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ABSTRACT

The problem of estimating parameters of a pholon intensity
image from continuous spatio-temporal photo-detector mea-
surements is considered. The photo-detector output is mod-
cled as a spatio-temporal random field consisting of two addi-
tive components: a superposition of single photon responses
associated with photons incident on the photo-detector sur-
face; and a broadband thermal noise. In this paper we de-
rive bounds on estimation MSIS based on rate distortion the-
ory. The rate distortion bound simplifies considerably for
the case of position estimation, spherically symmetric pho-
ton intensity, and large detector surface area. Lor this case
we can identify the form of a SNR threshold which sepa-
rates performance into two regimes: the photon-noise-limited
regime, where estimator performance equal to that achiev-
able for noiseless direct photon detection is possible; and the
thermal-noise-limited regime, where such direct detection es-
timator performance is not achievable. An explicit limiting
form for this threshold is given for special case of a Gaussian
spatial beamshape.

1. Introduction

I most treatments of quantum limited optical signal pro-
cessing it is assumed that error-free direct observations of
the photon point process incident on the photo-detectors are
available. For direct photon observations, optimal estimators
of photen intensity parameters and lower bounds on estima-
tor performance can easily be derived. However, practical
plhoton measurement systems, e.g. photo-multiplier tubes or
CCD arrays, consist of a photo-detector whose single photon-
response (SPPR) is temporally and spatially bandlimited and
is contaminated by thermal noise. For this continuous obser-
vation regime methods developed for the photon observation
regime are not directly applicable.

In this paper we study the problem of recovering pho-
ton intensity information from measurements of the ban-
dlimited and noise contaminated photo-detector output. We
derive general lower bounds on estimator MSE in order to
study the impact of finite bandwidth and thermal noise on
achievable error. These bounds simplify considerably for the
case of beam position estimation, spherically symmetric bean
shape, and large detector surface area. For this case we can
identify a SNR threshold which separates performance into
two regimes: the photon-noise-limiled regime, where estima-
tor performance equal to that achievable for noiseless direct
photon detection is possible; and the thermal-noise-limited
regime, where such direct detection estimator performance is
not achievable.

"T'his research was supported in part by the National Cancer Institute
under grant RO1-CA-46622-01.

Our photo-detector model is a spatio-temporal extension
of the one-dimensional temporal model developed in [9, 7]
for timing estimation in PET imaging. This one-dimensional
model has been experimentally validated for a photo-detector
system consisting of a Burle 8575 photo-multiplier tube (PMT)
and BGO scintillator in [12]. Our measurement model is sim-
ilar to models proposed in other applications, e.g. [2, 11, 5],
for which the results of this paper may also be applicable.

1I. Problem Statement

Let £ = [r,...,71)" € T ¢ R® be an unknown param-

cler vector with probability density function p,. Define the

spatio-temporal coordinates (t,u) € I, I def [-2,7] x A, of

photon incidences on the surface A = [~a,a] X [—a,a] of a
photodetector over a time interval [-%, £]. Conditioned on
T, let A= {A(f,u|7) : (1,u) € I} be the intensity of the pho-
ton point process dN = {dN(t,u) : (t,u) € I}. We assume
that the point process dN, equivalently the counting process
N, is conditionally Poisson given 7. Define n = N(I) the
total number of incident photons over I. Let {(t;, u;)}!L, be
the n coordinates of these plotons. Let g; denote the total
induced charge on a photo-detector resulting from a photon

. interaction at spatial position u; and at time t;. Conditioned

on n, {g;i}L; is a sequence of i.i.d, random variables with
range G = IR and probability density p,. The mean and vari-
ance of the density p, specify the mean efliciency and energy
spread, respectively, of the photon-collection process. In this
paper we assume that the g;’s are statistically independent
of £ given n. It is also assumed that the intensity Alt, ulr) is

constant in ¢ but varying in x and that, conditioned on 7, the

integrated intensity A Lt ;A = Eln|r] of N is functionally

independent of 7. The former assumplion corresponds to a
point process conditionally homogencous over time but inho-
mogeneous over space; modeling the problem of imaging a
temporally stationary image source. The latter assumption,
called conditional energy invariance in [8], is appropriate in
cases where the average rate A is known a priori and the
spatial support {u € ? : A(t,u|r) > 0} is contained in A
for all £. Tor example this holds for beam spatial-position
estimation, where A(t,u|7) = A(t,u — 7]0), to be considered
in the sequel.

The sequence {(t;,u;), gi}!L, of photon arrival coordinates
(ti,u;) € [-%, %] x A and photo-detector gains g; € G defines
a marked point process dM with index set [ = [-%,%]x A
and mark space G. In the sequel we refer to the process M as
the direct photon detection data or the photon-noise-limited
regime. By contrast the actual measurement corresponds to
the following finite bandwidth and thermal noise contami-
nated observations over (t,u) € I:
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X(tu) = D gplt—ti,u— ;) + w(t,u) (1)
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where w is a spatio-temporal white Gaussian noise. In (1)
p(tiu) is a unit energy SPR pulse with standard temporal
width T, <« T and standard spatial width 03 < | Al

Iigure 1: Snapshot of X at time t € [0,7].

The estimation objective is to determine the value of the
vector parameter 7 based on the photo-detector wavelorm
output X given in (1). Tor example, the MADP estimator
FMAP = FMAP(XY is obtained by maximizing the a poste-
riort log-likelihood function lnpy,py over 7, where py, is
the probability density of X given 7. Unfortunately, while
a number of approximations have been proposed [9, 4], no
analytical form for Pxjr has been found to date. This also
makes it diflicult to derive analytical lower bounds on estima-
tor MSIE useful for establishing performance losses associated
with a practical but perhaps sub-optimal estimator. This is
to be contrasted with the case of direct photon detection
for which the log-likelihood function In py, has an analytical
form. Specifically, the direct detection log- likelihood funec-
tion is specified by the joint densities of {(t;, n;), g} ,:

M ) f(gi) e, n> 0
-A

]JMII(Mll) = { e n=20 " (2)

7

11I. Lower Bounds On MSE

In this section we develop lower bounds on the mean of
component MSE’s of any estimator 7 = 7(X) of 7:

MSE(X) L 3 Bl - 71(X))?), (3)

I1I.1 Cramer-Rao Lower Bounds

Under some smoothness conditions on py), the CR bound
on the MSE of any estimator 7, = 7((X) lor 7y is [1]:

El(r — 7(X))] = BL(X) (4)

. 2 -1
BL(x) (}3[(5%—1:1px,r,) ])
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where py r, = [dry - [ d7y, Px|rPr- Since this function is not
ol analytical form the CR bound (4) cannot be computed. On
the other hand, for direct photon observations the CR bound
on the MSIE of any estimator 7, = 71(M) is:

E[(r — 71(M))?]

lef a AN
BL(M) = (E {(Er{in I’M.n) )
[ -

= — (1‘1 [0—1_12 lllpM'n]) )

where py,, = [dry---[dry pyepr- When prois uniform
and the intensity A is separable in 7y and 7o,... 7z, i.e when
Mty ulr) = Mt ulm)A( w7, .oy 7r), it is easily shown using
(2) that the CR bound (5) reduces to:

> BL(M) (5)

(6)
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It can also be shown that B! (M) = BL(N), i.e. the ob-

servations M are no more informative than N. This is a

consequence of our assumption that the g;’s are independent
of 7 given n. Note that if In A is not sufliciently smooth its
derivative may not square integrable in which case (G) will
yield the trivial bound 131 = 0.

The following Lemma states the fact that the bound B! (M)
for the photon-noise-limited regime can be used as a weaker
bound than B! (X) for the thermal-noise-limited regime.

Lemma 1 Let 71 be a random parameter. Let X and M be
two measurement processes such that M is a refinement of X
in the sense that the conditional densily pyy, -, is functionally
independent of 7. Then, assuming the CR bounds B (X)
(4) and BL.(M) (5) exist: BL{X) > BL{(M). Thus:

Bl(r = 71(X))*] 2 B (M). (7)

Lemma 1 can be established along the lines of the following
argument:
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where in the second to last line we used the fact that Z-Tn pyy o,

is zero under the assumptions of the lemma.
With B! (M) the corresponding CR boEP_d__(S) on L[(r; —
#(M))?] we have the following bound on M5 (3):

L
MSE(X) > Bo (M) % L > B (M), (8)

II1.2 Rate Distortion Lower Bounds

The rate distortion bound is based on Shannon’s funda-
mental result:

il I(ViZ)= Rs(d) < C = sup I(V: Z), 0
Pz[v::?l{l\'.Z)Sd ( ) "(t)f s,rl)lvp ( ) ( )

where I(V;Z) def Elln Pyy(Z]V)/ Pz(Z)] is the mutual in-
formation between source process V and observed process 7.
In (9) €' is the chanuel capacity and R; is the rate distortion
function associated with the average distortion 7. Here Z
is identified with X, V is identified with 7, and P is identi-
fied with MSE defined in (3). Defining the entropy function
I(z) = = E[Inp;(z)], for this case Shannon’s lower bound [6]
gives: Ii5(d) > JI(1) — & In(27ed). Due to monotonicily in d,
the combination of this lower bound on R5(d) and the bound
(9) gives the following rate distortion lower bound on MSLE:

1 -z
SE(X) > —etH(De-1C, (10)
Z?TC
I'or similar reasons as before, an exact expression for the
bound (10) is intractable, requiring evaluation of py), to com-
’ l f) I XI_T_
pute the mutual information. To arrive at a tractable bound,
as in [7] we use the “data processing theorem” applied to the
cascaded channel representation of ¢ shown in Iig. 2. Refer-

ring to the figure, the channel €' is a cascade of two separate

channels €7 and €y, where ) maps the source symbols 7
into the direct photon-detection data M, and ' maps M
into the observations X. (' is thus a point process channel
with associated intensity A and mark distribution f,, while
C7 is an additive Gaussian noise channel, The data process-
ing theorem gives an upper bound on the overall capacity C
of this cascaded channel [G]:

C <min{C,C;3}. (11)

dM
T
- C1 o C2 .-.X

Figure 2: Cascaded Channel Representation for T =X

Since the g’s are independent of 7 given n, I{M,1) =
I{N, ) and we can apply an upper bound, €'}, on C; analo-
gous to that obtained in [8, Lemma 4]:

cy = /rlrp (r)//f dtdu M1, u|7)In 2 ’\(’ uh)) (12)

Nt ¥ [z p @A o),

where p® is a (density) function of 7 arising from a set of
Kuhn-Tucker conditions.

An explicit upper bound C} on 3 is obtained by using
a simple fact: a continuous state channel with covariance
constrained output has capacity which is upper bounded by
a similarly constrained Gaussian channel. This fact follows
from the entropy decomposition formula for 1(M; X) where

the channel output X is the sum of a “signal” S(t,u) = ef
St gip(t—t;,u—u;) plus an independent additive Gaussian
noise w:
Cy = sup{I(X)— H(X|M)}
PM
= sup{I(X)— H(w|M)}
PM
= sup{I[(X)} - IH(w). (13)
PM

In (13) we have used the facts: S is non-random given M;
M and w are independent; and f(w) is functionally inde-
pendent of py. On the other hand, it is well known that,
for a fixed output autocovariance function Ky = K, + K.,
the entropy H(X) is maximized for Gaussian X. Ilence the
channel capacity Cy is upper bounded by the capacity €3 of
a Gaussian channel,

The autocovariance |, I (z, z;) def cov[S(z;)S(z,)], evalu-
ated at two arbitrary spatio-temporal coordinates z; = (¢, 1)
and z, = (lg,uy) in I = [~ %, 3] X A is straightforwardly com-
puted:

Ky(z1:22) = ny /ff Pz
+02)]fj d¢, ]f/ d¢,p(z; — ¢,)plz, -

where:

= Opza — OAQ)dC (14)

GG,

Ka(zi,2) = cov[A(z1]7), AMza|7)], (15)

and A(z) = def E[A(z]7)] is the intensity averaged over 1.

Using a Karhunen-Loeve expansion of X in terms of the
eigenfunctions ¥(z) of K (z;,2,), the channel capacity '3
can be shown to have the form [6]:

Zl: (1+2”‘) (16)

where V,/2 is the white noise spectral level, [1| = T
volume of 7, and 7;, i = 1,2,.

Al is the
.., are the eigenvalues of K,:

2V (z) = /f K (2, €)W(€)de

Combination of (11) and the upper bounds (12) and (16)

on C and €y gives the following rate distortion lower bound
on MSE defined in (3):
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MSE(X) > Bran(X) %c%”mc_%'“i"{cf'cﬁ.}. (17)

111.3 Homogeneous and Isotropic Fields

To obtain a tractable analysis of 7 we specialize to the
case of homogenecous isotropic K, over [0,7] x A, large ob-
servation time T, and large photo-detector surface area |A|.
If K(zy,z,) depends only on the difference z; — z, then K is
said to be homogencous. In this case we abuse notation and
write Wo(¢ + 2,() = N,(z). If furthermore K,(z) depends
ouly on the mag_niLude [|z]] then Iy is said to be isotropic.
The homogeneily and isotropy of K, will depend on the form
of A(t,u|r) and p(t,u), the size of the index set I relative
to the standard widths of (¢, u|7) and p(t, u), and the prior
pr. Note that this does not require the unreasonable proper-
ties that the field X be either conditionally homogeneous or
conditionally isotropic given 7.

I'or homogeneous I the theory of Toeplitz forms provides
a spectral domain descriplion of the capacity €'y (16) in terms
of the limiting capacity-per-unit-volume € def lim, o C5/|1]
(recall that I = [-%,%] x A, 4 = [~a,d] x [~a,a]). In par-
ticular [13]:

—— T 2 _'s » 1, V1
(,'2 = é/ff (If(l:.!/] (11/2 In (1 -+ ‘(,"‘(';',';,_Il—m) ] (}‘8)

where Gy is the power spectral density associated with Ig(z):

Go(fov,v) (19)

o0
= jj’/ diduydug K g(t, uy, ra-;)e"j?'”(f“"”l“"""2"‘2).
— 00

In the Fourier transform (19) f is temporal frequency and
vy, 1 are spatial frequencies. The limiting form (18) for
the normalized capacity C5 /7] gives the large T' and large a
approximation:

i = |10, (20)

to be used in the sequel.
Under the assumption that p(f,u) is a decaying mono-
exponential over {:

1 —t/Ty

plt,u) = { "

splu), =0

21
0, t<o’ (21)

further simplification of C'5 can be made by using the integral
identity:

2

1 a p
e —_— | dw = = - 1. 22
o _mln(lJrlJr{w/p)))(w [\/1+a ] (22)

Specifically, applying this identity to (18) we obtain:

a; = ;; /j [ 1+ (2(1/1,1/2)' - ]:| (ll/lthlg, (23)
2T, v
—o0

where

lef

Qi vg) = Ni,/jo Gs( [ v, 1)df (24)

is the noise-power normalized spatial spectrum of X.

Finally, if @ is spherically symmetric, Q(vy,v;) = Q(r)
where r = y/v? + 112, as occurs for a spatially isotropic ran-
dom field, the double integral in (23) can be reduced to a
single integral via a rectangular-to-polar transformation of
variables (v,12) — (7,8). This results in:

T = I”;/m r [\/1 1 O(r) - 1] dr. (25)

—0

In (25) the spherically symmetric spatial spectrum () can
cither be calculated directly from the 3-D Fourier transform

Gy of Iy using (24), or from the 1-D Hankel transform of

K,(v) def K4(0,u) where v df [J]] [13]. Using (20) we thus

have the following approximation to the unormalized capacily

(@5
I (e e] -
ax G [T [Virae -] (26)

which is accurate for large 7' and large a.

IV. Beam Localization

Here we specialize to the case where I = 2 and 7 = [71, T2]T
corresponds to a spatial translation of A:
1

At ulr) =

ujr TA(H_ I)a (27)

where A(u) = A(]|«]]) is a known spherically symmetric spa-
tial intensity with [, AMu)du = A. We assume that 1 is
uniformly distributed over 7 = A and that the detector sur-
face A = [—a,a] % [—a,a] is large. The estimation of beam
location 7 over the surface of a photo-detector is important
in fields such as laser radar, star tracking, and sub-atomic
particle detection [14, 10, 3]

For this beam localization problem several simplifications
occur due to our assumptions on A and 1.

- First the CR bound (6) applies which reduces to:

BL(M) = |:/f ({“nd);(iu—l—)z )\(ul)drq] , (28)
A

where

Ay, ug)dus.

—-a

z a
Aluy) = /ZT AL, g, ug|T)dtduy =
-2/

Second, the rate distortion bound (17) simplifies due to the
following: 1) the capacity C7 (12) reduces to [8, Sec. VI.A]:

. AMu) .
cr = f,,f M) (29)

where the mean spatial intensity A(u) in (14) is constant over

A:

A
X(g):{ e e d (30)

0, 0.,



and 2) the covariance Ky in (15) is homogencous over [:
Kilz1,2)) = Kalz) — 24), 21,25 € I. Consequently, under
the large A assumption, the spectrum Go(/, vy, 1y) can be
derived using (14) for K, and (21) for p(t, uy, uy):

1

Go(fyr,v) T+ (2T,
il ;)

-7@'3(1/1,1/2), (31)

where /¥ is the rms single-photon-response-to-noise power
(SNR) ratio:

et 2045 + 07)

T = N, )

g and @ are the mean and variance of the SPR gains g;. In
(31) Gy is the SNR normalized spatial spectrum:

(32)
H

pra - Al

|1'\(U] 5 I/z)

where P(vy,1) is the 2-1) Fourier transform of the spatial
component p(u) = p(uy, uz) of the SPR in (21), A(rq, 1) is
the 2-D Fourier transform of the unshifted spatial intensity

AMu), and A(vy, v2) is the 2-D Tourier transform of the piece-

wise constant spatial intensity (30). As belore A A A(0,0)is

the integrated intensily. Applying the integral identity (22)
with (31), we obtain (23) with Q(vy, 1) = 'y(;’s(ul, 7). Com-
bining all of these results the rate distortion bound (17) takes
the form:

B (X) (33)
Au)In ——du
bt R

1, 21, . [Viréw- 1] ’

Ire v T < %

where v = (11,11), and 7, is a SNR threshold determined by
the condition C7 = €3 in (17). Specifically, 7, is the solution
v = 7, of the eqnatl(m.

(34)

f A(?r)ln u ;j‘ /][ 147G (u)-—i}du,

when the solution exists. An important case where the so-
lution does not exist is when the spatial filter response ap-
proaches a delta function, i.e. |P(r)| — econstant. In this
case, since the right hand side of the above equation becomes
unbounded, C7 < €3, and hence min{C7,C;} = C7, for all
7 > 0. Therefore 7, = 0 and the lowerbound (33) is identical

to the direct detection bound B,y (M) = |A]/(27e) exp(—=C7).

The lower bound (33) separates the MSE performance into
two SN regimes: the photon-noise-limited regime (v > 7,);
and the thermal-noise-limited regime (v < +4,). In the photon-
noise-limited regime M,4(X) decreases exponentially as a
function of the information divergence:

d(A,N) % / M) n ;ﬁ@
4 u

which measures the difference hetween the spatial intensities
Mu) (27) and A(w) (30). The closer A(u) is to the uninforma-
tive uniform intensity A(w), the poorer becomes the estimator
MSE. On the other hand, in the thermal-noise-limited-regime
regime [,4,(X) decreases exponentially in the rms deviation
between the 2-D Fourier transforms of A(w) and A(u). Ob-
serve also that the maximum value of B,q45(X) is the “entropy
power” ﬁc—c”(l) = |A|/(27e) which is slightly larger than the
a priori variance o7, = |A|/12 of 7 and 7.

Gaussian Beam Model

Here we specialize to the following spatially symmetric
Gaussian beam and SPR models:

A u? 4ul
Mur,uz) = —=e ™A
2ray
u2+u§
l - 2a
plug,ugp) = Sra2® P
ol
From (29)
._ [A| ar
Ci=Aln |:27rco§ . (35)

Next we derive an upper bound on the SNR threshold 7,
defined as the solution y = v, of the equation ¢} = '35 (34).
Specifically, since g2 /(32 + 02)[A(1) — A(1)]? is non-negative,
the solution of C} = C} with Gy(ry,1) (32) in C5 replaced
by [P(v1,v2)[*A gives an upper bound on 7,. This upper
bound becomes tight when p2/(i2 + 02)|A(r) — A(x)|? < A
which occurs for either: a; > ,uf, i.e wide variation in the
amplitudes of the photo-responses, or o? is large, i.e. broad
spatial intensity width. Making this substitution, (:',(1/1,1/2)
becomes spherically symmetric and, identifying: Q(vy,12) =
G (v, 12) and [Py, 15)]2 = 0‘([)(—02(2}1'?‘) ), (26) applies:

cy o= %'i' r[\/l+ﬁe“"§(2’")Qfl]dr', (36)
p J-co .

where g %' 7A. The integral in (36) can be expressed in
analytical form:

(37)

|11 [mﬁw Ui (L____V” 31))] ,

“ = Sl AT A+1)

Asymptotic analysis of the right side of (37) gives the fol-
lowing large and small 3 representations:

- {\/B —,'1—';71+ol)1, B> 1
2:

(38)
g 4TTIFU + O('H)‘ ﬂ <1
where o(1) — 0 as 3 — co and [ljo(ﬂ) — 0 as § — 0. Using
# = A, equating (35) and (38), and solving for v = 7, yields
the following upper bound on the SN threshold 7,:
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Observe that for low photon intensity levels (7,A < 1) the
upper bound on v, is constant as a function of A but in-
creases proportionally to the relative spatio-temporal width
(Tyo )/ of the SPR pulses {p(t—t;,1—wu;)}!,. In this low
A regime there is little SPR overlap and performance degra-
dation relative to direct detection can be attributed to loss of
single photon resolution due to finite SPR pulse width. On
the other hand for high photon intensity levels (7,A > 1)
the upper bound on 7, increases linearly in A and quadrati-
cally in the relative spatio-temporal SPR pulse width. Note
also that the bound decreases quadratically in the relative
width a}/|A| of the spatial intensity A(w — ). The behav-
jor of the y,-bound reflects the difficulty of estimating pho-
ton arrival coordinates {t;, u;}" in the presence of increasing
amounts of spatio-temporal SPR pulse overlap, which can be
due to broad SPR responses (large (T,02)/|1]), high photon
count rate (large A), or densely packed photon arrivals (small
a%/]A]). Thus, for large A, the relation (39) quantifies the de-
gree to which SPR pulse overlap compromises the attainment
of photon-limited estimation performance. Interestingly, 7,
is much more sensitive to SPR width, in which the bound
on v, increases quadratically, than it is to intensity width, in
which the bound decreases only logarithmically.

Under the symmetric Gaussian beam model Bl (M) =
B2 (M) and the CR bound (8) takes the simple form:

Ber(M) = a2 /A. (40)

Assume g2 /(2 +02)|A(r)—K(r)|? < A and focus on the case
Yo = 1 for concreteness. From (35) and (38) we have:

A
A 2recl
i_L( 4 > A (41)

Bran(X) = <
1 YR G ?
JQJ_KLL,'C ‘Tll'a T < e

On the basis of (40) and (41) we conclude:

1. Unlike B,qpp which converges Lo a value |A]/(27¢e) close to
the prior variance afl , Ber converges to the unreasonable
limit of oo as A — 0. Indeed, the CR bound is not valid
for large estimation errors due to the non-differentiability
of the uniform prior p.(7) at the boundary of the prior
region T = A. While a smoother prior would eliminate
the problem, this is a significant deficiency in the CR
bound.

2. Aso} — 0: B — 0 while Bya — |A]/(27me)-exp(—/7A-

|]|/{f17er(rf,]) since 7, — oo. Hence B4 is generally a
tighter bound for small of.

3. B, decreases in inverse proportion to A while B4 de-
creases exponentially in yA. Hence, B,, can be expected
to be a tighter bound for large A and large 5.
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