll 5} andA6 = {Roll 6}. Then

NA

N
=

# of 5’s or 6’s
N

=
# of 5’s
N

+
# of 6’s
N

so apparently we want
P (A) = P (A5 ∪A6) + P (A5) + P (A6).

But not always! (And this is a common mistake)

Consider: A ={Roll 2}, B = {Roll Even} = {2,4,6}
ThenP (A) = 1/6, P (B) = 3/6, P (A ∪B) = P (B) = 3/6 6= P (A) + P (B) = 4/6.

Q? what is the problem?

What we really want is

P (A ∪B) = P (A) + P (B) if A ∩B = φ.

Unfortunately, “N large” is not mathematically precise, so the relative frequency principle alone does not provide a rigorous
self-consistent probability theory. It is also impractical for complex problems (fly 1000 space shuttles?)

Next we present an axiomatic approach to probability that is mathematically rigorous, but still captures the basic idea behind
relative frequency.
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2.2
Axioms of Probability
Given a sample space S (a collection of outcomes for a random experiment), aprobability law or probability measure P is a
function that assigns to each eventA a numberP [A] called the “probability ofA” that must satisfy the following axioms.

Axiom 1: 0 ≤ P [A] for all A (nonnegativity)

Axiom 2: P [S] = 1 (some outcome must occur)

Axiom 3: If A ∩B = φ, thenP [A ∪B] = P [A] + P [B] (additivity)

Axiom 3’: If Ai ∩Aj = φ for i 6= j, thenP [
⋃∞
i=1Ai] =

∑∞
i=1 P [Ai]] (countable additivity)

By induction from Axiom 3:

P

[
n⋃
i=1

Ai

]
=

n∑
i=1

P [Ai] if Ai ∩Aj = φ for i 6= j.

Note: axiom≡ assumption (but history has shown that the above yield predictions that agree with reality).

(picture)

Course Goals Include:
? Parsing problem statements (learned by examples from lecture, text, HW)
• determine sample space
• extract “given” probabilities

(using symmetries, physical reasoning, experiments, assumptions of independence)
• translate question into a probability that is to be found

?? Apply probability tools to determine desired information
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Equally likely probability assignment

The simplest example of an initial probability assignment is the case where we assume all outcomes areequally likely.

Note that this is often an incorrect assumption, and a common error is to apply this probability assignment to problems where is is
inapplicable!

Assumptions for equally likely probability assignment:
• Suppose sample space isdiscreteandfinite S = {a1, a2, . . . , an}
• Suppose each outcome isequally likely P [{ai}] = 1/n

Now suppose we want to compute the probability of a compound eventE, such asE = {a1, a4, a6} = {a1} ∪ {a4} ∪ {a6}, i.e. a
union of elementary events.

Note: elementary events are always disjoint, since outcomes are inherently distinct. So{ai} ∩ {aj} = φ for i 6= j.

Thus by additivity:

P [E] = P [{a1} ∪ {a4} ∪ {a6}]

= P [{a1}] + P [{a4}] + P [{a6}]

= 1/n+ 1/n+ 1/n = 3/n

More generally,if all outcomes areequally likely, then

P [E] =
# of outcomes inE

total # of outcomes in S
for equally likely outcomes.

ExampleRoll 2 fair die
What is probability that the sum of dots is 8?
S ={(1,1),(1,2),(2,1),. . . ,(6,6)}Q? size =62

E = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} (5 outcomes where sum is 8)
For fair die, all62 outcomes are equally likely, soP [E] = 5/36

Common Pitfall setting up sample space where outcomes arenotequally likely

Example: toss 2 fair coins. What is P[2 heads] ?
Right Way Wrong Way
S ={HH,HT,TH,TT} S ={0 heads, 1 head, 2 heads}

P[E] = P[HH] = 1/4 P[E] = P[2 heads]
?
= 1/3

no! because outcomes are not equally likely
(there are 2 ways to get 1 head)
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2.3
Combinatorics

Context:
• We have a set ofn (distinct) elements (such as balls in an urn numbered1, 2, . . . , n).
• We intend to pickk items from the set “at random.”

We are interested in the probabilities of various events.

Questions:
• Do we sample with replacement, or not? (determines total number of outcomes in S)
• For the event of interest, does theorder in which the items were drawn matter?

If we enumerate the outcomes exhaustively, then all possible outcomes are equally likely since we draw the elements “at random.”
So to compute probabilities using the “equally likely” formula, we must find the total number of possible outcomes inS (the
denominator), as well as the number of outcomes in events of interest (the numerator).

Denominator: How many total outcomes are there? (Must consider ordering so that all outcomes are equally likely.)
• Sampling with replacement (can havek ≤ n or k ≥ n):

There aren possibilities for each draw, andk draws, son · n · . . . · n = nk

• Sampling without replacement (must havek ≤ n):
n · (n− 1) · . . . · (n− k + 1) = (n)k = n!/(n− k)!

Ordered Samples

Making an ordered sampleby drawingk items with replacement

Example: Urn contains a red, green, blue, and yellow ball.
What is the probability of getting the particular sequence of draws:E ={BBBGGY}?
Answer:P (E) = 1/nk = 1/46.
What is the probability of drawing exactly 5 blue balls in a row in a sequence of 6 draws?
E = {BBBBBR, BBBBBG, BBBBBY, RBBBBB, GBBBBB, YBBBBB}, soP (E) = 6/46.
(Enginering application: disk media that require not too many bits of same sign sequentially.)

In generalP [E] =
(# of outcomes inE)

nk
for an ordered sampledrawn with replacement.

Making an ordered sampleby drawingk items without replacement

Example: deck of cards (n = 52)
What is the probability of being dealt the hand(3♣, 4♣, 5♣, 6♣, 7♣) in that order?
Answer:1/(n!/(n− k)!) = (52− 5)!/52! = 47!/52! = 1/311, 875, 200≈ 3.2 · 10−9

What is the probability of being dealt the hand(3, 4, 5, 6, 7) in that order, but any suit?
Answer:45/(n!/(n− k)!) = 45(52− 5)!/52! ≈ 3.28 · 10−6

In generalP [E] =
(# of outcomes inE)
n!/(n− k)!

for an ordered sampledrawn without replacement.
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Unordered Samples

Making an unordered sampleby drawingk items without replacement
(Think of taking balls from one urn and putting in a jar)
There aren!/(n− k)! ordered samples havingk items.
But each of these samples can be rearrangedk! different ways.

So the number of distinct unordered samples taken without replacement isn!(n−k)!k! =

(
n
k

)
=

(
n
n− k

)
.

Example:E = {3 heads in 5 flips of a fair coin}, what is P(E)?
How many length-5 sequences of H,T are there with 3 heads?
Think of urn with balls numbered 1 to 5. Pick 3 balls w/o replacement.
Set the corresponding positions to H, rest to T. (Order of balls unimportant!)

So number of length-5 sequences of H,T with 3 heads is

(
5
3

)
. SoP (E) =

(
5
3

)
/25

Making an unordereddrawing ofk items with replacement
Make a list of lengthn initialized with zeros; add a check toith entry list each time you draw theith item.

The number of such lists you can make is

(
n− 1 + k
k

)
=

(
n− 1 + k
n− 1

)
.

Caution: these lists arenotequally likely, so the formula is rarely used for calculating probabilities.
Instead, we usually just resort to counting arguments.

Example: Wheel of fortune with 26 letters (A to Z).
What is probability of getting a vowel on each of 4 spins?
(With “replacement,” order unimportant)
Answer:54/264 ≈ 0.0014
P(4 distinct consonants in 4 spins) =(21 · 20 · 19 · 18)/264 ≈ 0.31

Formulas are simple. Be careful to pick correct case. (Examples!)

Summary

Urn: 4 Balls (Red, Green, Yellow, and Blue)

Ordered Unordered

W
ith

R
e

p
la

ce
m

e
n

t (R,R) (R,G) (R,Y) (R,B)
(G,R) (G,G) (G,Y) (G,B)
(Y,R) (Y,G) (Y,Y) (Y,B)
(B,R) (B,G) (B,Y) (B,B)

nk = 42 = 16

(2,0,0,0) (1,1,0,0) (1,0,1,0) (1,0,0,1)
(0,2,0,0) (0,1,1,0) (0,1,0,1)

(0,0,2,0) (0,0,1,1)
(0,0,0,2)(

n− 1 + k
k

)
=

(
5
2

)
= 10

W
ith

o
u

t
R

e
p

la
ce

m
e

n
t (R,G) (R,Y) (R,B)

(G,R) (G,Y) (G,B)
(Y,R) (Y,G) (Y,B)
(B,R) (B,G) (B,Y)

n!

(n− k)!
=
4!

2!
= 12

{R,G} {R,Y} {R,B}
{G,Y} {G,B}

{Y,B}

(
n
k

)
=

(
4
2

)
= 6
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Enumeration is tedious in more complicated problems, and inapplicable to problems where the outcomes are not equally likely. So
we need more general methods...

Properties of Probability Laws

(1) P (A) = 1− P (A)

SinceA ∩A = φ, by additivity:P (A ∪A) = P (A) + P (A), butA ∪A = S andP (S) = 1, so1 = P (A) + P (A).

(2) P (A) ≤ 1

By (1): P (A) = 1− P (A) ≤ 1 sinceP (A) ≥ 0.

(3) P (φ) = 0

By (1): P (φ) = 1− P (S) = 1− 1 = 0.

(4) If Ai ∩Aj = φ for i 6= j, thenP (∪ni=1Ai) =
∑n
i=1 P (Ai)

Proof by induction.

(5) P (A−B) = P (A)− P (A ∩B)

A = A ∩ S = A ∩ (B ∪B) = (A ∩B) ∪ (A ∩B) and(A ∩B) ∩ (A ∩B) = φ.
So by additivity:P (A) = P (A ∩B) + P (A ∩B)

(6) P (A ∪B) = P (A) + P (B)− P (A ∩B) (exchanging∪ and∩)

A ∪B = (A−B) ∪ (A ∩B) ∪ (B −A), and the three sets are disjoint. (Venn diagram)
So by (4):P (A ∪B) = P (A−B) + P (A ∩B) + P (B −A).
Now apply (5):P (A ∪B) = (P (A)− P (A ∩B)) + P (A ∩B) + (P (B) − P (B ∩A)) = P (A) + P (B)− P (A ∩B)

(6’) P (A ∪B) ≤ P (A) + P (B) (called “union bound”)

Follows from (6) sinceP (B −A) ≥ 0.

(7) If A ⊆ B thenP (A) ≤ P (B)

By (5): P (B −A) = P (B)− P (A ∩B) ≥ 0 (by Axiom 1). SoP (B) ≥ P (A ∩B), butA ∩B = A sinceA ⊆ B.

Tools
• P (A) = 1− P (A)
• Break into disjoint events using set properties and apply additivity
• For inequalities, work towards the two known inequalities:0 ≤ P (A) ≤ 1.

Example
Roll 2 fair die.
What is probability of rollingat leastone 4?
Use above properties to avoid exhaustive enumeration:
LetA be the event “roll a 4 on die 1” P (A) = 1/6
LetB be the event “roll a 4 on die 2” P (B) = 1/6
LetE be the event “roll a 4 on either die”
E = A ∪B
Not disjoint!
By (7)P (E) = P (A ∪B) = P (A) + P (B)− P (A ∩B) = 1/6 + 1/6− 1/36 = 11/36
SinceA ∩B is the event “roll a 4 on both die.”
More elegant (and practical) than enumerating outcomes:E = {(4, 1), (4, 2), . . .} ⊂ S

Summary
Defined basic events
Expressed desired eventE in terms of basic event
Used set operations and probability properties to getP (E)
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Joint Probability
If A andB are events, thejoint probability of A andB is defined to beP (A ∩B). One way to find joint probabilities is to use

the formula P (A ∩B) = P (A) + P (B)− P (A ∪B). More often we use conditional probabilities.

2.4
Conditional Probability
Often we want to answer questions such as “what is the probability the shuttle will fail given that the O-rings leak?”

Intuition: Dart Board (relative frequency)
P (A) = Area(A)/Area(S)
(bad dart thrower = “random” throws)

If A andB are two events and ifP (B) > 0, then we define the conditional probability ofA givenB to be

P (A|B) = P (A ∩B)/P (B).

To justify callingP (·|B) a probability law, it must satisfy the Axioms.
• P (A|B) > 0

Clear from its definition
• P (S|B) = 1
P (S|B) = P (S ∩B)/P (B) = P (B)/P (B) = 1
• If A1 ∩A2 = φ, thenP (A1 ∪A2|B) = P (A1|B) + P (A2|B)
P (A1 ∪A2|B) = P ((A1 ∪A2)∩B)/P (B) = P ((A1 ∩B)∪ (B ∩A2))/P (B) = P (A1 ∩B)/P (B) +P (A2 ∩B)/P (B) =
P (A1|B) + P (A2|B), sinceA1 ∩A2 = φ implies that(A1 ∩B) and(A2 ∩B) are disjoint.
• Similar proof for countable additivity.

Note also thatP (B|B) = P (B ∩B)/P (B) = 1.

Example
Suppose we have a light bulb that will fail at some (unpredictable) time after time 0. SoS = [0,∞).
Assume thatP [(t,∞)] = e−t/5, i.e. the probability that the bulb fails after any given timet (in years, say) ise−t/5.
(Later we learn that the mean lifetime of the bulb is 5 years here.)
Given that the lightbulb is still working at 4 years, what is the probability it will fail sometime after 6 years?
LetB be the event the lightbulb is still working at 4 years.B = (4,∞).
LetA be the event the lightbulb fails sometime after year 6.A = (6,∞).
P [A|B] = P [A ∩B]/P (B) = P [(4,∞) ∩ (6,∞)]/P [(4,∞)] = P [(6,∞)]/P [(4,∞)] = e−6/5/e−4/5 = e−2/5 ≈ 0.67
Compare toP (A) = e−6/5 ≈ 0.3

Example
We roll two fair 20-sided die.
Given that the sum is 36, what is the probability that either die rolled a 19?
A is event either die rolled a 19.
B is event that sum of dots is 36.
WantP (A|B)
S is 202 equally likely outcomes (die1,die2)
A ∩B = {(17, 19), (19, 17)}
B = {(16, 20), (17, 19), (18, 18), (19, 17), (20, 16)}
P [A|B] = P [A ∩B]/P (B) = (2/202)/(5/202) = 2/5.
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We can rewrite definition of conditional probability to get an equally useful formula:

P (A ∩B) = P [A|B]P [B]

Especially useful forsequential experiments.

Example: urn with 5 red balls and 3 green balls.
What is probability of drawing 2 red balls in 2 (random) draws w/o replacement?
Translate:
• D1 = draw red ball on 1st draw,P (D1) = 5/8
• D2 = draw red ball on 2nd draw,P (D2|D1) = 4/7
• E =D1 ∩D2, P (E) = P (D1 ∩D2) = P (D2|D1)P (D1) = 4

7
5
8 = 5/14

Easier than counting from8 · 7 outcomes inS

Chain Rule (useful for sequential experiments)
More generally:P (A1 ∩A2 ∩ . . . An) = P (An|A1 ∩A2 ∩ . . . An−1)P (An−1|A1 ∩A2 ∩ . . . An−2) . . . P (A2|A1)P (A1).

The following is another tool for computing prob. of complicated events from simple events

Total Probability
Suppose eventsB1, . . . , Bn partitionS
RecallS =

⋃n
i=1Bi andBi ∩Bj = φ, i 6= j

Also assume thatP (Bi) 6= 0 for i = 1, . . . , n
Law of total probability :

P (A) =

n∑
i=1

P (A|Bi)P (Bi)

Proof

P [A] = P [A ∩ S] = P [A ∩ (∪ni=1Bi)] = P [∪
n
i=1(A ∩Bi)] =

n∑
i=1

P [A ∩Bi] =
n∑
i=1

P (A|Bi)P (Bi)

Because fori 6= j, (A ∩Bi) and(A ∩Bj) are disjoint sinceBi ∩Bj = φ.

Example (a sequential experiment)
Three chests, each with 2 drawers, containing gold or socks

Chest 1 G‖G Chest 2 G‖S Chest 3 S‖S‖S
Pick a chest at random, then pick a drawer at random from chosen chest
(This is asequential experiment- a sequence of sub-experiments.)
Open drawer and find Gold!
What is the probability the other drawer also contains Gold??
Sample space: 7 outcomes (7 drawers)
LetCi be the event “picked draweri,” i = 1, 2, 3 P (Ci) = 1/3
LetA be the event “open drawer has gold”
LetB be the event “other drawer has gold”
WantP (B|A) = P (B ∩A)/P (A) = P (C1)/P (A)
Total probability:P (A) =

∑3
i=1 P (A|Ci)P (Ci) = (1 + 1/2 + 0) · (1/3) = 1/2

SoP (B|A) = P (C1)/P (A) = (1/3)/(1/2) = 2/3
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Bayes Rule or Bayes Theorem
LetA andB be any two events whereP (A) 6= 0 andP (B) 6= 0. ThenBayes Ruleis:

P (B|A) =
P (A|B)P (B)

P (A)
“Exchange order of conditioning”

Proof:P (B|A) = P (B ∩A)/P (A) andP (A|B) = P (A ∩B)/P (B)
Use commutative law and rearrange

If eventsB1, . . . , Bn partitionS, then combining with law of total probability:

P (Bi|A) =
P (A|Bi)P (Bi)

P (A)
=

P (A|Bi)P (Bi)∑n
j=1 P (A|Bj)P (Bj)

• P (Bi) called “a priori” probability
• P (Bi|A) called “a posteriori” probability

Applications to medicine, communications, decision theory, gambling...

Classic Example from Digital Communications
We transmit a 0 or 1 using an imperfect binary channel
Given that we receive a 0, what is the probability that a 0 was actually sent?
• A0 is event “a 0 was sent”
• A1 is event “a 1 was sent”
• B0 is event “rcvd. a 0”
• B1 is event “rcvd. a 1”
• AssumeP (A0) = P (A1) = 1/2 (e.g. compressed data)
• WantP (A0|B0)

Bayes rule:P (A0|B0) = P (B0|A0)P (A0)/P (B0) = (1)(1/2)/P (B0)
Total prob.:P (B0) = P (B0|A0)P (A0) + P (B0|A1)P (A1) = (1)(1/2) + ε(1/2) = (1/2)(1 + ε)
Thus:P (A0|B0) = 1/(1 + ε)

Example
Box 1: 99 Red, 1 Green
Box 2: 102 Red, 98 Green
Pick box at random, then pick ball at random from chosen box.
Given that we chose a Red ball, what is probability we chose Box 1?
Sample space: 300 outcomes (but not very important).
Bi denotes event “picked boxi”
R denotes event “picked red ball”
WantP (B1|R)
Total probability:P (R) = P (R|B1)P (B1) + P (R|B2)P (B2) = (99/100)(1/2) + (102/200)(1/2) = 3/4
Bayes rule:P (B1|R) = P (R|B1)P (B1)/P (R) = (99/100)(1/2)/(3/4) = 33/50

Alternate Experiment
First mix all balls into one urn
Randomly pick a ball from the urn.
Given that we chose a Red ball, what is probability it originated in Box 1?
WantP (B1|R)
All balls equally likely now, soP (R) = (99 + 102)/300 = 201/300
P (B1 ∩R) = P (red ball from Box 1) = 99/300
P (B1|R) = P (B1 ∩R)/P (R) = (99/300)/(201/300) = 99/201

N.B.: Conditional probabilities (and ordinary probabilities too) depend on experiment!
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2.5
Independence
Two eventsA andB are said to bestatistically independent(or just independent) iff

P (A ∩B) = P (A) · P (B)

If P (B) 6= 0, then
P (A|B) = P (A)

is an equivalent definition, sinceP (A|B) = P (A ∩B)/P (B) = P (A) iff P (A ∩B) = P (A) · P (B)
Likewise, ifP (A) 6= 0, then

P (B|A) = P (B)

is an equivalent definition. (cf fortune cookie)

This is one of the most useful methods for finding probabilities of interesting events from known probabilities of simple events. If
we can assume (because of physics, reasoning etc.) that two eventsA andB are independent, thenP (A ∩ B) = P (A) · P (B)
gives us the joint probability in terms of the prob. of the individual events.

Independent Events vs Disjoint Events
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Independent Events:P (A ∩B) = P (A) · P (B) Disjoint Events:A ∩B = φ, soP (A ∩B) = P (φ) = 0.

Independence of Multiple Events
We sayA1, A2, . . . , An areindependentevents iff the prob. of any intersection of theAi’s is the product of the individual prob’s.
• P (Ai ∩Aj) = P (Ai)P (Aj), ∀i 6= j (pairwise independence)
• P (Ai ∩Aj ∩Ak) = P (Ai)P (Aj)P (Ak), ∀i 6= j, j 6= k, i 6= k

•
...
• P (

⋂n
i=1Ai) =

∏n
i=1 P (Ai)

Total of2n − n− 1 conditions to verify!
Pairwise independence alonedoes notimply independence.

Example
Suppose we roll a loaded die 3 times, withP ({roll 1}) = 1/5.
What is probability of rolling 3 ones?
63 outcomes. Butnotall equally likely now!
LetAj = {roll 1 on ith roll}
Want P(E) whereE = A1 ∩A2 ∩A3
Since rolls are physically independent, it is reasonable to assume they are statistically independent,
soP (E) = P (A1 ∩A2 ∩A3) = P (A1)P (A2)P (A3) = (1/5)3
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Combinations of Independent Events
If A1, . . . , An are independent events, thenAi is independent of any set combination of eventsA1, . . . , Ai−1, Ai+1, . . . , An.
Example: ifA, B, andC are independent events, then

P [A ∩ (B ∪ C)] = P [A] · P [B ∪ C]

Example

1 2

3 4

Random Switches

What is probability of a closed path from input to output?
Old way:A = {CCOC, OOCC, CCCC}, sample space has42 outcomes.
If all switches are independent and equally likely to be open or closed (p = 1/2) then all42 outcomes equally likely (explain why
using independence!) andP (A) = 3/16 (counting method).

For system reliability applications (e.g. Russian space station oxygen system) hopefullyp >> 1/2, so all42 outcomes arenot
equally likely, so must calculateP (A) another way.

LetCi ={ith switch is closed}
• assumeP (Ci) = p
• C1 = {COOO, COOC, COCO,. . . , CCCC} (8 outcomes)
• AssumeCi’s are independent events.

P (A) = P [C4 ∩ (C3 ∪ (C1 ∩C2))]

= P [C4] · P [C3 ∪ (C1 ∩ C2)]

= P [C4] · (P [C3] + P (C1 ∩ C2)− P [C1 ∩ C2 ∩ C3])

= P [C4] · (P [C3] + P (C1)P (C2)− P (C1)P (C2)P (C3)])

= p2 + p3 − p4

Independence let us express the probability of an interesting event in terms of individual probabilities of basic events.
Can now assess how reliable each component needs to be to ensure overall reliability of system.
Caution with assumptions: Apollo 13 - independent failures of subsystems?

Example
Suppose we have a biased coin withP (H) = 4/5.
Flip coin 3 times.
23 outcomes. Butnotall equally likely now!
What isP [(HHT )] i.e.P (H1 ∩H2 ∩ T3) ?
Since flips are physically independent, it is reasonable to assume they are statistically independent, soP (H1 ∩ H2 ∩ T3) =
P (H1)P (H2)P (T3) = (4/5)

2(1/5)1

Independent Subexperiments
As in preceding example, experiments often consist of a sequence of subexperiments; often it is reasonable to assume the subex-
periments are independent. Then we assume that events associated with different sub-experiments are independent, and we do not
have to verify all the conditions above.
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The canonical example of a sequence of independent subexperiments is called:

Bernoulli Trials

A Bernoulli Trial is a random experiment with 2 outcomes called “success” and “failure” (cf H,T yes,no 1,0 etc.)
We usep = P{ success} andq = P{ failure} = 1− p

Bernoulli Trials a sequence of independent Bernoulli trial subexperiments

Question: what is P(k successes inn trials) ?

Example: 3 toss of a biased coin withp = P (heads) What is probability of getting 2 heads (exactly)?

P ({HHT, THH, THH}) = P ({HHT }) + P ({THH}+ P ({THH})

= P (H)P (H)P (T ) + P (T )P (H)P (H) + P (T )P (H)P (H)

= 3p2(1− p)1 =

(
3
2

)
p2q3−2

In general

P ({k successes inn trials}) = (# of ways to getk successes inn trials) · pkqn−k =

(
n
k

)
pkqn−k

called theBinomial Probability Law

Note: if p = q = 1/2 (fair coin), then all outcomes are equally likely, soP (k in n) =

(
n
k

)
/2n which agrees with earlier

counting method.

Binomial theorem:(a+ b)n =
∑n
k=0

(
n
k

)
akbn−k where

(
n
k

)
is called theBinomial coefficient.

Example: Binary data on CD player in 8-bit words.
Probability that a given bit is flipped =p
Assume bit errors are independent.
Error-correcting code fails if 3 or more bits are flipped (hypothetically)
What is probability of failure?
Bk = {k bits flipped}
E = {failure} = B3 ∪ . . . ∪B8

P (E) =
∑8
k=3 P (Bk) =

∑
k = 38

(
8
k

)
pkq8−k

Such calculations surely done by philips and sony engineers

Approximations
Stirling’s formula:m! ≈

√
πm ·mm · e−m form large

DeMoivre-Laplace approximation: (
n
k

)
pkqn−k ≈

1
√
2πnpq

exp

(
−
(k − np)2

2npq

)

(follows from Central Limit Theorem) ifn, k, n− k all large and|k − np|/
√
npq < 1

Poisson approximation (forn largep small): (
n
k

)
pkqn−k ≈ (np)ke−np/k!
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Random Variables
In many engineering problems, the random quantities of interest are numerical (voltages, currents, forces, strains).
“Random variables” provide a rigorous but convenient tool for describing and analyzing numerical random phenomena.

Example
Toss biased coin 3 times.p =P(H)
Win $1 for each head and lose $1 for each tail.

Outcome Probability “Winnings”
s P ({s}) X(s)

HHH p3 3
HHT p2q 1
HTH p2q 1
THH p2q 1
HTT pq2 -1
TTH pq2 -1
THT pq2 -1
TTT q3 -3

The functionX(s) is called a random variable because it maps each possible outcome into a real number.
From the point of view of a gambler, the value ofX is all that matters, not the specific outcomes.
So the properties ofX characterize the problem more parsimoniously.

In fact, all events of interest (to a gambler) can be expressed in terms of the possible values ofX .
Example:W = {Win money}
Old way:W = {HHH,HHT,HTH,THH}
New parsimonious way:W = {X > 0} = {s ∈ S : X(s) > 0}
P (W ) = P [X > 0] = P [(X = 1) ∪ (X = 3)] = P [X = 1] + P [X = 3] = 3p2q + p3

(doesn’t do justice to power of random variables)

Voltage across a resistor vs state of all electrons within...

Definition
Given a sample spaceS, we callX a random variable ifX(s) is a function that assigns to each outcomex ∈ S a real number.
Formally:X : S → [−∞,∞]
Technical conditions:
• The event[X ≤ x] = {s ∈ S : X(s) ≤ x} must be an event whose probability we can determine for anyx.
• P [X = +∞] = P [X = −∞] = 0.

We alwaysuse capital letters to denote random variables, usually from end of alphabet.

This formal definition allows us to connect random variables with the Axioms of Probability etc. As we go on, we will develop
tools for manipulating random variables “generically,” without reference to the underlying sample space, in the same way that a
linear systems course describes generic methods for analyzing signals, without reference to the physical phenomena that generated
those signals.
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Example
Circular dart board, uniformly distributed throws.
S = {(a, b) :

√
a2 + b2 ≤ 30}

Each outcomes ∈ S is a coordinate pairs = (a, b)
If A ⊆ S, thenP (A) = area(A)/(π302)
For dart player, numerical quantity of interest is distance from center:
X(s) =

√
(a− 1)2 + (b− 2)2

Range ofX is [0, 30]
For a betting dart player, probability of interest is:
P [X ≤ r] for variousr.
If 0 ≤ r ≤ 30, thenP [X ≤ r] = πr2/(π302) = (r/30)2

If r ≥ 30, thenP [X ≤ r] = 1
If r < 0, thenP [X ≤ r] = 0

Example
Fair wheel of fortune
S = [0, 360)
If [a, b) ⊆ S, i.e. if 0 ≤ a ≤ b < 360, thenP [[a, b)] = (b− a)/360
Consider

X(s) =
180

|180− s|

Note:P [X =∞] = P [{s ∈ S : X(s) =∞}] = P [{180}] = 0
The outcomeX =∞ is “possible,” but its probability is 0.
Probability 0 does not mean “impossible.” Only “extremely unlikely.”
The relative frequency concept does not quite explain P=0.

Fora > 1:

P [X ≤ a] = P ({s ∈ S : 180
|180−s| ≤ a})

= P ({s : |180− s| ≥ 180/a})
= P ({s : 180− s ≥ 180/a} ∪ {s : s− 180 ≤ 180/a})
= P ({s : s ≤ 180(1− 1/a)} ∪ {s : s ≥ 180(1 + 1/a)})
= P ({s : s ≤ 180(1− 1/a)}) + P ({s : s ≥ 180(1 + 1/a)})
= P ([0, 180(1− 1/a)]) + P ([180(1 + 1/a), 360))
= (1/2)(1− 1/a) + 1− (1/2)(1 + 1/a) Thus

P [X ≤ a] =

{
0, a ≤ 1
1− 1/a, a ≥ 1
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All the events of practical interest can be expressed as set combinations of the following two types of events:
• Events of the form[X = x]
• Events of the form[X ≤ x]

We calculate probabilities for such events using the method of “equivalent events.”

[X ∈ B] = {s ∈ S : X(s) ∈ B} = X−1(B)

P [X ∈ B] = P (A), whereA = {s ∈ S : X(s) ∈ B}

Cumulative Distribution Function (CDF)
The cumulative distribution function (CDF) of a random variableX is defined to be

FX(x) = P [X ≤ x], for −∞ < x <∞

Read: the probability of the event that the random variableX takes on a value in the set(−∞, x]
TheX subscript reminds us which r.v. when more than one in a problem
The argumentx is just a placeholder:FX(a) = P [X ≤ a] is equally good

Unit step function

u(x) =

{
0, x < 0
1, x ≥ 1 -

6 -

e

u
1

x

u(x)

Note:u(0) = 1 is crucial!

Example: CDF of discrete random variable
Toss 2 fair coins
X is 10 times number of heads
SX = {0, 10, 20}
P [X = 0] = 1/4
P [X = 10] = 1/2
P [X = 20] = 1/4 -�

6

e

r

r

r

r r
10 20

1

1/4

3/4

x

FX(x) = (1/4)u(x) + (1/2)u(x− 10) + (1/4)u(x− 20)
-

u

u

u

e

e

Role of CDF for random phenomena analogous to role of Fourier transform in linear systems theory: generic description

Properties of CDF
• 0 ≤ FX(x) ≤ 1
• limx→∞ FX(x) = 1
• limx→−∞ FX(x) = 0
• FX(x) is monotone nondecreasing. Ifa ≤ b, thenFX(a) ≤ FX(b)

Proof: (−∞, a] ⊆ (−∞, b] if a ≤ b.
• FX(x) is continuous from the right.FX(b) = FX(b+) = limδ↘0 FX(b+ δ), (for δ > 0).
• P [a < X ≤ b] = FX(b)− FX(a)

Proof: if a ≤ b, then(−∞, b] = (−∞, a] ∪ (a, b], so[X ≤ b] = [X ≤ a] ∪ [a < X ≤ b], (usual trick)
soP [X ≤ b] = P [X ≤ a] + P [a < X ≤ b].
• P [X = b] = FX(b)− FX(b−), whereFX(b−) = limδ↘0 FX(b− δ).

Proof:P [b− δ < X ≤ b] = FX(b)− FX(b− δ) andP [X = b] =
⋂
δ>0[b− δ < X ≤ b]

Thus, if cdf is continuous atb, thenP [X = b] = 0
• P [X > x] = 1− FX(x)

If 2-5 hold, thenFX is a valid CDF
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Probabilities of Other Intervals
P [a < X < b] ?
[a < X ≤ b] = [a < X < b] ∪ [X = b] soP [a < X ≤ b] = P [a < X < b] + P [X = b]
ThusP [a < X < b] = P [a < X ≤ b]− P [X = b]

Types of Random Variables
• Discreterandom variables

Range(X) is a finite or countably infinite set.
Examples:SX = {−3,−1, 1, 3} or SX = {2, 4, 8, 16, . . .} General:SX = {x1, x2, . . .}
• Continuous random variables take a continuous range of values.

Formally:P [X = x] = 0 for all x
• Mixed random variables are neither of the above.

Examples: half-wave rectified random voltage, waiting time in queues that empty (Ex. 3.6).

Discrete random variables have “stair step” CDFs
(zero slope everywhere except a countable number of jump discontinuities)
Continuous random variables have continuous CDFs: no jump discontinuities.

CDF of Discrete Random Variables
LetX be a discrete r.v. with rangeSX = {x1, . . . , xn}
(finite for illustration, could also be countably infinite)

[X ≤ x] =
⋃

{i : xi≤x}

[X = xi]

Thus

P [X ≤ x] =
∑

{i:xi≤x}

P [X = xi] =

n∑
i=1

P [X = xi] u(x− xi)

sinceu(x− xi) is one ifxi ≤ x and zero otherwise.
Thus for discrete r.v.:

FX(x) =
n∑
i=1

P [X = xi] u(x− xi)

cf previous examples

Sometimes we use the shorthand notation:P (xi) = P [X = xi]
This form is often called theprobability mass function (PMF)
Note that

∑n
i=1 P (xi) = 1

Height of jump discontinuity atxi equalsP [X = xi]
CDF is a bid redundant for discrete r.v. sinceP (xi) = P [X = xi] completely describes r.v., but included for consistency with
continuous r.v.

Histogram for Discrete r.v.
Height of bar isP [X = xi]
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Mystery CDF
(illustrates that CDF tells all)

CDF of Uniform r.v.
Experiment: spin fair wheel of fortune.
S = [0, 360)
For0 ≤ a ≤ b < 360, P ([a, b)) = (b− a)/360 (uniformly likely)
DefineX(s) = s/360
SX = [0, 1) For0 < x < 1 P [X ≤ x] = P [0 ≤ X ≤ x]P [0 ≤ s/360 ≤ x] = P ([0, 360x]) = x

FX(x) =



0, x ≤ 0
x, 0 ≤ x ≤ 1
1, 1 ≤ x

For anya ∈ [0, 9/10] P [a < X ≤ a+ 1/10] = FX(a+ 1/10)− FX(a) = (a+ 1/10)− (a) = 1/10. independent ofa
X is equally likely to fall in any interval of length 1/10 in [0,1]
Can replace 1/10 by any small positive numberδ
random number generator is like spinning a wheel and normalizing to [0,1]
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RecallP [a < X ≤ b] = FX(b)− FX(a)
If FX(·) is continuous, then by calculus:

P [a < X ≤ b] = FX(b)− FX(a) =

∫ b+
a+

d

dx
FX(x) dx

This representation is so useful and important that it has its own name. (it is even more useful than cdf)

Probability Density Function (pdf)
The probability density function (pdf) of a random variableX is defined to be

fX(x) =
d

dx
FX(x)

(details about nondifferentiability dealt with soon)

Example: pdf of Uniform(0,1) R.V
From wheel-of-fortune example:

FX(x) =



0, x ≤ 0
x, 0 ≤ x ≤ 1
1, 1 ≤ x

so fX(x) =



0, x ≤ 0
1, 0 ≤ x ≤ 1
0, 1 ≤ x

equally likely to take any value between 0 and 1...

Properties of pdf
• fX(x) ≥ 0 ∀x
•
∫∞
−∞ fX(x) dx = 1

Proof:
∫∞
−∞ fX(x) dx = limT→∞

∫ T
0 fX(x) dx+ limT→∞

∫∞
−T fX(x) dx

= limT→∞ FX(T )− FX(0) + limT→∞ FX(0)− FX(−T ) = 1− FX(0) + FX(0)− 0 = 1

• FX(x) =
∫ x+
−∞ fX(t) dt

• P [a < X ≤ b] =
∫ b+
a+
fX(x) dx = FX(b)− FX(a)

If 1st two hold, thenfX is valid pdf

Interpretation of pdf
P [x− δ < X ≤ x] =

∫ x
x−δ fX(x) dx ≈ δ · fX(x) for smallδ

SofX(x)δ is approximately the probability of the event that the r.v.X takes a value in an interval nearx of width δ.
Higher density = more likely: cf bell curve
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pdf of Discrete Random Variables
Recall ifX is a discrete r.v. with rangeSX = {x1, . . . , xn}, then

FX(x) =
n∑
i=1

P [X = xi] u(x− xi)

so

fX(x) =

n∑
i=1

P [X = xi]
d

dx
u(x− xi) =

n∑
i=1

P [X = xi] δ(x− xi)

Similar to Histogram!

Dirac Delta “Function”
The Dirac Delta function is the (generalized) derivative of the unit step function

δ(x) =
d

dx
u(x)

The unit step function is the integral of the Dirac delta:

u(x) =

∫ x
−∞
δ(t) dt

Properties

area is 1

sifting

derivatives three cases
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Memorize: uniform, exponential, Gaussian pdf

Exponential Distribution
fX(x) = ce

−x/µu(x)

What isc? Need
∫
fX(x) dx = 1 so

1 =

∫ ∞
0

ce−x/µ dx = c(−µ) e−x/µ
∣∣∣∞
0
= cµ

Thusc = 1/µ
This density is a popular model for the (random) lifetime of systems.
X denotes the failure time relative to some starting time (typically 0, henceX is the lifetime of the system)
µ is called the mean lifetime (units: time)

P [3 < X < 4] =
∫ 4
3 fX(x) dx = FX(4)− FX(3)

FX(x) =
∫ x
0
1
µe
−t/µ dtu(x) = (1− e−x/µ)u(x), (cdf of r.v. with exponential distribution)

soP [3 < X < 4] = (1− e−4/µ)− (1− e−3/µ) = e−3/µ)− e−4/µ

If µ = 3 years, thenP [3 < X < 4] = e−3/3 − e−4/3 ≈ 0.104
(cf extended warranty on VCR)

New perspective: assume some model for a random phenomena, then compute probability of interest.
As opposed to starting with some sample space with assigned probabilities, defining a random variableX as a function on that
sample space, then deriving the pdf ofX .

Application of Exponential Distribution to Reliability
Suppose a system fails whenanyof its n components fail.
LetXi denote failure time ofith component,i = 1, . . . , n
Let Y denote failure time of system.
Find cdf ofY
[Y ≤ t] = [X1 ≤ t] ∪ · · · ∪ [Xn ≤ t] (system fails before timet if any component fails before timet)
ThusP [Y ≤ t] = P ([X1 ≤ t] ∪ · · · ∪ [Xn ≤ t])
Not disjoint events! But suppose we assume component failure times are independent:
P [Y ≤ t] = 1− P ([X1 > t] ∩ · · · ∩ [Xn > t]) = 1−

∏n
i=1 P [Xi > t]

ThusFY (t) = 1−
∏n
i=1(1− FXi (t))

So reliability of system related to reliability of components.
A generalrelationship independent of any underlying sample space

If eachXi has exponential cdf with meanµ, thenFY (t) = 1−
∏n
i=1 e

−t/µ = 1− e−nt/µ = 1− e−t/(µ/n)

which is exponential cdf with meanµ/n, so mean lifetime reduced by factor ofn
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Some important discrete random variables

Bernoulli (1 with prob.p, 0 with prob.1− p)

fX(x) = (1 − p)δ(x− 1) + pδ(x)

BinomialX ∼ Binom(n, p) (number of successes inn independent Bernoulli trials with success prob.p)

fX(x) =

n∑
k=0

P [X = k]δ(x− k) =
n∑
k=0

(
n
k

)
pk(1− p)n−kδ(x− k)

PoissonX ∼ Poisson(λ) (useful for counting number of occurrences within a finite time window)

fX(x) =
∞∑
k=0

P [X = k]δ(x− k) =
n∑
k=0

e−λλk/k!δ(x− k)

λ is mean number of occurrences

Scale and Shift of Random Variable
LetX be a r.v. with cdfFX(x)
DefineY = aX + b for a > 0
Find cdf and pdf ofY
Back to definition:FY (y) = P [Y ≤ y] = P [aX + b ≤ y] = P [X ≤ (y − b)/a] = FX((y − b)/a)
Taking derivative w.r.t.y using chain rule to find pdf:fY (y) = d/dyFY (y) = d/dyFX((y − b)/a) = fX((y − b)/a)/a

FY (y) = FX

(
y − b

a

)
fY (y) =

1

a
fX

(
y − b

a

)

Analogous to scale/shift formula for Fourier transforms: signal independent; (here it is pdf independent)
Important to learn steps in such derivations, not just final formula
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Gaussian Distribution (aka Normal distribution or “bell curve”)
Of great importance in engineering, in part due to central limit theorem
We sayX is a Gaussian r.v. iff its pdf has the form

fX(x) =
1

2πσ
e−

1
2σ2
(x−µ)2

µ called mean or location parameter (average value)
σ2 called variance or scale parameter (spread)
σ called standard deviation
Shorthand to avoid writing pdf:X ∼ N(µ, σ2)
Read: “X has a normal distribution with meanµ and varianceσ2

It is often more convenient to work with a “standardized” r.v. with mean 0 and variance 1
If X ∼ N(µ, σ2), then forZ = (X − µ)/σ we haveZ ∼ N(0, 1), i.e. fZ(z) = 1

2π e
−z2/2

fZ(z) =
1
2π e

−z2/2 is called the standard normal distribution.

Proof: by scale/shift property,fZ(z) = σfX(zσ + µ) = 1
2π e

−z2/2

The transformationZ = (X − µ)/σ is called standardizing.

FZ(z) = P [Z ≤ z] =

∫ z
−∞

1

2π
e−t

2/2 dt

Unfortunately, no closed form for cdf of standard Gaussian
In engineering, it is customary to work with “the Q function:”

Q(z) = 1− FZ(z) = P [Z > z] =

∫ ∞
z

1

2π
e−t

2/2 dt ≈

[
π

(π − 1)z +
√
z2 + 2π

]
e−z

2/2

Tabulated in most books, or use approximation forz > 0. By symmetry,Q(−z) = 1−Q(z)

Calculating probabilities for Gaussian (must express in terms of Q function to use table or approximation):

P [a < X < b] = P [
a− µ

σ
<
X − µ

σ
<
b − µ

σ
] = P [

a− µ

σ
< Z <

b − µ

σ
]

= FZ(
b− µ

σ
)− FZ(

a− µ

σ
) = Q(

a− µ

σ
)−Q(

b− µ

σ
)

From table,Q(1.96) ≈ 0.025, thus

P [−1.96 <
X − µ

σ
< 1.96] = P [µ− 1.96σ < X < µ+ 1.96σ] = Q(−1.96)−Q(1.96) = 1− 0.025− 0.025 = 0.95

so a Gaussian r.v. takes values within 2 standard deviations of its mean about 95% of the time

If X ∼ N(µ, σ2) thenFX(x) = 1−Q(
x−µ
σ
)

Also commonly used is error function

erf(x) =
∫ x
0

2
√
π
e−z

2

dz



c© J. Fessler, January 2, 2001, 17:25 27

Conditional CDF
RecallP (B|A) = P (A ∩B)/P (A) andFX(x) = P [X ≤ x]
The conditional CDF of a random variableX given eventA for whichP (A) 6= 0 is defined to be

FX(x|A) = FX|A(x|A) = P [X ≤ x|A]P ([X ≤ x] ∩A)/P (A), for −∞ < x <∞

Read: the prob. of the event that the r.v.X takes on a value in the set(−∞, x] given that eventA occurred

Properties of conditional CDF (all same as ordinary cdf)
• 0 ≤ FX(x|A) ≤ 1
• limx→∞ FX(x|A) = 1
• limx→−∞ FX(x|A) = 0
• FX(x|A) is monotone nondecreasing. Ifa ≤ b, thenFX(a|A) ≤ FX(b|A)
• FX(x|A) is continuous from the right:FX(b|A) = FX(b+|A)
• P [a < X ≤ b|A] = FX(b|A)− FX(a|A)
• P [X = b|A] = FX(b|A)− FX(b−|A), whereFX(b−|A) = limδ↘0 FX(b− δ|A).

Conditional pdf
The conditional pdf is defined as the derivative of the conditional cdf:

fX(x|A) = fX|A(x|A) =
d

dx
FX(x|A)

Properties of conditional pdf
• fX(x|A) ≥ 0 ∀x
•
∫∞
−∞ fX(x|A) dx = 1

• FX(x|A) =
∫ x+
−∞ fX(t|A) dt

• P [a < X ≤ b|A] =
∫ b+
a+
fX(x|A) dx = FX(b|A)− FX(a|A)

Same conventions for nondifferentiable corners and jump discontinuities

Fact: derivatives of cdfs exist except at most on a set of countably infinite points inR

If FX(x|A) has a jump discontinuity atx0, then “at”x = x0: fX(x|A) = (FX(x0)− FX(x
−
0 )) · δ(x − x0)

Total probability for cdf and pdf
If A1, A2, . . . partition S, and ifP (Ai) 6= 0 ∀i then

FX(x) =
∑
i

FX(x|Ai)P (Ai) since P [X ≤ x] =
∑
i

P [X ≤ x|Ai]P (Ai)

Similarly
fX(x) =

∑
i

fX(x|Ai)P (Ai)
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Example (pdf from conditioning on events)
Company 1 makes 100Ω resistors with 10% tolerance
Company 2 makes 100Ω resistors with 5% tolerance
You buy 25% of your resistors fromC1 and 75% fromC2
Pick resistors at random from common storage bin.
What is the pdf of resistance value?
Plausible assumptions:
fX(x|C1) is Uniform(90,110)
fX(x|C2) is Uniform(95,105)

fX(x) = fX(x|C1)P (C1) + fX(x|C1)P (C1)

Conditioning on interval (homework problem, example 3.10)
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Conditioning on point X = x
How do we define/computeP [A|X = x], i.e. prob. of snow tomorrow, given todays high temperature was 33 degrees?
P [A|X = x] = P (A ∩ [X = x])/P [X = x] ok for discrete r.v., but not for continuous r.v. sinceP [X = x] = 0
Define

P [A|X = x] = lim
δ↘0+

P [A|x− δ < X ≤ x] = lim
δ↘0+

P (A ∩ [x− δ < X ≤ x])

P [x− δ < X ≤ x]

provided limit is well defined

Now apply Bayes rule (assumingP (A) 6= 0):

P (A|x− δ < X ≤ x) =
P (x− δ < X ≤ x|A)P (A)

P [x− δ < X ≤ x]
=
1
δ

∫ x
x−δ fX(t|A) dt
1
δ

∫ x
x−δ fX(t) dt

P (A)→
fX(x|A)P (A)

fX(x)
asδ → 0

Thus

P (A|X = x) =
fX(x|A)P (A)

fX(x)

providedfX(x) 6= 0 and pdfs sufficiently regular
Rearranging we have

fX(x|A)P (A) = P (A|X = x)fX(x)

so by integrating both sides overx:

P (A) =

∫
P (A|X = x)fX(x) dx

(another version of total probability)
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Functions or transformations of a r.v.
SupposeX is a r.v. with known cdfFX(x) and pdffX(x)
DefineY = g(X) for some functiong : R → R

Find cdf and pdf ofY
Two approaches:
• Method of events: always works
• Plug-and-chug formula: only works for certaing functions

Note that (for all practicalg) Y is a well-defined r.v., defined byY (s) = g(X(s))

Transformations by method of equivalent events
General procedure to find cdf ofY whenY = g(X):
For eachy find [Y ≤ y] in terms of corresponding values ofX . Formally:

[Y ≤ y] = [g(X) ≤ y] = [X ∈ {x ∈ R : g(x) ≤ y}] = [X ∈ g−1((−∞, y])]

so
FY (y) = P [Y ≤ y] = P [X ∈ {x : g(x) ≤ y}]

Typically we find the last prob. by integratingfX over the set{x : g(x) ≤ y}, which is usually one or more intervals.
If By = {x : g(x) ≤ y}, then

FY (y) =

∫
By

fX(x) dx =

∫
{x:g(x)≤y}

fX(x) dx

Virtually always must find cdf ofY first, then differentiate to getfY (y)

Example
SupposeX is a voltage with a Uniform[-5,15] distribution
DefineY = X2. What is cdf/pdf ofY ?
First: Range(Y ) = [0,225] so fory < 0, FY (y) = 0 and fory ≥ 225, FY (y) = 1

Fory > 0
[Y ≤ y] = [X2 ≤ y] = [−

√
y ≤ X ≤

√
y]

so

FY (y) = P [−
√
y ≤ X ≤

√
y] =

∫ √y
−
√
y

fX(x) dx

For
√
y ≤ 5, ∫ √y

−
√
y

fX(x) dx =

∫ √y
−
√
y

1/20 dx = 2
√
y/20

For5 <
√
y ≤ 15, ∫ √y

−
√
y

fX(x) dx =

∫ √y
−5
1/20 dx = (

√
y + 5)/20

Thus

FY (y) =



0, y < 0
√
y/10, 0 ≤ y ≤ 25
(
√
y + 5)/20, 25 ≤ y ≤ 225

1, 15 ≤ y

Taking derivative

fY (y) =




1
20
√
y
, 0 < y ≤ 25

1
40
√
y
, 25 < y ≤ 225

0, otherwise
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A mixed random variable (introduces transformations)
SupposeX is a voltage with a Uniform[-5,15] distribution
Let Y be a new r.v. defined to beX half-wave rectified:

Y = g(X) =

{
0, X ≤ 0
X, X ≥ 0

What is cdf/pdf ofY ?
First: Range(Y ) = [0,15] so fory < 0, FY (y) = 0 and fory ≥ 15, FY (y) = 1
Fory = 0: FY (y) = P [Y ≤ 0] = P [Y = 0] = P [X ≤ 0] = 5/20
For0 < y < 15: FY (y) = P [Y ≤ y] = P [Y = 0] = P [X ≤ y] = (y + 5)/20
Thus

FY (y) =



0, y < 0
(y + 5)/20, 0 ≤ y < 15
1, 15 ≤ y

Taking derivative

fY (y) =
1

4
δ(y) +

1

20
(u(y)− u(y − 15)) =

1

4
δ(y) +

1

20
1{0<y≤15}
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Monotonic increasing, continuous, differentiable transformations of a continuous r.v.
SupposeX is a continuous r.v. with known cdfFX(x) and pdffX(x)
DefineY = g(X) for some functiong : R → R

Assumeg(x) is monotonic increasing, continuous, differentiable
Find cdf and pdf ofY

Intuition

-

6

X

Y

Y = g(X)

y = g(x)
y + dy

x x+ dx

Equivalent events:[y ≤ Y ≤ y + dy] = [x ≤ X ≤ x+ dx]
ThusP [y ≤ Y ≤ y + dy] = P [x ≤ X ≤ x+ dx]
So for smalldy we havefY (y)dy = fX(x)dx for the value ofx such thatg(x) = y.
Denote this valuex = g−1(y).
Inverse exists due to monotonicity ofg()

fY (y) =
fX(x)

dy/dx
=
fX(x)

g′(x)

∣∣∣∣
x=g−1(y)

whereg′(x) = dy/dx = d
dx
g(x)

Noteg′(x) 6= 0 sinceg is monotone increasing

Alternative derivation (via equivalent events)

[Y ≤ g(x)] = [g(X) ≤ g(x)] = [X ≤ x]

sinceg monotone increasing. Thus

P [Y ≤ g(x)] = P [X ≤ x] so FY (g(x)) = FX(x)

Differentiating using chain rule:

fY (g(x))g
′(x) = fX(x) or fY (y) =

fX(x)

g′(x)

∣∣∣∣
x=g−1(y)

For monotonic decreasing transformations,dy/dx is negative.
General formula for monotonic (strictly increasing or decreasing), continuous, differentiableg:

fY (y) =
fX(x)

|g′(x)|

∣∣∣∣
x=g−1(y)
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Continuous, differentiableg with “no flat segments”
Now there can be multiplex’s for whichg(x) = y
Let ny be the number ofx’s for whichg(x) = y (depends ony)
So there arex1, x2, . . . , xny roots for whichg(xi) = y

[y ≤ Y ≤ y + dy] = [x1 ≤ X ≤ x1 + dx1] ∪ [x2 ≤ X ≤ x2 + dx2] ∪ · · · ∪ [xn ≤ X ≤ xn + dxn]

Thus

P [y ≤ Y ≤ y + dy] =

ny∑
i=1

[xi ≤ X ≤ xi + dxi]

fY (y) =
∑

{xi:g(xi)=y}

fX(xi)

|g′(xi)|

Example:Y = X4

Roots atx = ± 4
√
y for y ≥ 0

g′(x) = 4x3

At x = ± 4
√
y, we have|g′(x)| = 4y3/4

fY (y) =

{
fX ( 4

√
y)

4y3/4
+
fX (− 4

√
y)

4y3/4
, y ≥ 0

0, otherwise

Sanity check:Y = aX + b
|g′(x)| = |a|
Solution toy = ax+ b is x = (y − b)/a

fY (y) =
fX((y − b)/a))

|a|

(same as before)

Linear transformation of Gaussian r.v.
SupposeX ∼ N(µX , σ2Y )
Let Y = aX + b

fY (y) =
fX((y − b)/a))

|a|
=

1
√
2πσX

exp

(
−
((y − b)/a− µX)2

2σ2X

)
/|a|

=
1

√
2π(|a|σX)

exp

(
−
(y − (aµX + b))2

2(aσX)2

)
=

1
√
2πσY

exp

(
−
(y − µY )2

2σ2Y

)

whereµY = aµX + b andσY = |a|σX
Y ∼ N(µY , σ2Y )
aX + b ∼ N(aµX + b, a2σ2X)

Thus linear transformation of a Gaussian r.v. yields a new Gaussian r.v.
(Gaussian distribution preserved under linear transformations)
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Functions of a discrete r.v.
SupposeX is a discrete r.v. with range{x1, x2, . . .} and known pmfP [X = xi]
DefineY = g(X) for some functiong : R → R

ClearlyY is a discrete r.v. and the range ofY is SY = ∪i{g(xi)}
It is easy to find the pmf ofY
If y ∈ SY , then

P [Y = y] = P [g(X) = y] =
∑

{i:g(xi)=y}

P [X = xi]

i.e. the probabilityY takes the valuey is the sum of the probabilities thatX takes those valuesxi for whichg(xi) = y.
If g(·) is monotone increasing or decreasing, then there will be only one suchx value for eachy, namelyx = g−1(y)

Computer generation of r.v.
(reverse of above thinking!)

Computer generation of discrete r.v.
Recall from computer assignment:
to generate Bernoulli r.v. withP [Y = 1] = p andP [Y = 0] = 1 − p we usedU ∼ Uniform(0, 1) and then definedY = g(U)
where

g(u) =

{
1, u < p
0, otherwise

This approach can be generalized for other discrete r.v., just split up interval...

Computer generation of continuous r.v. by “Transformation Method”

Most computing languages provide subroutines only for generating pseudo-random numbers from the Uniform(0, 1) distribution.
To generate realizations of a continuous random variableX with cdf FX(x) we must first generateU ∼ Uniform(0, 1) and then
transform it byX = g(U) for some functiong(·).
How to generateX ∼ Uniform(3, 8)?
Intuitively: X = 5U + 3.
From scale and shift of pdf:fX(x) = 1

5fU (
x−3
5 )

Note: scaled down since “stretched out” but must integrate to 1

-

6

0 1

3

8

U

X

�
�
�
�
�
�
�
��

��

X = 5U + 3
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“Transformation Method” for generating continuous r.v. (on a computer)
To generate realizations of a continuous random variableX with cdf FX(x) we must first generateU ∼ Uniform(0, 1) and then
transform it byX = g(U) for some functiong(·).
In general we must use:

X = F−1X (U) = g(U) whereg(u) = F−1X (u)

whereF−1X (·) is the inverse of the functionFX .
Note that sinceFX is monotone increasing for continuous a r.v., so the inverse is well defined.
In practice we find this inverse by settingFX(x) = u and solving forx in terms ofu. That gives us some relationshipx = g(u)
and we subsequently useX = g(U) in the computer.

Proof (that if we use the above transformation, thenX will have the desired cdfFX .

P [X ≤ x] = P [g(U) ≤ x] = P [F−1X (U) ≤ x] = P [U ≤ FX(x)] = FX(x)

sinceFX is monotone increasing for continuous r.v.
sinceFU (u) = u for U ∼ Uniform(0, 1)

Caution
Note that

[FX(u)]
−1 =

1

FX(u)

i.e., a number raised to the−1 power is the reciprocal of the number.
But F−1X (u) is the value ofx that satisfiesFX(x) = u, which is almost never the reciprocal ofFX(u)

Example
Recall that for the 30-cm circular dart board example the CDF of the r.v.X (distance to center) was

FX(x) =



0, x ≤ 0
(x/30)2, 0 ≤ x ≤ 30
1, 30 ≤ x

-

6

0

1

FX(x)

x
30

Setu = FX(x) and solve forx.
(We only need to consider0 < u < 1 sinceU is a Uniform(0,1) r.v.)
Sou = (x/30)2; thusx = 30

√
u

Thus, to generate a r.v. with the above CDF, useX = 30
√
U .

In Matlab, to generate 1000 realizations:X = 30 * sqrt(rand(1000,1))

(book does exponential)
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Synopses of the properties of a r.v.
The pdf is a complete description of the behavior of a r.v. (any probability can be computed from it). Often, due to lack of data or
no known model for a random phenomena, one must resort to simpler quantities that characterize part of the random behavior, but
are less complete than the entire pdf.
Example: summarizing mean and std. dev. after an exam

-

6

x

fX(x)

Possible “summary statistics:”
• median: pointa such that

∫ a
−∞ fX(x) dx =

∫∞
a
fX(x) dx = 1/2.

• upper quartile: pointb such that
∫∞
b
fX(x) dx = 1/4

• mode: value ofx wherefX(x) is maximum
• “center of mass” or mean:µ =

∫∞
−∞ xfX(x) dx

• “moment of inertia” or variance:σ2 =
∫∞
−∞(x − µ)

2fX(x) dx

If fX(x) is symmetric about some pointx0, then mean = median = mode =x0

The most important of the above is usually mean and variance,
or standard deviationσ, which is square root of variance

Mean or Average(essentially equivalent concepts for discrete r.v.)
Interpretations:
If n students in class with agesa1, . . . , an then average age:µ = 1

n

∑n
j=1 aj

There are onlym possible agesx1, . . . , xm, e.g.19, 20, . . . , 28
Let ni be the number of students whose age isxi.
Note that

∑m
i=1 ni = n

Another way to compute mean is

µ =
1

n

m∑
i=1

xi · ni =
m∑
i=1

xi ·
ni

n

Take board of lengthm+ 1 cm, label19, 20, . . . , 28 put a 1gram weight at age of each student.
Balancing point (center of mass) will beµ

So far no r.v.! Now suppose have each student put age on a slip of paper and put in a hat. Draw one out at random, call itX1. Put
it back, and draw out another one, call itX2. etc. Take “average”(X1 + . . .+XN)/N for a large number of drawsN
By “law of large numbers” this average will be approximatelyµ
In this experiment, fori = 1, . . . ,m we haveP [X = xi] = ni/n
So from above

µ =

m∑
i=1

xi · P [X = xi] (1)

This is the most useful formula for computing the mean of a discrete R.V.
Example: roll fair die. What is average?µ =

∑6
i=1 i · (1/6) = 3.5

Note that mean does not need to be in the range of r.v.!
Think: toss die repeatedly and take long-term average...
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Example
LetX be the number of Bernoulli attempts required to get one success, wherep = P (success)
Geometric:P [X = k] = P [k − 1 failures followed by a success] = (1− p)k−1p
Mean:

E[X ] =

∞∑
k=1

kP [X = k] =

∞∑
k=1

k(1− p)k−1p = p
∞∑
k=1

k(1− p)k−1 = p

(
1

p2

)
=
1

p

sensible!

Note for|a| < 1:
∞∑
k=1

kak−1 =
d

da

∞∑
k=1

ak =
d

da

(
a

1− a

)
=
1− a− a(−1)

(1− a)2
=

1

(1− a)2

The formulaµ =
∑
i xi · P [X = xi] is perfect for any discrete r.v.,

but we also need a similar concept for continuous r.v. and mixed r.v.,
hopefully one that is consistent with the discrete r.v. interpretation.

All r.v.’s have a pdf
so express above formula in terms of pdf

The pdf ofX (for discrete r.v.) is:
fX(x) =

∑
i

P [X = xi]δ(x− xi)

so from (1):∫ ∞
−∞
xfX(x) dx =

∫ ∞
−∞
x
∑
i

P [X = xi]δ(x − xi) dx =
∑
i

P [X = xi]

∫ ∞
−∞
xδ(x− xi) dx =

∑
i

P [X = xi]xi = µ

This gives us a universally useful formula for the mean of any r.v.X
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Expectation

E[X ] = µX = µ =

∫ ∞
−∞
xfX(x) dx

provided

E[|X |] =

∫ ∞
−∞
|x|fX(x) dx <∞

(otherwise we say the mean isundefinedor does not exist)

Note:E[X ] is a property of the pdffX(x), not of the values ofX in a particular realization of the experiment.

If P [X = a] = 1, thenE[X ] = a, but the converse is not true!

Example: Uniform r.v. If X ∼ Uniform(a, b) then

E[X ] =

∫ ∞
−∞
xfX(x) dx =

∫ b
a

x
1

b − a
dx =

1

2

b2 − a2

b− a
=
b+ a

2
-

6

xsensible!

Symmetry Property
If fX(x) is symmetric aboutm, i.e. fX(m+ x) = fX(m− x) (i.e. fX(x) = fX(2m− x)) thenE[X ] = m
Proof:

µ =

∫ ∞
−∞
xfX(x) dx =

∫ ∞
−∞
xfX(2m− x) dx =

∫ ∞
−∞
(2m− y)fX(y) dy = 2m

∫ ∞
−∞
fX(y) dy −

∫ ∞
−∞
yfX(y) dy = 2m− µ

Thusµ = m
Agrees withµ = (a+ b)/2 for Uniform(a,b)

Gaussian
The pdf of a GaussianX ∼ N(µ, σ2) is symmetric aboutµ.
ThusE[X ] = µ, so we were justified in callingµ the mean!
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Mean of a function of a r.v.
Suppose we wantE[g(X)] for some functiong : R → R

Note thatg(X) is a random variable
Example: roll die repeatedly, take average ofsquareof number of dots
Hard way:
• DefineY = g(X), now we wantE[Y ] = E[g(X)]
• First find pdffY (y) of Y
• Then integrate:E[Y ] =

∫∞
−∞ yfY (y) dy

Easy way:

E[g(X)] =

∫ ∞
−∞
g(x)fX(x) dx

Thisalwaysworks for any functiong used in engineering
Only defined if

E[|g(X)|] =

∫ ∞
−∞
|g(x)|fX(x) dx <∞

(a technical condition we won’t worry about too much)

Function of discrete r.v.∫ ∞
−∞
g(x)fX(x) dx =

∫ ∞
−∞
g(x)

∑
i

P [X = xi]δ(x− xi) dx =
∑
i

P [X = xi]

∫ ∞
−∞
g(x)δ(x − xi) dx =

∑
i

P [X = xi]g(xi)

so
E[g(X)] =

∑
i

P [X = xi]g(xi)

For die example we will getE[X2] = (12 + 22 + · · ·+ 62)/6 = 91/6

Proof that the two methods are equivalent wheng is monotone increasing, continuous, and differentiable.
(The proof for more general case is beyond the scope of this course.)
Recall that forg monotone increasing, continuous, and differentiable:

fY (y) =
fX(x)

g′(x)

∣∣∣∣
x=g−1(y)

Now make the change of variablesy = g(x) in the integral, noting thatdy = g′(x)dx andx = g−1(y):

E[Y ] =

∫ ∞
−∞
yfY (y) dy =

∫ ∞
−∞
g(x)
fX(x)

g′(x)
g′(x)dx =

∫ ∞
−∞
g(x)fX(x) dx

Scale and Shift
If Y = aX + b, i.e.Y = g(X) whereg(x) = ax+ b then

E[Y ] = E[g(X)] =

∫ ∞
−∞
g(x)fX(x) dx =

∫ ∞
−∞
(ax + b)fX(x) dx = a

∫ ∞
−∞
xfX(x) dx+ b

∫ ∞
−∞
fX(x) dx = aE[X ] + b

thus
E[aX + b] = aE[X ] + b

In particularE[b] = b (the average value for a r.v. that is just a constant is the constant)
AndE[X + b] = E[X ] + b, so we can shift the mean of a r.v. by adding a constant to it

Linearity
If g(X) =

∑
j gj(X) then

E[g(X)] = E[
∑
j

gj(X)] =
∑
j

E[gj(X)]

So can exchange summation and expectation. ButE[g(X)h(X)] 6= E[g(X)]E[h(X)] in general.



c© J. Fessler, January 2, 2001, 17:25 40

Indicator Function
If

1A(x) =

{
1, x ∈ A
0, otherwise

then

E[1A(X)] =

∫ ∞
−∞
1X(x)fX(x) dx =

∫
A

fX(x) dx = P [X ∈ A]

Conditional Expectation

E[X |A] =

∫ ∞
−∞
xfX(x|A) dx

for discrete r.v.:
E[X |A] =

∑
i

xiP [X = xi|A]

Example: roll 6-sided fair die. What isE[X |X > 2]

E[X |X > 2] =
6∑
i=1

iP [X = i|X > 2] =
6∑
i=3

i(1/4) = 4.5

since

P [X = i|X > 2] = P ([X = i] ∩ [X > 2])/P [X > 2] =

{
0, i = 1, 2
(1/6)/(4/6) = 1/4, i = 3, 4, 5, 6
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Moments of r.v.
The mean only tells us the average value taken of a r.v.
It doesn’t tell us other important factors such as how “spread out” the values ofX are (e.g. 100Ω resistors±?), or about asymmetry
of pdf.
The moments of a r.v. tell us that information. Most important (central) moment is the variance.

Moments about the origin
Thenth moment about the origin of a r.v.X is defined to be:

µn = E[X
n] =

∫ ∞
−∞
xnfX(x) dx

µ0 = 1
µ1 = µ = µX = E[X ], the mean ofX

Central Moments
Thenth central moment of a r.v.X is defined to be:

mn = E[(X − µX)
n] =

∫ ∞
−∞
(x− µX)

nfX(x) dx

m0 = 1
m1 = 0
m2 = E[(X − µX)2] = σ2X = Var[X ], the variance ofX
m3 = E[(X − µX)3] is called the “skewness” ofX . If pdf of X is symmetric, thenm3 = 0

Standard Deviation
Std[X ] =

√
Var[X ] = σX

Units:
If X has units volts, thenµ andσX also have units volts.fX(x) has units 1/volts, and Var[X ] has units volts2

Gaussian
If X ∼ N(µ, σ2), then Var[X ] = σ2

Var[X ] =
∫ ∞
−∞
(x− µ)2fX(x) dx =

∫ ∞
−∞
(x − µ)2

1
√
2πσ
e−(x−µ)

2/(2σ2) dx = σ2
∫ ∞
−∞
y2
1
√
2π
e−y

2/2 dy = σ2

lettingy = (x − µ)/σ, since by integration by parts:∫ ∞
−∞
y2
1
√
2π
e−y

2/2 dy = 1

so callingσ2 the variance was correct

Relationship between variance and moments about origin

Var[X ] = E[(X − µX)2] = E[X2 − 2XµX + µ2X ] = E[X
2]− 2E[X ]µX + µ

2
X = E[X

2]− 2µ2X + µ
2
X = E[X

2]− µ2X

so
σ2X = E[X

2]− (E[X ])2

often (but not always!) easier than applying definition directly: Var[X ] =
∫∞
−∞(x − µX)

2fX(x) dx
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Effect of shift and scale on variance

Var[aX+b] = E[(aX+b−E[aX+b])2] = E[(aX+b−(aE[X ]+b))2] = E[(a(X−E[X ]))2] = a2E[(X−E[X ])2] = a2Var[X ]

so shift has no effect on variance, but scaling bya scales variance bya2

Var[b] = 0
Var[X + b] = Var[X ]
Var[aX ] = a2Var[X ]

(3.7)
Although the moments of a r.v. are very useful, a finite set of moments does not in general tell you the whole pdf, so you cannot
compute exact probabilities knowing only the moments. We can compute bounds on the probabilities though.

Markov Inequality
If X is a nonnegative r.v., i.e.P [X ≥ 0] = 1 with known mean

P [X ≥ a] ≤
E[X ]

a
for a > 0 if P [X ≥ 0] = 1

Proof:

E[X ] =

∫ ∞
0

xfX(x) dx =

∫ a
0

xfX(x) dx +

∫ ∞
a

xfX(x) dx ≥

∫ ∞
a

xfX(x) dx ≥

∫ ∞
a

afX(x) dx = aP [X ≥ a]

Example: suppose mean age in class is 20
LetX denote age of randomly selected student
P [X ≥ 25] < 20/25 = 0.8, so no more than 20% of class can be over 25 years old

Chebyshev Inequality
Useful when meanand varianceof a r.v.X are known
Let Y = |X − µX |2. ClearlyP [Y ≥ 0] = 1, so by Markov inequalityP [Y ≥ a2] ≤ E[Y ]/a2 for a > 0
But events[Y ≥ a2] = [|X − µX | ≥ a] are equivalent. AndE[Y ] = E[|X − µX |2] = Var[X ]

P [|X − µX | ≥ a] ≤
Var[X ]
a2

for a > 0

-

6

x

fX(x)

µ µ+ aµ− aSensible: asa→∞, P → 0
Often gives fairly loose bounds
Perhaps more useful for theoretical derivations (e.g. law of large numbers) than for practice

Expected value minimizes mean squared error
E[(X − c)2] ≥ Var[X ], and the minimum is achieved iffc = E[X ]

E[(X − c)2] = E[(X − µX − (c− µX))
2] = E[(X − µX)

2]− 2E[X − µX ](c− µX) + (c− µX)
2 = Var[X ] + (c− µX)

2
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How to generate all moments easily?

Characteristic Function (Fourier transform)

Φ(ω) = E[ejωX ] =

∫ ∞
−∞
ejωxfX(x) dx

j =
√
−1, soj2 = −1 and−j · j = 1

The above integral always exists. Note that|Φ(ω)| ≤ Φ(0) = 1
Generate moments from derivatives ofΦ:

E[Xn] = (−j)n
dn

dωn
Φ(ω)

∣∣∣∣
ω=0

Proof:
dn

dωn
Φ(ω) =

dn

dωn

∫ ∞
−∞
ejωxfX(x) dx =

∫ ∞
−∞

dn

dωn
ejωxfX(x) dx =

∫ ∞
−∞
(jx)nejωxfX(x) dx

so
dn

dωn
Φ(ω)

∣∣∣∣
ω=0

= jn
∫ ∞
−∞
xnfX(x) dx = j

nE[Xn]

Example:X exponential with meanµ

Φ(ω) = E[ejωX ] =

∫ ∞
−∞
ejωxfX(x) dx =

∫ ∞
0

ejωx
1

µ
e−x/µ dx =

∫ ∞
0

1

µ
e−x(1/µ−jω) dx =

1

1− jωµ

d

dω
Φ(ω) =

jµ

(1− jωµ)2
= jµ atω = 0

By induction:
dn

dωn
Φ(ω) =

(jµ)nn!

(1− jωµ)n+1
= jnµnn! atω = 0

SoE[Xn] = µnn!
In particular Var[X ] = E[X2]− µ2 = 2µ2 − µ2 = µ2

Moment Generating Function (Laplace transform)

M(s) = E[esX ] =

∫ ∞
−∞
esxfX(x) dx (Text usesE[e−sX ])

E[Xn] =
dn

dsn
M(s)

∣∣∣∣
s=0

(for E[e−sX ] multiply by (−1)n)

Advantage: avoids complex numbers. Always exists forX nonnegative fors ≤ 0.
Disadvantage: integral may not always exist

Probability Generating Function (Z-transform)
For discrete nonnegative integer valued r.v.

G(z) = E[zX ] =

∞∑
k=0

zkP [X = k]

P [X = k] =
1

k!

dk

dzk
G(z)

∣∣∣∣
z=0
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Most engineering problems deal with multiple numerical quantities.
Random vectors (or vector random variables) are a general tool for analyzing such random phenomena.
The development of random vectors completely parallels that of random variables:
• 4.1, 4.5: Definition
• 4.2, 4.5: Joint cdf, pdf
• 4.3, 4.5: Independence (new)
• 4.4, 4.5: Conditional cdf, pdf, Bayes rule, total probability
• 4.6: Transformations:Z = g(X,Y )
• 4.7: Expectation, Moments
• 4.7: Correlation, covariance (new)
• 4.8: Gaussian random vectors
• skip 4.9, 4.10

4.1
Random Vectors (or vector random variables)
Given a sample space S, a random vectorX = (X1, . . . , Xn) is an-tuple of random variables:Xi : S → R, i = 1, . . . , n.
Thus each sample point is mapped into a vector ofn real numbers, orX : S → R

n

The behavior of a random vector is completely describes by
• the joint probability mass function (joint pmf) for discrete random vectors, and
• the joint probability density function (joint pdf) for continuous (or mixed) random vectors.

Event Shorthand
Example:[X = 5, Y < 3] = {s ∈ S : X(s) = 5 andY (s) < 3}, i.e., the “,” denotes “and” or intersection:
[X = 5, Y < 3] = [X = 5] ∩ [Y < 3]

Joint Probability Mass Function (Joint PMF) for discrete r.v.

Example: roll fair 6-sided die.
roll 1 2 3 4 5 6 (outcomes or sample pointss ∈ S)
X 0 0 3 0 0 3 3 if number of dots is a multiple of 3, and 0 otherwise
Y 0 2 0 2 0 2 2 if number of dots is even, and 0 otherwise

SX = {0, 3}, SY = {0, 2}
PMF Shorthand:p(xi, yj) = P [X = xi, Y = yj ]
p(0, 0) = P ( roll 1 or 5 ) = 2/6
p(3, 0) = P ( roll 3 ) = 1/6
p(0, 2) = P ( roll 2 or 4 ) = 2/6
p(3, 2) = P ( roll 6 ) = 1/6
Note that

∑
xi,yj
p(xi, yj) = 1

Can answer any question, e.g.P [XY > 5] =
∑
{(x,y):x∈SX,y∈SY ,xy>5}

P [X = x, Y = y] = P [X = 3, Y = 2] = 1/6

For a random vector with two components (a pair of random variables), the joint pmf can be displayed as a2D Histogram
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Equivalent Event approach to calculating probabilities for random vectors

Example: uniformly-likely circular dart board
Sample space:S = {(a, b) : a2 + b2 ≤ 302}
Two random variables defined on S:
• Distance from center: ifs = (a, b) thenR(s) =

√
a2 + b2

• Angular positionΘ(s) = tan−1(b/a)

Random vector:X = (R,Θ) i.e.X(s) = (R(s),Θ(s))
Induced sample space:SX = [0, 30]× [0, 360]
Questions: what isP [R cosΘ ≤ 10] andP ([R ≤ 20] ∩ [45 ≤ Θ ≤ 90]) ?
Answer: findequivalent event(set of sample points that satisfy the conditions)

For 2nd question, area(wedge)/area(board) =π202/8/(π302) = 1/18

θ
R

General formula:

[X ∈ B] = {s ∈ S : X(s) ∈ B} = X−1(B) so P [X ∈ B] = P (A), whereA = {s ∈ S : X(s) ∈ B}

The latter question is said to be in “product form”
In general an event of the formA = [X1 ∈ B1] ∩ [X2 ∈ B2] ∩ · · · ∩ [Xn ∈ Bn] is in product form
Since[X1 ∈ B1] ∩ [X2 ∈ B2] ∩ · · · ∩ [Xn ∈ Bn] = [X ∈ B] whereB = B1 ×B2 × · · · ×Bn
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Any event of interest can be formed from (limits of) unions of events in product form. Therefore, if we know all the probabilities
of the form

P ([X1 ≤ x1] ∩ [X2 ≤ x2] ∩ · · · ∩ [Xn ≤ xn]) = P [X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn]

we can compute any probability of interest
(although really we will use the above to get joint pdf and then integrate to get probabilities)

4.2
Joint Cumulative Probability Distribution Function (Joint CDF) (Joint Distribution)

FX1,X2,...,Xn(x1, x2, . . . , xn) = P [X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn] for −∞ < xi <∞, i = 1, . . . , n

Read: the probability of the event that the r.v.X1 takes on a value in the interval(−∞, x1] and the r.v.X2 takes on a value in the
interval(−∞, x2] and ...

Properties of Joint CDF (for 2-vector(X,Y ) only, generalization ton-vector is straightforward)
• 0 ≤ FX,Y (x, y) ≤ 1, ∀x, y
• FX,Y (∞,∞) = 1
• FX,Y (−∞, y) = FX,Y (x,−∞) = 0, ∀x, y
• Monotone nondecreasing:FX,Y (x1, y1) ≤ FX,Y (x2, y2) if x1 ≤ x2 andy1 ≤ y2
• FX,Y (x) is “right” continuous:FX,Y (x, y) = limδ↘0 FX,Y (x+ δ, y) = limδ↘0 FX,Y (x, y + δ) (for δ > 0)
• P [x1 < X ≤ x2, Y ≤ y] = FX,Y (x2, y)− FX,Y (x1, y) (sketch)
• P [X ≤ x, y1 < Y ≤ y2] = FX,Y (x, y2)− FX,Y (x, y1)
• P [x1 < X ≤ x2, y1 < Y ≤ y2] = FX,Y (x2, y2)− FX,Y (x2, y1)− FX,Y (x1, y2) + FX,Y (x1, y1)
• P [X = x, Y = y] = limδx→0 limδy→0 P [x− δx < X ≤ x, y − δy < Y ≤ y] = . . . ?

Example: circular dart board withR andΘ as defined above

FR,Θ(r, θ) = P ([R ≤ r, Θ ≤ θ]) = P ([R ≤ r] ∩ [Θ ≤ θ]) =




0, r < 0 or θ < 0
(r/30)2θ/360, 0 ≤ r ≤ 30, 0 ≤ θ ≤ 360
θ
360 , r > 30, 0 ≤ θ ≤ 360
(r/30)2, 0 ≤ r ≤ 30, θ > 360
1, r > 30, θ > 360

Marginal CDF or Marginal Distribution
FX(x) = FX,Y (x,∞), FY (y) = FX,Y (y,∞)

FX,Y (x,∞) = P ([X ≤ x] ∩ [Y ≤ ∞]) = P ([X ≤ x] ∩ S) = P ([X ≤ x]) = FX(x)

In preceding example

FΘ(θ) = FR,Θ(∞, θ) =



0, θ < 0
θ
360 , 0 ≤ θ ≤ 360
1, θ > 360

which is Uniform(0,360): makes sense.
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Proof of relation between probability and CDF

[x1 < X ≤ x2, y1 < Y ≤ y2] = ([x1 < X ≤ x2] ∩ [Y ≤ y2]) ∩ [Y ≤ y1]
c

sinceP (A ∩Bc) = P (A)− P (A ∩B):

P [x1 < X ≤ x2, y1 < Y ≤ y2] = P [x1 < X ≤ x2, Y ≤ y2]− P [x1 < X ≤ x2, Y ≤ y1]

Applying same approach toX yields:

P [x1 < X ≤ x2, y1 < Y ≤ y2] = P [X ≤ x2, Y ≤ y2]− P [X ≤ x1, Y ≤ y2]− (P [X ≤ x2, Y ≤ y1]− P [X ≤ x1, Y ≤ y1])

= FX,Y (x2, y2)− FX,Y (x1, y2)− FX,Y (x2, y1) + FX,Y (x1, y1)

Discrete random vector
CDF:

FX,Y (x, y) =
∑
i,j

P [X = xi, Y = yj ]u(x− xi)u(y − yj)

since
P [X ≤ x, Y ≤ y] =

∑
{i:xi≤x}

∑
{j:yj≤y}

P [X = xi, Y = yj ]

pdf:
fX,Y (x, y) =

∑
i,j

P [X = xi, Y = yj ]δ(x− xi, y − yj)
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Computing probabilities viaP [x1 < X ≤ x2, y1 < Y ≤ y2] = FX,Y (x2, y2)− FX,Y (x2, y1)− FX,Y (x1, y2) + FX,Y (x1, y1) is
inconvenient. Integrating a pdf would be easier

Joint Probability Density Function (pdf)
The joint probability density function (pdf) of an-dimensional random vectorX is defined to be

fX1,X2,...,Xn(x1, x2, . . . , xn) =
dn

dx1dx2 · · ·dxn
FX1,X2,...,Xn(x1, x2, . . . , xn)

(details about nondifferentiability similar to 1D case)

Example: Joint pdf ofR,Θ for circular dartboard:

fR,Θ(r, θ) =

{
2r
302

1
360 , 0 < r < 30, 0 < θ < 360

0, otherwise

Properties of joint pdf (for 2-vector only) (generalization straightforward)
• fX,Y (x, y) ≥ 0 ∀x
•
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dx dy = 1

• FX,Y (x, y) =
∫ x+
−∞

∫ y+
−∞ fX,Y (x

′, y′) dx′ dy′

• FX(x) =
∫ x+
−∞

∫∞
−∞ fX,Y (x

′, y) dx′ dy sinceFX(x) = FX,Y (x,∞)

FY (y) =
∫∞
−∞

∫ y+
−∞ fX,Y (x, y

′) dx dy′

• P [x1 < X ≤ x2, y1 < Y ≤ y2] =
∫ x+2
x1

∫ y+2
y1
fX,Y (x, y) dx dy

• P [(X,Y ) ∈ B] =
∫∫
B
fX,Y (x, y) dx dy

If 1st two hold, thenfX,Y is valid joint pdf

Interpretation of joint pdf
P [x− δx < X ≤ x, y − δy < Y ≤ y] ≈ δxδyfX,Y (x, y) for smallδ’s
Higher density = more likely

Example:P [R ≤ 20, π/4 ≤ Θ ≤ π/2]

=

∫∫
{(r,θ):rθ≤20}

fR,Θ(r, θ) drdθ =

∫ 20
0

∫ π/2
π/4

2r

302
1

2π
drdθ =

∫ 20
0

2r

302
π/2− π/4

2π
drdθ =

1

8

r2

302

∣∣∣∣
20

r=0

=
1

18

(same as before)
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Marginal pdf

fX(x) =
d

dx
FX(x) =

d

dx

∫ x+
−∞

∫ ∞
−∞
fX,Y (x

′, y) dx′ dy =

∫ ∞
−∞
fX,Y (x, y) dy

Similarly

fY (y) =

∫ ∞
−∞
fX,Y (x, y) dx and in generalfXi(xi) =

∫ ∞
−∞
· · ·

∫ ∞
−∞
fX1,...,Xn(x1, . . . , xn) dx1 · · · dxi−1 dxi+1 · · · dxn

Example: Joint pdf ofX,Y for circular dartboard: (we can finally formalize!)

fX,Y (x, y) =

{
1
πr2
, x2 + y2 ≤ r2

0, otherwise
uniform over entire dartboard

soP [(X,Y ) ∈ A] =
∫∫
A
1
πr2
dxdy = Area(A)/(πr2)

SX = [−r, r]

fX(x) =

∫ ∞
−∞
fX,Y (x, y) dy =

∫ √r2−x2
−
√
r2−x2

1

πr2
dy =

{
2
πr2

√
r2 − x2, for |x| ≤ r

0, o.w.

(Picture)

Intuition: why peaked at center?

(skip)
Example: a 1-meter stick breaks “randomly” into 3 pieces.
What is probability a triangle cannot be formed from 3 pieces?
LetX andY denote break points. Assume

fX,Y (x, y) =

{
1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0, otherwise

(2d uniform pdf)

A = { cannot form triangle} = { longest piece> 1/2} = A1 ∪A2 ∪A3
whereA1 = [X < 1/2, Y < 1/2], A2 = [X > 1/2, Y > 1/2], A3 = [|X − Y | > 1/2]

P (A1) =

∫∫
A1

fX,Y (x, y) dx dy = Area(A1) = 1/4

P (A) = 3/4

-
X

6
Y

A1

A2

�
�
�
�
�
�

�
�
�
�
�
�

A3

A3
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Recall that eventsA andB are independent iffP (A ∩B) = P (A)P (B)
We want an analogous concept for random variables.

4.3
Independence of Random Variables
We sayX1, . . . , Xn are independent r.v.s iff any of the following equivalentseparabilityconditions hold∀x1, . . . xn ∈ R:

P [X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn] = P [X1 ≤ x1]P [X2 ≤ x2] · · ·P [Xn ≤ xn]

FX1,X2,...,Xn(x1, x2, . . . , xn) = FX1(x1)FX2 (x2) · · ·FXn(xn)

fX1,X2,...,Xn(x1, x2, . . . , xn) = fX1(x1)fX2(x2) · · · fXn(xn)

P [X1 ∈ B1, . . . , Xn ∈ Bn] = P [X1 ∈ B1] · · ·P [Xn ∈ Bn]

For discrete r.v., joint PMF must factor into product of marginal PMFs:

P [X1 = x1, . . . , Xn = xn] = P [X1 = x1] · · ·P [Xn = xn]

Example: Joint pdf ofR,Θ for circular dartboard:

fR,Θ(r, θ) =

{
2r
302

1
360 , 0 < r < 30, 0 < θ < 360

0, otherwise

fR(r) =

{
2r
302 , 0 < r < 30
0, otherwise

fΘ(θ) =

{
1
360 , 0 < θ < 360
0, otherwise

SoR andΘ are independent forcircular dartboard. (ButX andY are dependent!)
(In contrast, forsquaredartboardX andY are independent, butR andΘ are dependent!)

Property of Independent R.V.s
If X1, . . . , Xn are independent r.v.s, then functions of disjoint subsets of theXi’s are independent.
E.g., if Y1 = X1 +X2, Y2 = X7eX4 , Y3 = logX5 thenY1, Y2 andY3 are independent r.v.s.

Independence arises two ways. In some problems (such as dart board above) we know how the r.v. is defined (from sample
space) and we form joint CDF and then check to see if independent or not. In other problems we are given that some of the r.v.s
are independent (for example if they come from independent sub-experiments), and we use that fact to calculate other things of
interest.
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Example: a satellite has two power supplies, a primary and a backup that switches on if the primary fails.
The failure timeX of primary (relative to launch time) is exponential with mean 1 year.
The failure timeY of backup (relative to engaging) is exponential with mean 1 year.
Assume lifetime of two supplies is independent.
What is prob. that satellite still works after 3 years?
Translate:{satellite still works after 3 years} = [X + Y > 3]

P [X + Y ≥ 3] =

∫∫
{(x,y):x+y≥3}

fX,Y (x, y) dx dy = 1−

∫∫
{(x,y):x+y<3}

fX(x)fY (y) dx dy

= 1−

∫ 3
0

∫ 3−x
0

e−xe−y dx dy = 1−

∫ 3
0

e−x(1− e−(3−x)) dx = 1−

∫ 3
0

e−x − e−3 dx = 4e−3

Two aspects of region to consider:
• where isfX,Y nonzero,
• what subset of that is the event of interest?

-
x

6y

@
@
@
@
@
@

3

3

also: Buffon’s needle
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4.4 Conditional Probability and Conditional Expectation

CDF

FX(x) = P [X ≤ x] FX1,...,Xn(x1, . . . , xn) = P [X1 ≤ x1, . . . , Xn ≤ xn]

pdf

fX(x) =
d
dx
FX(x) fX1,...,Xn(x1, . . . , xn) =

dn

dx1···dxn
FX1,...,Xn(x1, . . . , xn)

Conditioning on Events

Conditional CDF

FX(x|A) = P [X ≤ x|A]

Conditional pdf (given an event)

fX(x|A) =
d
dx
FX(x|A)

Total Probability for CDF, if{Ai} partition S

FX(x) =
∑
i FX(x|Ai)P (Ai)

Total Probability for pdf, if{Ai} partition S

fX(x) =
∑
i fX(x|Ai)P (Ai)

Total Expectation, if{Ai} partition S

E[g(X)] =
∑
iE[g(X)|Ai]P (Ai)

Point Conditioning and Events

Bayes rule for point conditioning

P (A|X = x) = fX(x|A)P (A)/fX(x)

Total Probability for event from pdf

P (A) =
∫∞
−∞ P (A|X = x)fX(x) dx

Two random variables (NEW)

Bayes rule for two r.v.s

fY |X(y|x) = fX|Y (x|y)fY (y)/fX(x)

Total probability for two r.v.s

fY (y) =
∫∞
−∞ fY |X(y|x)fX(x) dx =

∫∞
−∞ fX,Y (x, y) dx

Law of iterated expectation for two r.v.s

E[Y ] = E[E[Y |X ]] =
∫∞
−∞E[Y |X = x]fX(x) dx
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4.4
Interval conditioning

FY (y | x1 < X ≤ x2) = P [Y ≤ y | x1 < X ≤ x2] =
P [Y ≤ y, x1 < X ≤ x2]

P [x1 < X ≤ x2]

=

∫ y
−∞

∫ x2
x1
fX,Y (x, y

′) dxdy′∫∞
−∞

∫ x2
x1
fX,Y (x, y′) dxdy′

=

∫ y
−∞

∫ x2
x1
fX,Y (x, y

′) dxdy′∫ x2
x1
fX(x) dx

Define the conditional pdf

fY (y | x1 < X ≤ x2) =
d

dy
FY (y | x1 < X ≤ x2) =

d

dy

∫ y
−∞

∫ x2
x1
fX,Y (x, y

′) dxdy′∫ x2
x1
fX(x) dx

=

∫ x2
x1
fX,Y (x, y) dx∫ x2
x1
fX(x) dx

Note that naturally asx1 → −∞ andx2 →∞, fY (y | x1 < X ≤ x2)→ fY (y).

Point conditioning and conditional pdfs
Recall that earlier we defined point-conditioning probabilities by

P (A|X = x) = lim
δ→0
P (A | x− δ < X ≤ x) =

fX(x|A)P (A)

fX(x)

Now letA be the event[Y ≤ y], then

FY |X(y|x) = P [Y ≤ y | X = x] = lim
δ→0
P [Y ≤ y | x− δ < X ≤ x] = lim

δ→0

P [Y ≤ y, x− δ < X ≤ x]

P [x− δ < X ≤ x]

= lim
δ→0

FX,Y (x, y)− FX,Y (x− δ, y)

FX(x)− FX(x− δ)
= lim
δ→0

1
δ
(FX,Y (x, y)− FX,Y (x− δ, y))
1
δ
(FX(x)− FX(x− δ))

=
d
dx
FX,Y (x, y)

fX(x)

Define the conditional pdf

fY |X(y|x) =
d

dy
FY |X(y|x) =

d

dy

d
dx
FX,Y (x, y)

fX(x)
=
fX,Y (x, y)

fX(x)
so fY |X(y|x) =

fX,Y (x, y)

fX(x)

Also useful is the rearrangement:

fX,Y (x, y) = fY |X(y|x)fX(x)

Similarly

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

So combining yieldsBayes rulefor pdfs:

fX|Y (x|y) =
fY |X(y|x)fX(x)

fY (y)

“Total probability” for pdfs:

fY (y) =

∫ ∞
−∞
fX,Y (x, y) dx =

∫ ∞
−∞
fY |X(y|x)fX(x) dx so fY (y) =

∫ ∞
−∞
fY |X(y|x)fX(x) dx

Calculating probability from condition pdf:

P [Y ∈ B|X = x] =

∫
B

fY |X(y|x) dy
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Conditional pdfs in general

fX1,X2|X3,X4,X5(x1, x2 | x3, x4, x5) =
fX1,X2,X3,X4,X5(x1, x2, x3, x4, x5)

fX3,X4,X5(x3, x4, x5)

etc.

Chain rule for pdfs

f(x1, . . . , xn) = f(xn|x1, . . . , xn−1)f(xn−1|x1, . . . , xn−2) · · · f(x2|x1)f(x1)

(with lazy notation omitting subscripts)

Example (4.23 reworded)
Packets arriving at a router.
The number that arrive during any time interval[t1, t2] is a Poisson r.v. with meanβ(t2 − t1)
Assume that the amount of timeT needed to process the packet is a r.v. with exponential distribution with mean1/λ.
(random due to routing tables, etc.)
Router has 8 packet buffer. What is P(overflow), i.e., 9 or more new packets arrive while processing “the first” packet.
NeedP [N ≥ 9], whereN is the number of (new) packets that arrive while “the first” packet is being processed.
Find the PMF ofN .
N is discrete r.v. withSN = {0, 1, 2, . . .}
Let T be the time required to process specified packet. We are given:

fT (t) = λe
−λtu(t).

Also:

P [N = k|T = t] =
(βt)k

k!
e−βt.

By “total prob” (eqn 4.35)

P [N = k] =

∫ ∞
−∞
P [N = k|T = t]fT (t) dt =

∫ ∞
0

(βt)k

k!
e−βtλe−λt dt

=
βkλ

k!

∫ ∞
0

tke−(β+λ)t dt =
βkλ

(β + λ)k+1
=

(
λ

β + λ

)(
β

β + λ

)k
since

∫∞
0
xke−ax dx = k!/ak+1, so

P [N ≥ k] =
∞∑
j=k

λ

β + λ

(
β

β + λ

)j
=

(
β

β + λ

)k

Note: largeβ means overflow, unlessλ large enough to keep up.
Specific application: supposeβ = 2/µsec (on average 2 new packets per microsecond)
How large mustλ be to ensure that only 0.1% of the time will more then 8 new packets arrive while during processing?
WantP [N ≥ 9] ≤ 0.001 = p
( β
β+λ)

k ≤ p soλ ≥ β(1/ k
√
p− 1) = 2(1/ 9

√
0.001− 1) ≈ 2.31 perµsec.

Needµ ≤ 1/2.31 = 0.43µsec / packet.

Naive design: useµ = 0.5µsec so thatλ = 2/µsec.
ThenP [N ≥ 9] = (1/2)9 = 0.002 or 0.2% of the time there will be overflow.
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Independence and conditional pdfs
If X andY are independent r.v.s, thenfX,Y (x, y) = fX(x)fY (y) so

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=
fX(x)fY (y)

fX(x)
= fY (y) equivalently FY (y|X ∈ B) = FY (y) ∀B ∈ B

Similarly
fX|Y (x|y) = fX(x)

this gives us two alternate conditions for testing independence

Conditional Expectation

E[Y |X = x] =

∫ ∞
−∞
yfY |X(y|x) dy

Note thatE[Y |X = x] is a function that maps any valuex into a number.
Call this functiong(x) = E[Y |X = x] ThenE[Y |X ] = g(X) is a random variable

Independence and expectation
If X andY are independent r.v.s, then

E[Y |X = x] = E[Y ] and E[X |Y ] = E[X ]

However, the converse isnot true
Example: circular dart board with

fX,Y (x, y) =

{
1
πr2 , x

2 + y2 ≤ r2

0, otherwise

then deriving the conditional pdffY |X(y|x) is symmetric about 0 soE[Y |X = x] = 0. Also the marginal pdffY (y) is symmetric
about 0 soE[Y ] = 0. ThusE[Y |X ] = E[Y ] = 0. ButX andY are not independent.

Law of Iterated Expectation
E[E[Y |X ]] = E[Y ]

E[E[Y |X ]] =

∫ ∞
−∞
E[Y |X = x]fX(x) dx =

∫ ∞
−∞

∫ ∞
−∞
yfY |X(y|x) dy fX(x) dx

=

∫ ∞
−∞

∫ ∞
−∞
yfX,Y (x, y) dxdy =

∫ ∞
−∞
yfY (y) dy = E[Y ]

Example: mean of packets arriving (earlier)
Intuition: E[N ] = βE[T ] = β/λ

E[N ] = E[E[N |T ]] =

∫ ∞
0

E[N |T = t]fT (t) dt =

∫ ∞
0

(βt)fT (t) dt = βE[T ] = β/λ
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4.6
Functions or transformations of a random vectors
LetX1, . . . , Xn be r.v.s whose joint pdf (perhaps via jcdf) is known.
LetZ = g(X1, . . . , Xn) whereg : Rn → R. Want to find pdf (via cdf) ofZ in terms of joint pdf ofXi’s.

Method of Equivalent Events
Let

Rz = {(x1, . . . , xn) ∈ R
n : g(x1, . . . , xn) ≤ z} = g

−1((−∞, z])

then[Z ≤ z] is equivalent to the event[X ∈ Rz ], so

FZ(z) = P [Z ≤ z] = P [X ∈ Rz] =

∫ ∫
· · ·

∫
Rz

fX1,...,Xn(x1, . . . , xn) dx1 · · · dxn

Not really any simple plug-and-chug formula! (except Jacobian)

Typical problems for pairs of r.v.s:Z = g(X,Y ).
Z = X + Y , Z = X · Y , Z = X/Y , Z = max(X,Y ), Z = min(X,Y ), Z =

√
X2 + Y 2, Z = |X − Y |,X = R cosΘ, . . .

Example: Z = X + Y
Equivalent event is easy in this case:[Z ≤ z] = [X + Y ≤ z] = [Y ≤ z − X ] = [(X,Y ) ∈ Rz] whereRz = {(x, y) ∈ R2 :
x+ y ≤ z}

-
X

6Y

@
@
@
@
@
@
z

z

FZ(z) = P [Z ≤ z] = P [X ∈ Rz ] =

∫ ∞
−∞

∫ z−x
−∞

fX,Y (x, y) dy dx

gives cdf ofZ in terms of joint pdf ofX andY

fZ(z) =
d

dz
FZ(z) =

∫ ∞
−∞
fX,Y (x, z − x) dx

gives pdf ofZ in terms of joint pdf ofX andY

Sums of Independent r.v.sIf X andY are independent r.v.s, then

fZ(z) =

∫ ∞
−∞
fX(x)fY (z − x) dx = (fX ? fY )(z)

which is a convolution integral. More generally, ifX1, . . . , Xn are independent r.v.s andZ = X1 + · · ·+Xn, then

fZ(z) = (fX1 ? fX2 ? · · · ? fXn)(z)

(well defined because convolution is a commutative and associative operator)

Convolution

f(x) = (g ? h)(x) = (h ? g)(x) =

∫ ∞
−∞
g(t)h(x− t) dt =

∫ ∞
−∞
h(t)g(x − t) dt



c© J. Fessler, January 2, 2001, 17:25 57

Example: sum of 2 independent exponential r.v.s is Erlang
AssumeX andY are independent and have exponential distributions with same meanµ
fX(x) = e

−x/µ/µu(x)
LetZ = X + Y and find pdf ofZ
Since range ofX andY is nonnegative,SZ = [0,∞) so only need to considerz ≥ 0

fZ(z) = (fX ? fY )(z) =

∫ ∞
−∞
fX(x)fY (z − x) dx =

∫ z
0

1

µ
e−x/µ

1

µ
e−(z−x)/µ dx

=

∫ z
0

1

µ2
e−z/µ dx =

z

µ2
e−z/µu(z)

soZ has an Erlang distribution.

Sums of independent r.v.s(can be shown using above convolution approach)
• N(µ1, σ21) +N(µ2, σ

2
2) ≡ N(µ1 + µ2, σ

2
1 + σ

2
2)

• Poisson{λ1}+ Poisson{λ2} ≡ Poisson{λ1 + λ2}
• Binomial(n1, p) + Binomial(n2, p) ≡ Binomial(n1 + n2, p)

Example: method of equivalent events
Y = max(X1, X2, X3) whereX ’s are assumed independent. Find pdf ofY

FY (y) = P [Y ≤ y] = P [max(X1, X2, X3) ≤ y] = P [X1 ≤ y,X2 ≤ y,X3 ≤ y] = FX1(y)FX2 (y)FX3 (y)

or in general:

=

∫ y
−∞

∫ y
−∞

∫ y
−∞
fX1,X2,X3(x1, x2, x3) dx1 dx2 dx3

Thus by chain rule (for independentX ’s case):

fY (y) =
d

dy
FY (y) = fX1(y)FX2 (y)FX3 (y) + FX1 (y)fX2(y)FX3(y) + FX1(y)FX2 (y)fX3(y)

For this case the equivalent event could be found without picture. Usually a picture is needed.
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4.7
Expectation, Mean, Average, or Expected Value of function of vector random variables
For function of 1 r.v.:

E[g(X)] =

∫ ∞
−∞
g(x)fX(x) dx

For function of multiple r.v.s:

E[g(X1, . . . , Xn)] =

∫ ∞
−∞
· · ·

∫ ∞
−∞
g(x1, . . . , xn)fX1,...,Xn(x1, . . . , xn) dx1 · · · dxn

provided

E[|g(X1, . . . , Xn)|] =

∫ ∞
−∞
· · ·

∫ ∞
−∞
|g(x1, . . . , xn)| fX1,...,Xn(x1, . . . , xn) dx1 · · · dxn <∞

(otherwise we say it isundefinedor does not exist)

(hard way would be to letY = g(X1, . . . , Xn), find pdf ofY , then useE[Y ] =
∫∞
−∞ yfY (y) dy

Discrete random vector

E[g(X1, . . . , Xn)] =
∑

x1∈SX1

· · ·
∑

xn∈SXn

g(x1, . . . , xn)P [X1 = x1, . . . , Xn = xn]

Linearity Properties

E[X +Y ] =

∫∫
(x+ y)fX,Y (x, y) dx dy =

∫∫
xfX,Y (x, y) dx dy+

∫∫
yfX,Y (x, y) dx dy =

∫
xfX(x) dx+

∫
yfY (y) dy

SoE[X + Y ] = E[X ] + E[Y ]. By similar argument more generally:

E[
∑
j

gj(X1, . . . , Xn)] =
∑
j

E[gj(X1, . . . , Xn)]

so we can exchange expectation and summation.
Note that linearity of expectation does not require independence!

Example (mean of Binomial(n,p))
LetX1, . . . , Xn be independent Bernoulli random variables (1 if success, 0 if failure) with success probabilityp
SinceXi is a discrete r.v.:E[Xi] = 1p+ 0(1− p) = p
Let Y = X1 + · · ·+Xn be the number of successes inn trials, soY has Binomial(n, p) distribution
E[Y ] =

∑n
i=1 E[Xi] = np, which is much easier than earlier approach ofE[Y ] =

∑n
k=0 kP [Y = k]

Conditional Expectation

E[g(X1, . . . , Xn)|A] =

∫ ∞
−∞
· · ·

∫ ∞
−∞
g(x1, . . . , xn)fX1,...,Xn(x1, . . . , xn|A) dx1 · · · dxn

If A1, A2, . . . partition S:

E[g(X1, . . . , Xn)] =
∑
i

E[g(X1, . . . , Xn)|Ai]P (Ai) (“total expectation”)
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Example (expectation of sum of dependent r.v.s)
Supposen concertgoers check their hats at a coatroom. The coat checkers randomly rearrange all of the hats before returning them
to the concertgoers. What is the expected number of concertgoers that get their own hat back? (Y )
Hard way: find PMF ofY , and then sum:E[Y ] =

∑n
k=0 kP [Y = k].

Easy way: letXi be 1 if theith concertgoer gets his or her own hat back, and 0 otherwise. SinceP [Xi = 1] = 1/n,

E[Xi] = 1P [Xi = 1] + 0P [Xi = 0] = 1
1

n
+ 0 =

1

n

SinceY =
∑n
i=1Xi

E[Y ] = E[

n∑
i=1

Xi] =

n∑
i=1

E[Xi] =

n∑
i=1

1

n
= 1 independent ofn !

Independence
If X1, . . . , Xn are independent r.v.s, then

E[g1(X1)g2(X2) · · · gn(Xn)] =

∫ ∞
−∞
· · ·

∫ ∞
−∞
g1(x1) · · · gn(xn)fX1,...,Xn(x1, . . . , xn) dx1 · · · dxn

=

∫ ∞
−∞
· · ·

∫ ∞
−∞
g1(x1) · · · gn(xn)fX1(x1) · · · , fXn(xn) dx1 · · · dxn =

∫ ∞
−∞
g1(x1)fX1(x1) dx1 · · ·

∫ ∞
−∞
gn(xn)fXn(xn) dxn

= E[g1(X1)]E[g2(X2)] · · ·E[gn(Xn)]

do not apply this formula to dependent r.v.s!
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(4.7)
Moments
Marginal moments are same as before (mean and variance of a r.v.)
Now what is interesting is the moments that relating to the coupling between two r.v.s
• Thecorrelation between r.v.sX andY is defined to beE[XY ]
• If E[XY ] = 0, then we sayX andY areorthogonal
• ThecovariancebetweenX andY is defined to beCov{X,Y } = E[(X − µX)(Y − µY )]

• Thecorrelation coefficientofX andY is ρX,Y =
Cov{X,Y }

σXσY
• If ρX,Y = 0, then we sayX andY areuncorrelated
• Note thatρX,Y = 0 is essentially equivalent toCov{X,Y } = 0. (caution: potentially confusing terminology)

Properties of Covariance
• Cov{X,Y } = E[XY ]− µXµY
• Cov{X,Y } = Cov{Y,X}
• Cov{X,X} = Var[X ]
• Cov{aX + b, Y } = aCov{X,Y }
• |Cov{X,Y } | ≤ σXσY (called theSchwarz Inequality)
• Thus|ρX,Y | ≤ 1
• If X andY are independent r.v.s, thenE[XY ] = µXµY so Cov{X,Y } = ρX,Y = 0.
• The reverse isnot truein general (uncorrelated does not ensure independence); an exception is Gaussian.

• Cov
{∑

iXi,
∑
j Yj

}
=
∑
i

∑
j Cov{Xi, Yj}

Correlation and Linearity
SupposeY = aX + b. FindρX,Y . Note thatσ2Y = a

2σ2X andµY = aµX + b, soY − µY = aX + b− (aµX + b) = a(X − µX)

ρX,Y =
Cov{X,Y }

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
=
E[(X − µX)a(X − µX)]

σX |a|σX
=

aσ2X
σX |a|σX

=
a

|a|
=

{
1, a > 0
−1, a < 0

Hölder Inequality (Proof uses Jensen inequality)

If 1/p+ 1/q = 1 for p > 0 andq > 0, then:|E[XY ]| ≤ E[|XY |] ≤ (E[|X |p])1/p(E[|Y |q])1/q

Variance of Sum of two r.v.s
If Z = X + Y thenE[Z] = E[X ] + E[Y ] by linearity

Var[Z] = E[(Z − µZ)2] = E[(X + Y − (E[X ] + E[Y ]))2] = E[(X − E[X ] + Y − E[Y ])2]

= E[(X − E[X ])2] + 2E[(X − E[X ])(Y − E[Y ])2] + E[(Y − E[Y ])2] = Var[X ] + 2Cov{X,Y }+ Var[Y ]

note pattern: express new things concisely in terms of old
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4.8
Bivariate Gaussian r.v.s(important for signal + noise models)
We sayX andY are jointly Gaussian r.v.s iff their joint pdf has the following form:

fX,Y (x, y) =
1

2πσXσY
exp

(
−1

2(1− ρ2)

[(
x− µX
σX

)2
− 2ρ

(
x− µX
σX

)(
y − µY
σY

)
+

(
y − µY
σY

)2])

• Marginal pdfs ofX andY are Gaussian:X ∼ N(µX , σ2X), Y ∼ N(µY , σ
2
Y )

• ρ in jpdf is indeed the correlation coefficient, andµX , µY , σ2X , σ
2
Y are means and variances

• Entire jpdf is specified by only the two means, variances, andρ
• If ρ = 0 (uncorrelated) thenX andY are independent (not true in general!)
• Linear transform of Gaussian still Gaussian. IfZ = aX + bY thenZ ∼ N(aµX + bµY , a2σ2X + b

2σ2Y + 2abρσXσY )

• Conditional pdf ofX givenY = y is Gaussian:N(µX + ρ
σX

σY
y, σ2X(1− ρ

2))

Practical reasons for using Gaussian: central limit theorem, and only first and second order moments needed.

Gaussian random vectors

X =



X1
...
Xn


 x =



x1
...
xn


 µX =



µ1
...
µn


 =



E[X1]

...
E[Xn]




fX(x) =
1

(2π)n/2
√
|CX |

exp

(
−
1

2
(x− µX)

TC−1X (x− µX)

)

where|CX | denotes matrix determinant, andCX is then× n covariance matrix ofX , where

[CX ]ij = Cov{Xi, Xj}

In n = 2 case,

CX =

[
Cov{X1, X1} Cov{X1, X2}
Cov{X2, X1} Cov{X2, X2}

]
=

[
σ21 ρσ1σ2
ρσ1σ2 σ22

]

so |CX | = (1− ρ2)σ21σ
2
2 and

C−1X =
1

1− ρ2


 σ−21

−ρ

σ1σ2
−ρ

σ1σ2
σ−22


 so xTC−1X x =

1

1− ρ2

[(
x1 − µ1
σ1

)2
− 2ρ

(
x1 − µ1
σ1

)(
x2 − µ2
σ2

)
+

(
x2 − µ2
σ2

)2]

Thus the bivariate form is indeed then = 2 special case of the general form

Minimum mean squared error
The constantc that minimizes this mean squared error:E[(g(X1, . . . , Xn)− c)2] is c = E[g(X1, . . . , Xn)]
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5.1
Characteristic Function for sums of independent r.v.s
If Z = X1 + · · ·+Xn where theXi’s are independent then

ΦZ(ω) = E[e
jωZ ] = E[ejω(X1+···+Xn)] = E[ejωX1 · · · · · ejω+Xn ] = E[ejωX1 ] · · · · · E[ejω+Xn ] = ΦX1(ω) · · · · ·ΦXn(ω)

Thus char. fun. forZ is product of char. fun.’s ofXi’s
ComputeΦ for each r.v., multiply, then Fourier transform to get pdf ofZ
Easier thenn-fold convolution
For largen can still be a pain - central limit theorem can help

Example: Sum of (independent) Gaussians is Gaussian

If X ∼ N(µ, σ2) thenΦX(ω) = ejωµ−ω
2σ2/2

DefineY =
∑n
i=1Xi whereXi ∼ N(µi, σ2i ) andXi’s are independent.

We know the 1st and 2nd moments ofY : µY =
∑n
i=1 µi, σ

2
Y =

∑n
i=1 σ

2
i (to be shown shortly)

For the entire pdf ofY :

ΦY (ω) =

n∏
i=1

ΦXi(ω) =

n∏
i=1

ejωµi−ω
2σ2i /2 = exp[

n∑
i=1

(jωµi − ω
2σ2i /2)] = e

jωµY −ω
2σ2Y /2

ThusY ∼ N(µY , σ2Y ), i.e. sum of (independent) Gaussians is still Gaussian! (Even withXi’s having different moments.)
Similarly, sum of i.i.d. exponentially distributed r.v.s has Erlang dist’n
Unfortunately, in general the pdf of the sum of r.v.s may be intractable. Often it is sufficient just to look at the moments.

Sum of Independent (actually just uncorrelated) r.v.s
Let Y = X1 + · · ·+Xn whereXi andXj are uncorrelated fori 6= j
RecallE[Y ] =

∑
i E[Xi] by linearity so

Y − µY =
∑
i

Xi −
∑
i

E[Xi] =
∑
i

(Xi − E[Xi])

Var[Y ] = E[(Y − µY )2] = E[

(∑
i

(Xi − E[Xi])

)2
] =

∑
i

E[(Xi − E[Xi])
2] +

∑
i,i6=j

E[(Xi − E[Xi])(Xi − E[Xj ])]

Thus in general
Var[

∑
i

Xi] =
∑
i

Var[Xi] +
∑
i6=j

Cov{Xi, Xj}

Easier derivation:

Var[
∑
i

Xi] = Cov

{∑
i

Xi,
∑
i

Xi

}
=
∑
i

∑
j

Cov{Xi, Xj} =
∑
i

Var[Xi] +
∑
i6=j

Cov{Xi, Xj}

And in particular if the r.v.s are independent (or simply uncorrelated) thenCov{Xi, Xj} = 0 for i 6= j so

Var[
∑
i

Xi] =
∑
i

Var[Xi]

Special case:
Var[X + Y ] = Var[X ] + Var[Y ] + 2Cov{X,Y }

Example: easier derivation of variance of Binomial
LetXi be the r.v. that takes 1 or 0 for success or failure in theith of n Bernoulli trials.
Let Y =

∑n
i=1Xi, so thatY has a Binomial PMF.

Since theXi’s are independent, the variance ofY is the sum of the variances of theXi’s.
If P [Xi = 1] = p is the success probability, thenE[Xi] = p andE[X2i ] = p.
So Var[Xi] = p− p2 = p(1− p) = pq. Thus Var[Y ] = npq.
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5.2
Sample Mean
Often we collect repeated measurements of some random phenomena under (essentially) identical conditions.
We sayX1, X2, . . . areindependent and identically distributed (i.i.d.) r.v.s iff
• theXi’s are independent
• fXi(x) = fX(x) ∀x ∀i (same marginal pdf) and hence same moments:E[Xi] = µX ,Var[Xi] = σ2X , ∀i

The sample mean is theaverageof theXi’s:

µ̂ =
1

n

n∑
i=1

Xi

Moments:

E[µ̂] = E[
1

n

n∑
i=1

Xi] =
1

n

n∑
i=1

E[Xi] =
1

n

n∑
i=1

µX = µX

Var[µ̂] = Var[
1

n

n∑
i=1

Xi] =
1

n2
Var[

n∑
i=1

Xi] =
1

n2

n∑
i=1

Var[Xi] =
1

n2

n∑
i=1

σ2X =
σ2X
n

Weak Law of Large Numbers
SupposeX1, X2, . . . i.i.d. r.v.s with finite meanµX and finite varianceσ2X . Then

P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µX

∣∣∣∣∣ < ε
]
→ 1 asn→∞ for anyε > 0

Proof:

P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µX

∣∣∣∣∣ ≥ ε
]
≤

Var[ 1
n

∑n
i=1Xi]

ε2
=
σ2X
nε2
→ 0 asn→∞ for anyε > 0

by Chebyshev inequality.
• Do not really need i.i.d., only independence and r.v.s with the same meanµX and variance
• Can relax assumption of finite variance!

Strong Law of Large Numbers
SupposeX1, X2, . . . are i.i.d. r.v.s with finite meanµX and finite varianceσ2X . Then

P

[
lim
n→∞

1

n

n∑
i=1

Xi = µX

]
= 1

Originally we said that to be meaningful and useful, probabilities of events should have properties similar to relative frequencies.
Now we have the above results that confirm that the theory derived under the axioms of probability predict that large-sample
averages will be close to the underlying mean.
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5.3
Central Limit Theorem
The random phenomena in many engineering problems is the aggregate of a multitude of small contributions,
Such as electrons in resistors, magnetic domains on magnetic tape, photons, etc.
The distribution (cdf) of the sum of many i.i.d. r.v.s is approximately Gaussian

SupposeX1, X2, . . . are i.i.d. r.v.s with finite meanµX and finite varianceσ2X . Then

P

[
1
√
n

n∑
i=1

Xi − µX
σX

≤ z

]
→ 1−Q(z) =

∫ z
−∞

1
√
2π
e−t

2/2 dt asn→∞ for anyz ∈ R

Utility: approximation for finiten.
Most accurate forz near 0, hence “central”

Example
Toss coinn = 10000 times. If 4884 heads, do you think it is a fair coin?
LetXi = 1 if head onith toss, 0 o.w.
E[Xi] = p = 1/2
Var[Xi] = p(1− p) = 1/4

P [
10000∑
i=1

Xi ≤ 4884] = P [
10000∑
i=1

(Xi − 1/2) ≤ 4884− 5000] = P [
10000∑
i=1

Xi − 1/2
√
10000

√
1/4
≤
4884− 5000

50
]

= P [
10000∑
i=1

Xi − 1/2
√
10000

√
1/4
≤ −2.32] ≈ 1−Q(−2.32) = Q(2.32) = 0.01

so not very likely to be a fair coin!

Proof (see Ross)
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Example: how large shouldn be?

Computer program is supposed to generate fair coin tosses.

Want to test ifp = 1/2.

Can’t just toss 100 times and conclude it works if number of heads is 50.

Use CLT

Mn =

n∑
i=1

Xi

P [|Mn − 1/2| > ε] = α� 1

P [|Mn − 1/2| ≤ ε] = P [−ε ≤Mn − 1/2 ≤ ε] = P [−ε ≤
1

n

∑
i

(Xi − 1/2) ≤ ε]

= P [−ε
√
n/σX ≤

1
√
n

∑
i

(Xi − 1/2)/σX ≤ ε
√
n/σX ] = P [−ε

√
n/σX ≤ Z ≤ ε

√
n/σX ]

Z =
1
√
n

∑
i

Xi − 1/2

σX

easy to showE[Z] = 0 Var[Z] = 1

P [−ε
√
n/σX ≤ Z ≤ ε

√
n/σX ] = FZ(ε

√
n/σX)− FZ(−ε

√
n/σX) ≈ 1−Q(ε

√
n/σX)− (1−Q(−ε

√
n/σX))

= 1−Q(ε
√
n/σX)−Q(ε

√
n/σX) = 1− 2Q(ε

√
n/σX)

P [|Mn − 1/2| > ε] ≈ 2Q(ε
√
n/σX)

2Q(ε
√
n/σX) = α = 0.01

from table Q(2.6) = 0.005
ε
√
n/σX) = 2.6

n = (2.6σX/ε)
2

if ε = 0.013 thenn = 104.
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6.1
Random Processes
Modem example: frequency shift keying

A random processX(t) for t ∈ I is an indexed collection of random variables.
Index setI
• Continuous-time r.p, typicallyI = R or I = [0,∞)
• Discrete-time r.p, typicallyI = {. . . ,−2,−1, 0, 1, 2, . . .} or I = {0, 1, 2, . . .}

Discrete-time r.p. also calledrandom sequence, with notationXn, n ∈ I

Two useful ways of thinking:
• Fix t0, thenX(t0) is a random variable:X(t0, s) for s ∈ S
• Fix s0 ∈ S, thenX(t, s0) vs t ∈ I is called arealization or sample pathor sample function

Exampledecaying cosine with random amplitude (not a very “random” random process...)
Let Y have a Uniform(1,3) distribution
DefineX(t) = Y (1 + e−t cos t) for t ∈ I = [0,∞)

Can do simple calculations:
• Variance function: Var[X(t)] = Var[Y (1 + e−t cos t)] = Var[Y ](1 + e−t cos t)2 = 1

3 (1 + e
−t cos t)2

• First-order cdf:P [X(t) ≤ x] = P [Y (1 + e−t cos t) ≤ x] = P [Y ≤ x/(1 + e−t cos t)] = FY (x/(1 + e−t cos t)]

The above calculations only describe themarginal properties of the r.p. To fully characterize a r.p. we need:

6.2
kth-order joint cdf

FX(t1),...,X(tk)(x1, . . . , xk) = P [X(t1) ≤ x1, . . . , X(tk) ≤ xk]

If we know this fork = 1, 2, . . . and for alltj ∈ I and for allxj ∈ R, j = 1, . . . , k, then we can compute any statistical quantity
of interest about the r.p.

Equivalently can work withkth-order joint pdfs

fX(t1),...,X(tk)(x1, . . . , xk) =
dk

dx1 · · ·dxk
FX(t1),...,X(tk)(x1, . . . , xk)

For adiscrete-valuedr.p., use thekth-order joint pmf.

The above could be painful in general, fortunately many r.p.s have properties that simplify their statistical characterization, as
follows.
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Independent Increments
A r.p. X(t) is said to haveindependent incrementsiff for any k = 1, 2, . . . and anyt1 < t2 < · · · < tk wheretj ∈ I, the
following r.v.s are independent:

X(t1), X(t2)−X(t1), . . . , X(tk)−X(tk−1)

Example: Poisson process, random walks

Markov r.p.
A r.p.X(t) is said to beMarkov iff for any k = 2, 3, . . . and anyt1 < t2 < · · · < tk wheretj ∈ I,

fX(tk)(xk|X(tk−1) = xk−1, . . . , X(t1) = x1)fX(tk)(xk|X(tk−1) = xk−1)

conditional statistics at timetk depend only on most recently given value of r.p.
An independent increments r.p. is also a Markov r.p., but the converse is not true in general.

Stationary r.p.
A r.p.X(t) is calledstrict-sense stationaryiff its kth-order joint cdfs (or pdfs or pmfs) are all time-shift invariant:

FX(t1),...,X(tk)(x1, . . . , xk) = FX(t1+τ),...,X(tk+τ)(x1, . . . , xk)

for all k = 1, 2, . . ., for all xj ∈ R for all tjI
• If I = R, must hold for allτ ∈ R
• If I = [0,∞), must hold for allτ > 0

Given a segment in time, can you predict what times it came from? If so, then nonstationary.

Even then, for many r.p.s, a full statistical characterization is intractable.
So often we focus on the moments.

Mean Function

µX(t) = E[X(t)] =

∫ ∞
−∞
xfX(t)(x) dx

reflects trends in theaveragebehavior of r.p. over time

For studying relationship between different points in time (e.g. predicting stock market), the 2nd-order moments are more useful.

Autocorrelation Function (autos: Greek for ”self”)

RX(t1, t2) = E[X(t1)X(t2)] =

∫ ∞
−∞

∫ ∞
−∞
xyfX(t1),X(t2)(x, y) dx dy

Autocovariance Function

CX(t1, t2) = E[(X(t1)− µX(t1))(X(t2)− µX(t2))] = RX(t1, t2)− µX(t1)µX(t2)

Variance Function
Var[X(t)] = E[(X(t)− µX(t))2] = CX(t, t)

If X(t) is a Gaussian r.p. (the joint pdf of any finite collection of time samples is jointly Gaussian) then all joint pdfs ofX(t) are
completely specified by the mean function and autocovariance function.
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6.3Discrete-time random processes

i.i.d. random process
We say a discrete-time r.p.Xn is ani.i.d. random processiff ∀k = 1, 2, . . . and∀xj ∈ R, j = 1, . . . , k

FX1,...,Xk(x1, . . . , xk) = FX(x1)FX(x2) · · ·FX(xk) =
k∏
i=1

FX(xk)

for some common cdfFX(x)
Example:Bernoulli r.p. : P [Xn = 1] = p andP [Xn = 0] = 1− p for n = 1, 2, . . . (and independent)
Properties
• An i.i.d. random process is strict-sense stationary!
• E[Xn] = µX a constant for alln

• CX(n1, n2) = Cov{Xn1 , Xn2} = σ
2
Xδn1−n2 where the Kronecker delta function is:δn =

{
1, n = 0
0, n 6= 0

Random Walk Process(drunkard’s walk) (e.g. net auto traffic by incrementing and decrementing counter)
LetDn be the modified Bernoulli r.p. withP [Dn = 1] = p andP [Dn = −1] = 1− p

Wn =

n∑
i=1

Di, n = 1, 2, . . .

Wn is called a random walk process. (Picture)

Moments

µW (n) = E[Wn] = E[

n∑
i=1

Di] =

n∑
i=1

(1p− 1(1− p)) = n(2p− 1)

Var[Wn] = Var[
n∑
i=1

Di] = nσ
2
D where σ2D = E[D

2
n]− (2p−1)

2 = 12p+(−1)2(1−p)− (2p−1)2 = 1− (4p2−4p+1) = 4pq

so Var[Wn] = n4pq (increases withn)
Supposen > m then (trick for any sum process):

CW (n,m) = Cov{Wn,Wm} = Cov

{
Wm +

n∑
i=m+1

Di,Wm

}
= Cov{Wm,Wm}+ Cov

{
n∑

i=m+1

Di,Wm

}
= Var[Wm]

Repeating forn < m we see
CW (n,m) = min(n,m)σ

2
D

Note that the range ofWn is {−n,−n+ 2, . . . , n− 2, n}, i.e.RW1 = {−1, 1} andRW2 = {−2, 0, 2} etc.
The pmf fork = 0, . . . , n:

P [Wn = 2k − n] = P [Wn = k − (n− k)] = P [k of theDi’s are 1’s and the othern− k are -1’s] =

(
n
k

)
pk(1− p)n−k

Pickn > m then

P [Wn −Wm = k|Wm = wm] = P [Dm+1 + · · ·+Dn = k|D1 + · · ·+Dm = wm] = P [Dm+1 + · · ·+Dn = k]

Thus the pmf ofWn −Wm is independent ofWm for n > m, soWn hasindependent increments
Also, the pmf of the incrementWn −Wm

P [Wn −Wm = k] = P [Dm+1 + · · ·+Dn = k] = P [D1 + · · ·+Dn−m = k]

depends only onn−m and not onm, soWn is said to havestationary increments
But not stationary, since moments depend onn (cf Bernoulli and random walk)

Sum process
In general a sum process formed by summing an i.i.d. r.p. will have independent increments and stationary increments.
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6.4
Poisson Process
A counter increments every time a new packet arrives at a port on an asynchronous network.
The interarrival times are r.v.sT1, T2, . . ., so thenth packet arrives at timeSn =

∑n
i=1 Ti

LetN(t) denote the number of packets that have arrived by timet; typical sample function forN(t):

-
t

6N(t)

u

S1

u

S2

u

S3

u

S4

u

S5

1

2

3

4

5

T1 T2 T3 T4 T5

We sayN(t) is aPoisson processiff
• N(0) = 0 (counter starts at 0)
• N(t) has independent increments
• For any0 ≤ t1 < t2 andk = 0, 1, 2, . . .

P [N(t2)−N(t1) = k] = [λ(t2 − t1)]
ke−λ(t2−t1)/k!

so in particularN(t) has a Poisson pmf:
P [N(t) = k] = (λt)ke−λt/k!

Properties:
• P [N(t+ δ)−N(t) > 1] = 1− P [N(t+ δ)−N(t) > 1] = 1− e−λδ((λδ)0/0! + (λδ)1/1!) = 1− e−λδ(1 + λδ)

SoP [N(t+ δ)−N(t) > 1]→ 0 asδ → 0: only one new arrival at a time.
• P [N(t+ δ)−N(t) > 0] = 1− e−λδ(λδ)0/0! = 1− e−λδ ≈ λδ for δ ≈ 0.

So arrival probability roughly proportional to time interval.

Example: McDonalds opens at 8:00AM and assume arrival of customers is Poisson. with mean rateλ = 3/minute.
If by 8:30AM 90 customers have been served, what is probability that by 9:10 over 200 customers will have been served?

P [N(70) > 200|N(30) = 90] = P [N(70)−N(30) > 200−90|N(30) = 90] = P [N(70)−N(30) > 110] =
∞∑

k=111

120ke−120/k!

sinceλ(t2 − t1) = 3 · 40 = 120

Since independent increments, joint pmf easy

Moments:E[N(t)] = λt, henceλ is mean number of arrivals per unit time.

Autocovariance function (a trick for all independent increments r.p.s)
Chooset2 > t1:

CN (t2, t1) = Cov{N(t2), N(t1)} = Cov{(N(t2)−N(t1) +N(t1), N(t1)}+ Cov{N(t1), N(t1)}

= Cov{N(t2)−N(t1), N(t1)} + Cov{N(t1), N(t1)} = 0 + Var[N(t1)] = λt1

Repeating fort1 > t2 and combining:
CN (t2, t1) = λmin(t1, t2)

(Not w.s.s.)

Interarrival pdfs are exponential with mean1/λ. Partial argument forT1, for t ≥ 0:

P [T1 > t] = P [N(t) = 0] = e
−λt so FT1(t) = (1− e

−λt)u(t)

Arrival timesSn are Erlang since sum of i.i.d. exponentials
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6.5
Stationarity
Some r.p.s are easier to handle because their statistical behavior does not change with time, in some sense.

Stationary r.p.
A r.p.X(t) is calledstrict-sense stationaryiff its kth-order joint cdfs (or pdfs or pmfs) are all time-shift invariant:

FX(t1),...,X(tk)(x1, . . . , xk) = FX(t1+τ),...,X(tk+τ)(x1, . . . , xk)

for all k = 1, 2, . . ., for all xj ∈ R for all tjI
• If I = R, must hold for allτ ∈ R
• If I = [0,∞), must hold for allτ > 0

Given a segment in time, can you predict what times it came from? If so, then nonstationary.

Wide-sense stationary
s.s.s. can be hard to verify, so sometime we settle for time-shift invariance of the first two moments.
A r.p.X(t) is calledwide-sense stationaryiff
• E[X(t+ τ)] = E[X(t)] = µX is independent of timet
• CX(t1, t2) = CX(t1 + τ, t2 + τ) depends only on the time differencet2 − t1.

Thus we haveCX(t1, t2) = CX(0, t2 − t1) = CX(t2 − t1) where we drop the unneeded first argument.

If X(t) is stationary, thenFX(t)(x) = FX(t+τ)(x)∀t, τ, x.
Thus the marginal moments are independent of time, and in particularE[X(t)] is a constant.
Furthermore, the 2nd-order joint pdf can be written

fX(t1),X(t2)(x1, x2) = fX(0),X(t2−t1)(x1, x2)

so it only depends on the difference oft2 − t1, thus

CX(t1, t2) =

∫ ∞
−∞

∫ ∞
−∞
x1x2fX(t1),X(t2)(x1, x2) dx1 dx2 − µ

2
X =

∫ ∞
−∞

∫ ∞
−∞
x1x2fX(0),X(t2−t1)(x1, x2) dx1 dx2 − µ

2
X

depends only on the time difference

Conclusion: IfX(t) is s.s.s., thenX(t) is also w.s.s.
The converse is not true in general.
Exception: Gaussian and w.s.s. implies s.s.s., since joint pdfs of Gaussian depends only on 1st and 2nd moments

Poisson process: not stationary sinceE[N(t)] = λt depends ont

Example: sinusoid with random phase.
Θ ∼ Uniform(0, 2π).
X(t) = sin(t+Θ)

µX(t) = E[X(t)] = E[sin(t+Θ)] =
∫ 2π
0 sin(t+ φ)

1
2π dφ = 0

RX(t, t+ τ) = E[X(t)X(t+ τ)] = E[sin(t+Θ) sin(t+ τ +Θ)] =
1
2E[cos(τ)− cos(2t+ τ +2Θ)] =

1
2 cos(τ) Autocorrelation

depends only on time differenceτ , soX(t) is w.s.s.

Properties of autocorrelation function for w.s.s. r.p.
• Average power:RX(0) = E[X2(t)]
• Symmetry:RX(τ) = RX(−τ)
• |RX(τ)| ≤ RX(0) since Schwarz Inequality:|E[XY ]| ≤ E[|XY |] ≤

√
E[|X |2]E[|Y |2]

• If continuous at origin, then continuous everywhere.
Proof:

|RX(τ + δ)−RX(τ)| = |E[(X(τ + δ)−X(τ))X(0)]| ≤
√
E[|X(τ + δ)−X(τ)|2]E[|X(0)|2]

=
√
2(RX(0)−RX(δ))RX(0),

so if |RX(0)−RX(δ)| → 0 asδ → 0, then|RX(τ + δ)−RX(τ)| → 0 asδ → 0 for anyτ .
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• Measure of rate of change of r.p. see 6.59, p 360.

1st order stationarity does not imply s.s.s
Xn Bernoulli r.p. LetY (t) = Xn for t ∈ [n, n+ 1)
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Often need multiple random processes, such as signal + noise.

Pairs of Random Processes

Complete statistical characterization throughjoint finite-dimensional cdfs (or pdfs or pmfs):

FX(t1),...,X(tk),Y (s1),...,Y (sj)(x1, . . . , xk, y1, . . . , yj) = P [X(t1) ≤ x1, . . . , X(tk) ≤ xk, Y (s1) ≤ y1, . . . , Y (sj) ≤ yj ]

X(t) andY (t) arejointly strict-sense stationary r.p.s iff their finite joint cdfs are time-shift invariant, i.e.∀τ ∈ R:

FX(t1),...,X(tk),Y (s1),...,Y (sj)(x1, . . . , xk, y1, . . . , yj) = FX(t1+τ),...,X(tk+τ),Y (s1+τ),...,Y (sj+τ)(x1, . . . , xk, y1, . . . , yj)

X(t) andY (t) areindependentr.p.s iff their finite joint cdfs factor into the product of their individual cdfs:

FX(t1),...,X(tk),Y (s1),...,Y (sj)(x1, . . . , xk, y1, . . . , yj) = FX(t1),...,X(tk)(x1, . . . , xk)FY (s1),...,Y (sj)(y1, . . . , yj)

(or jpdfs or jpmfs)

If X(t) andY (t) are jointly strict-sense stationary, then they are individually strict-sense stationary. The reverse is not true in
general. Exception: ifX(t) andY (t) are independent and individually s.s.s., then they are jointly s.s.s.

Moments of Pairs of Random Processes
• Cross-correlation Function

RXY (t1, t2) = E[X(t1)Y (t2)] =

∫∫
xyfX(t1)Y (t2)(x, y) dx dy

• Cross-covariance Functionmeasures linear coupling:

CXY (t1, t2) = E[(X(t1)− µX(t1))(Y (t2)− µY (t2))]

• X(t) andY (t) are calleduncorrelated r.p.s iffCXY (t1, t2) = 0 ∀t1, t2 ∈ I

Properties of Moments of Pairs of Random Processes(all for all t1, t2 ∈ R)
• Hermitian symmetry:

RXY (t1, t2) = RYX(t2, t1), CXY (t1, t2) = CY X(t2, t1)

• Autocorrelation function from cross-correlation function

RX(t1, t2) = RXX(t1, t2), CX(t1, t2) = CXX(t1, t2)

• Cross-covariance / cross-correlation relationship:

CXY (t1, t2) = RXY (t1, t2)− E[X(t1)]E[Y (t2)]

• Schwarz inequality for cross-correlation:

|RXY (t1, t2)| ≤
√
RX(t1, t1)RY (t2, t2), |CXY (t1, t2)| ≤

√
Var[X(t1)]Var[X(t2)]

• Mutual independence and cross-covariance:
If X(t) andY (t)mutually independent, thenCXY (t1, t2) = 0
The converse not true in general. Exception: whenX(t) andY (t) are jointly Gaussian r.p.s.
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We sayX(t) andY (t) arejointly Gaussian random processesiff all of their joint finite-dimensional density functions have the
normal form with the appropriate mean and covariance, i.e.



X(t1)
...

X(tk)
Y (s1)

...
Y (sj)



∼ N







E[X(t1)]
...

E[X(tk)]
E[Y (s1)]

...
E[Y (sj)]



,




CX(t1, t1) · · · CX(t1, tk) CXY (t1, s1) · · · CXY (t1, sj)
...

...
...

...
CX(tk, t1) · · · CX(tk, tk) CXY (tk, s1) · · · CXY (tk, sj)
CY X(s1, t1) · · · CY X(s1, tk) CY (s1, s1) · · · CY (s1, sj)

...
...

...
...

CY X(sj , t1) · · · CY X(sj , tk) CY (sj , s1) · · · CY (sj , sj)







for all appropriate values of the indices.

Joint wide-sense stationarity
We sayX(t) andY (t) arejointly wide-sense stationaryr.p.s iff
• Each ofX(t) andY (t) are individually WSS, and
• Theircross-correlationis invariant to time shifts:RXY (t1, t2) = RXY (t1 + τ, t2 + τ) ∀τ ∈ R and∀t1, t2 ∈ R

In other words,RXY (t1, t2) = RXY (0, t2 − t1) = RXY (t2 − t1) depends only on the time differencet2 − t1, or equivalently
RXY (t, t+ τ) is independent oft

If X(t) andY (t) are jointly strict-sense stationary, then they are jointly wide-sense stationary. In general, the reverse is not true.
An exception is jointly Gaussian, jointly WSS random processes.

Example:Y (t) = AX(t) +N(t) whereX(t) andN(t) are jointly WSS.
AssumeX(t) andN(t) are independent of r.v.A.
Is Y (t) w.s.s.?
E[Y (t)] = E[AX(t) +N(t)] = E[A]E[X(t)] +E[N(t)] = µAµX + µN
so mean is independent of timet

RY (t, t+ τ) = E[Y (t)Y (t+ τ)] = E[(AX(t) +N(t))(AX(t + τ) +N(t+ τ))]

= E[A2X(t)X(t+ τ)] +E[AX(t)N(t+ τ)] +E[AX(t+ τ)N(t)] +E[N(t)N(t+ τ)]

= E[A2]RX(t, t+τ)+µARXN (t, t+τ)+µARXN (t+τ, t)+RN (t, t+τ) = E[A
2]RX(τ)+µARXN (τ)+µARXN (τ)+RN (τ)

ThusY (t) is w.s.s.

Considering the case whereA is a constant, we have shown that the sum of two jointly w.s.s. r.p.s is w.s.s.

Product:Z(t) = X(t)Y (t) whereX(t) andY (t) are w.s.s. and independent r.p.s

E[Z(t)] = E[X(t)Y (t)] = E[X(t)]E[Y (t)] = µXµY

RZ(t, t+ τ) = E[Z(t)Z(t+ τ)] = E[X(t)Y (t)X(t+ τ)Y (t+ τ)] = E[X(t)X(t+ τ)]E[Y (t)Y (t+ τ)]RX(τ)RY (τ)

SoZ(t) is w.s.s.

White Noise
Consider triangular autocorrelation function as width goes to 0 but area stays constant (so height goes to∞).
We sayN(t) is white noise if its autocorrelation function is the Dirac delta:RN (τ) = αδ(τ) or equivalentlyRN (t2, t1) =
αδ(t2 − t1) for some constantα
Continuous-time generalization of i.i.d. random sequence
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Binary Communications (at last a fairly real example...)
We transmit a rectangular pulseX · s(t), whereX is 1 or 0 depending on whether we send a 1 or 0.

Received signal:Y (t) = Xs(t) +N(t) whereN(t) is additive white Gaussian noise (AWGN) with mean zero.

Sensible receiver:Z = 1
T

∫ T
0 Y (t) dt

HopefullyZ is close to 1 if a 1 is sent, and 0 if a 0 is sent.

E[Z|X = x] = E[
1

T

∫ T
0

Y (t) dt|X = x] =
1

T

∫ T
0

E[Y (t)|X = x] dt =
1

T

∫ T
0

x s(t) dt = x

E[Z2|X = x] = E[(
1

T

∫ T
0

Y (t) dt)2|X = x] = E[(
1

T

∫ T
0

Y (t) dt)(
1

T

∫ T
0

Y (t′) dt′)|X = x]

= E[
1

T 2

∫ T
0

∫ T
0

Y (t)Y (t′) dt dt′|X = x] =
1

T 2

∫ T
0

∫ T
0

E[Y (t)Y (t′)|X = x] dt dt′

Now

E[Y (t)Y (t′)|X = x] = E[(xs(t) +N(t))(xs(t′) +N(t′))] = x2s(t)s(t′) + xs(t)E[N(t′)] + xs(t′)E[N(t)] +E[N(t)N(t′)]

= x2s(t)s(t′) + αδ(t− t′)

so

E[Z2|X = x] =
1

T 2

∫ T
0

∫ T
0

[x2s(t)s(t′) + αδ(t− t′)] dt dt′ = x2 +
1

T 2

∫ T
0

α dt′ = x2 + α/T

Thus
Var[Z|X = x] = E[Z2|X = x]− (E[Z|X = x])2 = x2 + α/T − x2 = α/T

Note that largerα means more variance forZ, but larger timeT reduces variance

Natural decision rule: choose 1 ifZ > 1/2 and 0 otherwise.
Probability of error?

P [E] = P [E|X = 0]P [X = 0] + P [E|X = 1]P [X = 1] = P [Z > 1/2|X = 0]P [X = 0] + P [Z < 1/2|X = 1]P [X = 1]

If X = 0, thenZ has Gaussian distribution with mean 0 and varianceα/T .

P [Z > 1/2|X = 0] = Q

(
1/2− 0√
α/T

)
= Q

(√
T

4α

)

Hence importance ofQ function to EE’s

Many concepts:
• Random processes: white noise - wide-sense stationary
• Moments: mean and variance
• Probability: conditional probability, total probability
• Random variables: Gaussian pdf., calculating probabilities by integrating pdf
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Summary (new concepts in Ch. 4, 5, 6 over previous)

Multiple Random Variables
• Joint pdf, cdfP [(X,Y ) ∈ B] =

∫∫
B
fX,Y (x, y) dx dy

• Independence: jpdf factors, simplifies calculatingP and moments
• Functions of multiple r.v.s:Z = g(X,Y ) by method of events (cdf then pdf)
• Moments: correlation, covariance, correlation coefficient. Independence implies uncorrelated (zero covariance).

Sums of Random Variables
• Mean of sum is sum of means (always).
• Variance of sum is sum of variances, if independent, otherwise must include covariance of all cross terms.
• Sample mean is unbiased, its variance isσ2X/n→ 0 asn→∞
• Weak Law of Large Numbers: proof by Chebychev, P[sample mean is close to meanµX ] goes to 1 asn→∞.
• Strong Law of Large Numbers: almost all sample means converge to meanµX
• Central Limit Theorem: sum of standardized r.v.s normalized by1/

√
n approaches a Gaussian distribution for largen, so can

calculate approximate probabilities.

Random Processes
• Simplifying properties: strict-sense stationarity, independent increments, Markov
• Moments: mean function, autocorrelation function, autocovariance function
• Wide-sense stationarity (need Ch. 7 to fully realize utility)
• Sum processes: random walk, Binomial process. have independent increments, stationary increments, calculated moments
• Poisson counting process: useful for “random” arrivals
• Pairs of random processes: independence, cross-correlation, cross-covariance
• Signal+noise and applications...



c© J. Fessler, January 2, 2001, 17:25 76

7.2
Linear Systems

Y (t) = (X ? h)(t) =

∫ ∞
−∞
h(s)X(t− s) ds

AssumeX(t) is w.s.s.

E[Y (t)] = E[

∫ ∞
−∞
h(s)X(t− s) ds] =

∫ ∞
−∞
h(s)E[X(t− s)] ds =

∫ ∞
−∞
h(s)µX(t− s) ds = µX

∫ ∞
−∞
h(s) ds = µXH(0)

independent of timet

RY (t, t+ τ) = E[Y (t)Y (t+ τ)] = E

[∫ ∞
−∞
h(s)X(t− s) ds

∫ ∞
−∞
h(r)X(t+ τ − r) dr

]

=

∫ ∞
−∞

∫ ∞
−∞
h(s)h(r)E[X(t − s)X(t+ τ − r)] ds dr =

∫ ∞
−∞

∫ ∞
−∞
h(s)h(r)RX (τ + s− r) ds dr

independent oft, soY (t) is also w.s.s.!

WSS Random Processes and LSI systems
• For BIBO LSI system, WSS input yields WSS output, and input and output are jointly WSS.
• Power spectral density:SX(ω) =

∫
RX(t)e

−jωt dt. (Fourier transform of autocorrelation function.)
• For LSI system with impulse responseh(t) and transfer functionH(ω) =

∫
h(t)e−jωt dt, the input-output relationship is

SY (ω) = |H(ω)|2SX(ω).
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Total probability with conditioning
Recall ifAi’s partition S, then

P (B) =
∑
i

P (B|Ai)P (Ai)

Fact:

P (B|C) =
∑
i

P (B|Ai, C)P (Ai|C)

Proof:

RHS =
∑
i

P (B ∩Ai ∩ C)

P (Ai ∩ C)

P (Ai ∩ C)

P (C)
=

∑
i P (B ∩Ai ∩ C)

P (C)
=

∑
i P (B ∩C|Ai)P (Ai)

P (C)
=
P (B ∩ C)

P (C)
= P (B|C)

Gambler’s Ruin Markov Chain
Gambler starts withX0 = $10, plays game repeatedly, wins $1 with probabilityp, and loses $1 with probabilityq = 1− p.
This problem statement implies the following:

P [Xn+1 = j|Xn = k] =



p, j = k + 1
q j = k − 1
0, otherwise.

This is a Markov random process because PMF of the next state only depends on the previous state, not on earlier states.

Gambler must stop playing ifXn = 0 (ruined).
Gambler decides in advance to stop playing ifXn = 20.

Hitting times:
T0 = min{n ≥ 0 : Xn = 0} T20 = min{n ≥ 0 : Xn = 20}

Main probability of interest isu(10), where:
u(k) = P [T0 < T20|X0 = k]

i.e., what is the probability of being ruined rather than walking away with $20?

If p = 1/2, then expectu(10) = 1/2. But most casino games havep < 1/2.

End conditions:u(0) = 1 andu(20) = 0.
Trick: using above total probability for0 < k < 20

P [T0 < T20|X0 = k]

= P [T0 < T20|X0 = k,X1 = k + 1]P [X1 = k + 1|X0 = k] + P [T0 < T20|X0 = k,X1 = k − 1]P [X1 = k − 1|X0 = k]

thus
u(k) = u(k + 1)p+ u(k − 1)q

Solution to this recursive equation with end conditions is (See Hoel, Port, Stone):

u(k) =

∑20−1
j=k (q/p)

j∑20−1
j=0 (q/p)

j
= (q/p)k

1− (q/p)20−k

1− (q/p)20
if q 6= p

Note if p = q = 1/2, then as expected

u(k) =
20− k

20
so u(10) = 1/2

But more realistic value might bep = 0.45. In which caseu(10) = 0.88.
So very high odds of running out of money before doubling money!


