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ABSTRACT the new dimension estimator, in addition to establishiray thsat-
isfies a central limit theorem. The analytical expressiamsbias

We develop an approach to intrinsic dimension estimati@ed®@n  and variance allow us to optimize over the tuning parametétise
k-nearest neighbok(N) distances. The dimension estimator is de- dimension estimator. This is shown in Sec. 5. Next, motivétg
rived using a general theory on functionalg®fN density estimates. the analysis in Sec. 3, in Sec. 6 we propose a modified dimensio
This enables us to predict the performance of the dimensitma-  estimator with reduced variance. Finally, in Sec. 7 we repapiri-
tion algorithm. In addition, it allows for optimization ofée param-  cal comparisons that illustrate the improved performari¢heonew
eters in the algorithm. We validate our theory through satiahs  dimensionality estimator relative to previous approaches
and compare our estimator to previoliN based dimensionality In this paper, bold face type will be used to indicate random
estimation approaches. variables and random vectors. We denote the expectatiomatope

Index Terms— intrinsic dimension, manifold learning;, near- by E[.] and the variance operator B.].
est neighbor kNN density estimation, geodesics
2. PROBLEM FORMULATION

1. INTRODUCTION . . . .
LetY = {Y1,...,Yr} be T independent and identically dis-
tributed sample realizations IRP distributed according to density
f. Assume the random vectors th are constrained to lie on a
d-dimensional Riemannian submanifold MR (d < D). We are
interested in estimating the intrinsic dimensian

Intrinsic dimensionality is an important concept in higméinsional
datasets whose principal modes of variation lie on a sulesplsub-
stantially lower dimension, the intrinsic dimensidnIn such cases
dimensionality reduction can be accomplished without tfsefor-
mation. An accurate estimator of intrinsic dimension is ereq-
uisite for setting the embedding dimension of DR algoritrsush 5 1 | og-length statistics

as principal components analysis (PCA), ISOMAP, and Lapiac

eigenmaps. Until recently the most common method for selgct Let~ > 0 be any arbitrary number and = ~/d. Partition the
an embedding dimension for these algorithms was to deteoea k T samples irj into two disjoint setsX andZ of size |7'/2| each.

in a residual error curve, e.g., scree plots of sorted e@aas. In  Denote the samples 6f asX = {Xi,...,X |7/} andZ asZ =
this paper we introduce a new dimensionality estimatorithaased  {Z1,...,Z|r/2) }.

on fluctuations of the sizes of nearest neighbor balls cedtat a Further partitionX into N 'target’ samples{X,,...,Xn}
subset of the data points. In this respect it is similar tot€e%- and M 'reference’ sample$Xny1,...,X |7/} With N + M =

nearest neighbor (kNN) graph dimension estimator [1] arfeit@h- | 7'/2]. Partition Z in an identical manner. Now consider the
mand’s dimension estimator based on nearest neighbondextd2].  following statistics based on the partitioning of samplacp
The estimator can also be related to the Leonenko’s Rérgomn
estimator [3]. However, unlike these estimators, our nesmeati- N
sion estimator is derived directly from a mean squared €MdB.E.) Li(X) = % Z log (Rk (X)),
optimality condition for partitioned KNN estimators of niuériate i=1
density functionals. This guarantees that our estimatsrtia best
possible M.S.E. convergence rate among estimators ireisscEm- ~ WhereRu (X) is thek nearest neighbo®{\N) distance from target
pirical experiments are presented that show that this amtiopp- ~ SampleX; to the M reference sampleX 1, ..., Xny4ar. This
timality translates into improved performance in the firsmple  partitioning of samples is illustrated in Fig. 1.
regime.

The paper is organized as.follow.s. In Sgc. 2.1 we introduee thy, 5 Relation tokNN density estimates
the general form of the new dimension estimator. In Sec. @@.
show that the estimator is related to a general class of kNisile ~ Under the condition thak/M is small, the EuclideakNN dis-
estimators. In Sec. 3 we review results on the statisticgpeaties  tance Rx(X;) approximates théNN distance on the manifold.
of functionals of kNN density estimators and in Sec. 4 we hé® t The kNN density estimate [4] of at X; based on thé// samples
theory to obtain expressions for the asymptotic bias anidwee of Xy 1,..., X1 is then given by
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Fig. 1. kNN edges on sphere manifold with uniform distribution for
d=2,D = 3,andk = 5.

where Rk (X;) is the kNN distance fromX; to the M samples
XN+1,- .-, XN+M, cq iS the volume of the unit ball i@ dimen-
sions and therefor®x (X;) is the volume of thé:NN ball. This
implies thatLy (X) can be rewritten as follows:

M=

Lk (X) log (Rk (X))

ol
Nz’

log ( )a + %élog (f"k(xi))_a

N
alog(k —1) — % > log ie(X)

i=1

1

k—1
Mcd

—alog(cqaM). (1)

As eq. (1) indicates, the log-length statistics is lineahwespect to
log(k — 1) with a slope of«. This prompts the idea of estimatiag
(and laterd) from the slope oLy (X) as a function ofog(k — 1).

2.3. Intrinsic dimension estimate based on varying bandwith %

Let &, andk: be two different choices of bandwidth parameters. Let

Ly, (X) andLy, (Z) be the length statistics evaluated at bandwidthsDefinex = —yv//a?.

k1 andk. using dateél andZ respectively. A natural choice for the
estimate ofx would then be

Lkz (Z') — Lk1 (x)
log(k2 — 1) — log(k1 — 1)

&

N
a+ % ; (log f'kz (Z;) — log f‘kl (Xz’))

a+ v(Bi, (2) — B, (X)),
where

B (X) = %ZIOg(fk(Xi)%

andv = —a/log((k2 — 1)/(k1 — 1)). The intrinsic dimension es-
timate is related ta by the simple relationl = v/

3. STATISTICAL PROPERTIES OF ESTIMATES OF
FUNCTIONALS OF DENSITIES

We make the assumption thgtis two times continuously differ-
entiable and is bounded away frdin Under this assumption, we
have established the following the following theorems andhkpec-
tation, variance and asymptotic distribution of the dgrihctional
estimatel, () in our work on statistical estimators of non-linear
functionals of densities [5]. Le¥ be distributed according t@.
DenoteE = Ellog(f(Y))].

Theorem 3.1. The bias of the log-length statistic By () is given by

()" +3).

where ¢y, = C4E[f YD (Y)tr[V2(f(Y))))], cse = —0.5 and
the constant Cy = (/9 ((d + 2)/2))/(x(d + 2)).

k

M

1

k

Cb2
+ A +o

i )Q/d

E[Ek(X)] —F = Cp1 (M

Theorem 3.2. The variance of the log-length statistic Ex(X) is

o Jro(s+x).

Theorem 3.3. Let Z be a standard normal random variable. Then,

1

V[Ew(X)] = co (N

1,1
M N

where ¢, = V [log(£(Y))].

_ Ex(X) — E[Ex ()]
lim Pr <a|=Pr(Z<a).
N,M—oco < /CU/N — ) ( — )

4. STATISTICAL PROPERTIES OF INTRINSIC
DIMENSION ESTIMATE

We can relate the error in estimation®@fto the error in dimension
estimation as follows:

o = (-3
a «

_ a—&

- Qo

Using the results on the length statigiig ()
from the previous section and the above relation betweeerttoes
d—d anda — «, we have the following statistical properties for the
estimated:

Estimator bias

Estimator variance

V(d)



Central limit theorem
Let Z be a standard normal random variable. Then,

. d — E[d]
lim Pr| ————<
N,M— 00 < /2H2CU/N =

5. OPTIMAL SELECTION OF PARAMETERS

a) =Pr(Z < o).

We have theoretical expressions for the mean square err&.Byl

of the dimension estimatd, which we can optimize over the free

parameters:i, k2, N and M [6]. We restrict our attention to the
casek: = 2k; ki = k. The M.S.E. ofd (ignoring higher order
terms) is given by

M.S.E(d) = (E[d]—-d)*+ V[d]

(6 (8)" e (1))

+rcz(%). @)
whereC),, = k2(2/47V ¢y, = k/4 andC, = 2k3c,.
5.1. Optimal choice of bandwidth
The optimal value ok w.r.t the M.S.E. is given by

kot = koM. 3)

where the constarity = (|Ch, |d/2|Ch, |)d%2

5.2. Optimal partitioning of sample space

Under the constraint thaV + M = |T/2] is fixed, the optimal
choice of N as a function of\/ is then given by

6+d
Nopt = [NoM 2+ |, (4)
where the constanVy, = 7vcglff+d).

6. IMPROVED ESTIMATOR BASED ON CORRELATED
ERROR

Consider the following alternative estimator ter

~ Lk2 (:X:) — Lkl (x)
@ = log(k2 — 1) — log(k1 — 1)
= a+ k(B (X) - By, (X)),

and the corresponding density estimdtevhich satisfies

where both the length statistics at bandwidkhsand k2 are eval-

uated using the same sampte The density functional estimates
Ey, (X) andEy, (X) will be highly correlated (as compared to the

independent quantitiel, () andEkz( )). This implies that the
variance of the differencBi, (X) — Ei, (X) will be smaller when
compared tdy, (2)
same).

— By, (X), (while the expectation remains the

Since the estimator bias is unaffected by this modificatibe,
variance reduction suggests thiavill be an improved estimator as
compared tal in terms of M.S.E.. In order to obtain statistical prop-
erties for the improved estimatdr (equivalent to the properties de-
veloped in Section 4 for the original estimatby, we need to analyze
the joint distribution betweefi, (X;) andfy, (X;) for two distinct
valuesk; andkz. Our theory, at present, cannot address the case of
distinct bandwidthg:; andk..

Since the estimatd has smaller M.S.E. compareddo M.S.E.
predictions for the estimatd can serve as upper bounds on the
M.S.E. performance of the improved estimdte

7. SIMULATIONS

We generatd’ = 10° samplesB drawn from ad = 2 mixture den-
sity fm = .8f3+.2f., wherefs is the product of twd dimensional
marginal beta distributions with parameters= 2, 3 = 2 and f,,

is a uniform density ir2 dimensions. These samples are then pro-
jected to s-dimensional hyperplane iR* by applying the transfor-
mationY = UB whereU is a3 x 2 random matrix whose columns
are orthonormal. We apply our intrinsic dimension estiraate the
sampley/.

7.1. Optimal selection of free parameters

In our first experiment, we theoretically compute the optiotmice

of k for a fixed partition with\/ = 3.5x10* andN = 1.5x10%. We
then show the variation of the theoretical and experimevitalE. of

the estimatel and the experimental M.S.E. of the improved estimate
d with changing bandwidtk in Fig. 2(a). In our second experiment,
we compute the optimal partition according to eq. (4) andistie
variation of M.S.E. with varying choices of partition in Fig(b).

From our experiments, we see that there is good agreement be-
tween our theory and simulations. As a consequence, we fand th
theoretically predicted optimal choices kf Nand M to minimize
the observed M.S.E.. In addition, as predicted by our theitey
modified estimatod significantly outperformsl. The theoretically
predicted M.S.E. fod therefore serves as a strict upper bound for
the M.S.E. of the improved estimatdr

7.2. Comparison of dimension estimation methods

We compare the performance of our proposed dimension dstisna
to the estimated proposed by Frahmand et. al. [2] (denotb)aand
Costa et. al. [1] (denote ak;)).

Expressions for the optimal bandwidkh(eg. (3)) and partition
N, M (eq. (4)) depend on the unknown intrinsic dimensiband
constantss, , cs, andc, which depend on unknown densify The
constantsy, , ¢y, ande, can be estimated from the data using plug-
in methods similar to the ones used by Raykar et. al. [7] fdr-op
mal bandwidth selection for kernel density estimation . 3tablish
the potential advantages of our dimension estimators wepaoeran
omniscient optimal form of our estimator, for which the tnedues
of these constants are known, to a suboptimal form of oumestir
that does not know the constants.

For the optimal estimator, we theoretically compute thenoalt
choice fork, N and M for different choices of total sample siZe
(sub-sampled from the initial0® samples), and use these optimal
parameters for the estlmatozﬂsandd We use this optimal choice
of bandwidth: for the estimatorsl ; andd; as well (partitioning not
applicable). For the suboptimal estimator, we arbitrachypose the
parameters as follows: fixdd= 20, N = T'/50, M = |T/2| —
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Fig. 3. Comparison of performance of dimension estimates (Solid
line: Optimal (optimal choice ok,N and M as per eg. (3) and
eg. (4)); Dashed line: Suboptimal (fixdd= 20, N = T/50,

M = |T/2] — N)): The proposed improved kNN distance esti-
mator outperforms all other estimators considered.

tain theoretical expressions for optimal selection of fraeameters
- bandwidthk and partition schemé&’, M - for minimum M.S.E..
We further improve upon the parameter optimized dimensgii e
mator by applying a variance reducing correction that watvaied
directly by our theory. Simulations validate the theoraiticesults
presented in this paper. Furthermore, the improved estinehis
shown to have the best performance among athéM based intrin-
sic dimension estimates.
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