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Target Audience 
Researchers interested in dictionary-free magnetic resonance fingerprinting (MRF), 
especially in applications involving many unknown parameters per voxel. 
 

Introduction and Purpose  
As originally formulated [1], MRF requires solving a nonlinear least-squares problem at 
each voxel to estimate parameter maps from reconstructed images. The standard method 
to solve such problems involves simulating a dictionary of signals over a discretized 
parameter grid and exhaustively searching for the unknowns that yield the best fit with 
measurements. Such grid search scales poorly with the number of unknowns. As a more 
scalable alternative, researchers have recently proposed to use deep neural networks to 
learn estimators from simulated training data [2]. However, it is well known in the 
machine learning (ML) community that deep learning requires enormous numbers of 
training points to train many hyperparameters without overfitting, and its limited 
theoretical basis renders its practical use largely an art. Here, we develop a considerably 
simpler and theoretically well-founded “shallow” ML method for dictionary-free MRF.  
 

Methods 
After low-rank reconstruction, let 𝒚 = 𝒔 𝒙 + 𝝐 model a low-rank MRF measurement 
sequence at a single voxel, where low-rank MRF signal model 𝒔 relates unknowns 𝒙 
(e.g., (𝑀!,𝑇!,𝑇!)) to 𝒚, barring noise 𝝐. Following [3-4], we approach estimation by 
learning a nonlinear regression function from simulated (labeled) training data and 
evaluating this function on real (unlabeled) test data. We sample distributions on 𝒙, 𝝐 and 
use 𝒔 to form 𝑁 training points 𝒙!,𝒚! ,… , 𝒙! ,𝒚! . To design a nonlinear estimator 
for the 𝑙th component 𝑥!  of 𝒙, we seek a function 𝑔!   and an offset 𝑏!  that nonlinearly 
map each simulated measurement 𝒚! to an estimate 𝑔! 𝒚! + 𝑏!  that is “close” to the 
corresponding simulated true parameter 𝑥!,!, for 𝑛 ∈ {1,… ,𝑁}. Mathematically, we seek 
a solution to the following regularized function optimization problem:  
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where 𝒢 is a reproducing kernel Hilbert space (RKHS) with function norm ||. ||𝒢  and 𝜌 is 
a regularization parameter [3]. This problem admits a unique solution with 𝑔!  taking the 
form  𝑔! 𝒚 =  𝑎!,! 𝑘 𝒚,𝒚𝒏𝑵

𝒏!𝟏  [5], where 𝑘 is the kernel function associated with 
RKHS 𝒢. Inserting this representation above yields an equivalent convex optimization 
problem over weights 𝑎!,!,… , 𝑎!,!  and offset 𝑏!  that we solve via standard methods. 
Choosing Gaussian kernel 𝑘 𝒚,𝒚! ← exp(−| 𝒚 − 𝒚! |𝜦!𝟐

! ) with bandwidth matrix 
𝜦 induces optimization over a RKHS dense in the space of square-integrable continuous 
functions [6], so with enough samples 𝑔!  can approximate any continuous function over 
any bounded subset of the measurement space to arbitrary accuracy. 
 

Results and Discussion 
We first illustrate shallow learning to estimate 𝒙 ← (𝑀!,𝑇!,𝑇!)  in a simulation that 
emulated the in vivo experiment described next. We sampled 𝑁 ← 10! noisy training 
points assuming 𝑀! ~ unif(0.9, 1.1), 𝑇! ~ logunif 0.3, 4 s, 𝑇! ~ logunif 0.01, 0.25 s, 
and 𝝐 ~ ℂ𝒩(𝟎, 0.01 !𝑰). We trained the estimator using a Gaussian kernel whose 
bandwidth 𝜦 is set save for a scale factor 𝜆 based on the scale of normalized test data 
(𝜆 ← 30 and 𝜌 ← 2 ×10!!" were separately chosen using a holdout criterion). We 
evaluated the estimator on a separate set of unlabeled test points. Figure 1 shows that 
within the training range, shallow learning achieves good estimation accuracy.  
 

We next demonstrate shallow learning for MRF on in vivo data. An asymptomatic 
volunteer’s brain was imaged on a 3T Skyra scanner (Siemens, Erlangen, Germany) 
according to a protocol approved by NYU’s review board. Using a 16-channel head 
coil, 840 radial k-space spokes of data were acquired in about 3.8s using an MRF 
sequence optimized for 𝑇!,𝑇! estimation [7]. Fig. 2 displays low-rank images that were 
reconstructed from data by the method of [8] onto a 256x256x3 mm3 field of view with 
1x1x3mm3 resolution. We simulated 𝑁 ← 10! training points using a signal model that 
relates 𝑀!,𝑇!,𝑇!  to a corresponding low-rank MRF measurement sequence. Using 
identical hyperparameters and priors as in simulations, we learned 𝑇!,𝑇! estimators 
and evaluated them voxelwise on low-rank MRF images to produce 𝑇!,𝑇! maps. On a 
2.7GHz laptop with 8GB RAM running MATLAB® R2017a, training and testing took 
less than 30s total, far faster than deep learning methods [2].  
  

Fig. 3 compares 𝑇!,𝑇! estimates computed via shallow learning versus via grid search 
(that took 117s using 174,225 dictionary elements). Table 1 compares sample statistics 
computed over white matter (WM) and gray matter (GM) regions of interest (ROIs) 
marked in Fig. 2. 𝑇!,𝑇! estimates in WM and GM ROIs are in excellent agreement.   
 

Conclusion  
We have introduced a fast, dictionary-free shallow ML method for parameter 
estimation from MRF data. We demonstrated through simulations and in vivo 
experiments that the method can achieve 𝑇!,𝑇! estimates comparable in WM/GM 
ROIs to estimates via exhaustive grid search. The method will scale far better than grid 
search in applications requiring estimation of more unknowns per voxel, e.g. [4].  
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 Dictionary Proposed 
WM 𝑇! 920 ± 35 930 ± 38 
GM 𝑇! 1500 ± 120 1500 ± 120 
WM 𝑇! 82 ± 4.0 82 ± 4.4 
GM 𝑇! 120 ± 10. 120 ± 11 

Figure 3:	𝑇!  and 𝑇!  estimates using dictionary-based grid search (left) 
versus dictionary-free shallow kernel learning (right). Within WM and GM 
ROIs, parameter estimates are in excellent agreement. 

	

Figure 2: Rank-6 images from a low-rank reconstruction [8] of precision-
optimized MRF data [7]. We learn separate 𝑇! and 𝑇! estimators that map 
on a per-voxel basis these six images into the estimates displayed in Fig. 3.	

Figure 1: Shallow kernel learning 𝑇!  and 𝑇! estimates, in simulation. Test 
points fix true 𝑇! values to 100ms as 𝑇!  is varied (left) and true 𝑇!  values to 
1000ms as 𝑇! is varied (right). Within training ranges (indicated via red 
boxes), the learned estimator demonstrates good estimation accuracy.  
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Table 1: 𝑇! , 𝑇!  sample means ±  sample 
standard deviations, computed within pooled 
WM and GM ROIs (marked in Fig. 2) that 
respectively contain 142 and 111 voxels.	
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