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ABSTRACT

We develop an approach to intrinsic dimension estimation based on
k-nearest neighbor (kNN) distances. The dimension estimator is de-
rived using a general theory on functionals ofkNN density estimates.
This enables us to predict the performance of the dimension estima-
tion algorithm. In addition, it allows for optimization of free param-
eters in the algorithm. We validate our theory through simulations
and compare our estimator to previouskNN based dimensionality
estimation approaches.

Index Terms— intrinsic dimension, manifold learning,k near-
est neighbor ,kNN density estimation, geodesics

1. INTRODUCTION

Intrinsic dimensionality is an important concept in high dimensional
datasets whose principal modes of variation lie on a subspace of sub-
stantially lower dimension, the intrinsic dimensiond. In such cases
dimensionality reduction can be accomplished without lossof infor-
mation. An accurate estimator of intrinsic dimension is a prereq-
uisite for setting the embedding dimension of DR algorithmssuch
as principal components analysis (PCA), ISOMAP, and Laplacian
eigenmaps. Until recently the most common method for selecting
an embedding dimension for these algorithms was to detect a knee
in a residual error curve, e.g., scree plots of sorted eigenvalues. In
this paper we introduce a new dimensionality estimator thatis based
on fluctuations of the sizes of nearest neighbor balls centered at a
subset of the data points. In this respect it is similar to Costa’s k-
nearest neighbor (kNN) graph dimension estimator [1] and toFarah-
mand’s dimension estimator based on nearest neighbor distances [2].
The estimator can also be related to the Leonenko’s Rényi entropy
estimator [3]. However, unlike these estimators, our new dimen-
sion estimator is derived directly from a mean squared error(M.S.E.)
optimality condition for partitioned kNN estimators of multivariate
density functionals. This guarantees that our estimator has the best
possible M.S.E. convergence rate among estimators in its class. Em-
pirical experiments are presented that show that this asymptotic op-
timality translates into improved performance in the finitesample
regime.

The paper is organized as follows. In Sec. 2.1 we introduce the
the general form of the new dimension estimator. In Sec. 2.2.we
show that the estimator is related to a general class of kNN density
estimators. In Sec. 3 we review results on the statistical properties
of functionals of kNN density estimators and in Sec. 4 we use this
theory to obtain expressions for the asymptotic bias and variance of
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the new dimension estimator, in addition to establishing that it sat-
isfies a central limit theorem. The analytical expressions for bias
and variance allow us to optimize over the tuning parametersof the
dimension estimator. This is shown in Sec. 5. Next, motivated by
the analysis in Sec. 3, in Sec. 6 we propose a modified dimension
estimator with reduced variance. Finally, in Sec. 7 we report empiri-
cal comparisons that illustrate the improved performance of the new
dimensionality estimator relative to previous approaches.

In this paper, bold face type will be used to indicate random
variables and random vectors. We denote the expectation operator
by E[.] and the variance operator byV[.].

2. PROBLEM FORMULATION

Let Y = {Y1, . . . ,YT } be T independent and identically dis-
tributed sample realizations inRD distributed according to density
f . Assume the random vectors inY are constrained to lie on a
d-dimensional Riemannian submanifold M ofR

D (d < D). We are
interested in estimating the intrinsic dimensiond.

2.1. Log-length statistics

Let γ > 0 be any arbitrary number andα = γ/d. Partition the
T samples inY into two disjoint setsX andZ of size⌊T/2⌋ each.
Denote the samples ofX asX = {X1, . . . ,X⌊T/2⌋} andZ asZ =
{Z1, . . . ,Z⌊T/2⌋}.

Further partitionX into N ’target’ samples{X1, . . . ,XN}
andM ’reference’ samples{XN+1, . . . , X⌊T/2⌋} with N + M =
⌊T/2⌋. Partition Z in an identical manner. Now consider the
following statistics based on the partitioning of sample space:

Lk(X) =
γ

N

N
X

i=1

log (Rk(Xi)) ,

whereRk(Xi) is thek nearest neighbor (kNN) distance from target
sampleXi to theM reference samplesXN+1, . . . ,XN+M . This
partitioning of samples is illustrated in Fig. 1.

2.2. Relation tokNN density estimates

Under the condition thatk/M is small, the EuclideankNN dis-
tanceRk(Xi) approximates thekNN distance on the manifold.
ThekNN density estimate [4] off at Xi based on theM samples
XN+1, . . . ,XN+M is then given by

f̂k(Xi) =
k − 1

M

1

cdRk(Xi)d
=

k − 1

M

1

Vk(Xi)
,
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Fig. 1. kNN edges on sphere manifold with uniform distribution for
d = 2, D = 3, andk = 5.

whereRk(Xi) is the kNN distance fromXi to the M samples
XN+1, . . . ,XN+M , cd is the volume of the unit ball ind dimen-
sions and thereforeVk(Xi) is the volume of thekNN ball. This
implies thatLk(X) can be rewritten as follows:

Lk(X) =
γ

N

N
X

i=1

log (Rk(Xi))

= log

„

k − 1

Mcd

«α

+
1

N

N
X

i=1

log
“

f̂k(Xi)
”−α

= α log(k − 1) − α

N

N
X

i=1

log f̂k(Xi)

−α log(cdM). (1)

As eq. (1) indicates, the log-length statistics is linear with respect to
log(k − 1) with a slope ofα. This prompts the idea of estimatingα
(and laterd) from the slope ofLk(X) as a function oflog(k − 1).

2.3. Intrinsic dimension estimate based on varying bandwidth k

Let k1 andk2 be two different choices of bandwidth parameters. Let
Lk1

(X) andLk2
(Z) be the length statistics evaluated at bandwidths

k1 andk2 using dataX andZ respectively. A natural choice for the
estimate ofα would then be

α̂ =
Lk2

(Z) − Lk1
(X)

log(k2 − 1) − log(k1 − 1)

= α +
ν

N

N
X

i=1

“

log f̂k2
(Zi) − log f̂k1

(Xi)
”

= α + ν(Êk2
(Z) − Êk1

(X)),

where

Êk(X) =
1

N

N
X

i=1

log(f̂k(Xi)),

andν = −α/log((k2 − 1)/(k1 − 1)). The intrinsic dimension es-
timate is related tôα by the simple relation̂d = γ/α̂.

3. STATISTICAL PROPERTIES OF ESTIMATES OF
FUNCTIONALS OF DENSITIES

We make the assumption thatf is two times continuously differ-
entiable and is bounded away from0. Under this assumption, we
have established the following the following theorems on the expec-
tation, variance and asymptotic distribution of the density functional
estimateÊk(X) in our work on statistical estimators of non-linear
functionals of densities [5]. LetY be distributed according tof .
DenoteE = E[log(f(Y))].

Theorem 3.1. The bias of the log-length statistic Êk(X) is given by

E[Êk(X)] − E = cb1

„

k

M

«2/d

+
cb2

k
+ o

 

„

k

M

«2/d

+
1

k

!

,

where cb1 = CdE[f (−1−2/d)(Y)tr[∇2(f(Y))])], cb2 = −0.5 and
the constant Cd = (Γ(2/d)((d + 2)/2))/(π(d + 2)).

Theorem 3.2. The variance of the log-length statistic Êk(X) is
given by

V[Êk(X)] = cv

„

1

N

«

+ o

„

1

M
+

1

N

«

,

where cv = V [log(f(Y))].

Theorem 3.3. Let Z be a standard normal random variable. Then,

lim
N,M→∞

Pr

 

Êk(X) − E[Êk(X)]
p

cv/N
≤ α

!

= Pr(Z ≤ α).

4. STATISTICAL PROPERTIES OF INTRINSIC
DIMENSION ESTIMATE

We can relate the error in estimation ofα to the error in dimension
estimation as follows:

d̂ − d = γ

„

1

α̂
− 1

α

«

= γ
α − α̂

α̂α

= − γ

α2
(α̂ − α) + o(α̂ − α).

Defineκ = −γν/α2. Using the results on the length statisticÊk(X)
from the previous section and the above relation between theerrors
d̂− d andα̂−α, we have the following statistical properties for the
estimatêd:
Estimator bias

E[d̂] − d = κcb1

 

„

k2

M

«2/d

−
„

k1

M

«2/d
!

+ κcb2

„„

1

k2

«

−
„

1

k1

««

+ o

 

1

k1
+

1

k2
+

„

k1

M

«2/d

+

„

k2

M

«2/d
!

.

Estimator variance

V(d̂) = 2κ2cv

„

1

N

«

+ o

„

1

M
+

1

N

«

.



Central limit theorem
Let Z be a standard normal random variable. Then,

lim
N,M→∞

Pr

 

d̂ − E[d̂]
p

2κ2cv/N
≤ α

!

= Pr(Z ≤ α).

5. OPTIMAL SELECTION OF PARAMETERS

We have theoretical expressions for the mean square error (M.S.E)
of the dimension estimatêd, which we can optimize over the free
parametersk1, k2, N andM [6]. We restrict our attention to the
casek2 = 2k; k1 = k. The M.S.E. ofd̂ (ignoring higher order
terms) is given by

M.S.E.(d̂) = (E[d̂] − d)2 + V[d̂]

=

 

Cb1

„

k

M

«2/d

+ Cb2

„

1

k

«

!2

+ Cv

„

1

N

«

. (2)

whereCb1 = κ2(2/d−1), Cb2 = κ/4 andCv = 2κ2cv .

5.1. Optimal choice of bandwidth

The optimal value ofk w.r.t the M.S.E. is given by

kopt = ⌊k0M
2

2+d ⌋. (3)

where the constantk0 = (|Cb2 |d/2|Cb1 |)
d

d+2 .

5.2. Optimal partitioning of sample space

Under the constraint thatN + M = ⌊T/2⌋ is fixed, the optimal
choice ofN as a function ofM is then given by

Nopt = ⌊N0M
6+d

2(2+d) ⌋, (4)

where the constantN0 =

√
Cv(2+d)

2b0
.

6. IMPROVED ESTIMATOR BASED ON CORRELATED
ERROR

Consider the following alternative estimator forα:

α̃ =
Lk2

(X) − Lk1
(X)

log(k2 − 1) − log(k1 − 1)

= α + κ(Êk2
(X) − Êk1

(X)),

and the corresponding density estimated̃ which satisfies

d̃ − d = − γ

α2
(α̃ − α) + o(α̂ − α),

where both the length statistics at bandwidthsk1 andk2 are eval-
uated using the same sampleX. The density functional estimates
Êk1

(X) andÊk2
(X) will be highly correlated (as compared to the

independent quantitieŝEk1
(X) andÊk2

(Z)). This implies that the
variance of the differencêEk2

(X) − Êk1
(X) will be smaller when

compared tôEk2
(Z)− Êk1

(X), (while the expectation remains the
same).

Since the estimator bias is unaffected by this modification,the
variance reduction suggests thatd̃ will be an improved estimator as
compared tôd in terms of M.S.E.. In order to obtain statistical prop-
erties for the improved estimator̃d (equivalent to the properties de-
veloped in Section 4 for the original estimatord̂), we need to analyze
the joint distribution between̂fk1

(Xi) andf̂k2
(Xj) for two distinct

valuesk1 andk2. Our theory, at present, cannot address the case of
distinct bandwidthsk1 andk2.

Since the estimatẽd has smaller M.S.E. compared tôd, M.S.E.
predictions for the estimatêd can serve as upper bounds on the
M.S.E. performance of the improved estimated̃.

7. SIMULATIONS

We generateT = 105 samplesB drawn from ad = 2 mixture den-
sityfm = .8fβ +.2fu, wherefβ is the product of two1 dimensional
marginal beta distributions with parametersα = 2, β = 2 andfu

is a uniform density in2 dimensions. These samples are then pro-
jected to a3-dimensional hyperplane inR3 by applying the transfor-
mationY = UB whereU is a3 × 2 random matrix whose columns
are orthonormal. We apply our intrinsic dimension estimates on the
samplesY.

7.1. Optimal selection of free parameters

In our first experiment, we theoretically compute the optimal choice
of k for a fixed partition withM = 3.5×104 andN = 1.5×104. We
then show the variation of the theoretical and experimentalM.S.E. of
the estimatêd and the experimental M.S.E. of the improved estimate
d̃ with changing bandwidthk in Fig. 2(a). In our second experiment,
we compute the optimal partition according to eq. (4) and show the
variation of M.S.E. with varying choices of partition in Fig. 2(b).

From our experiments, we see that there is good agreement be-
tween our theory and simulations. As a consequence, we find the
theoretically predicted optimal choices ofk, NandM to minimize
the observed M.S.E.. In addition, as predicted by our theory, the
modified estimator̃d significantly outperformŝd. The theoretically
predicted M.S.E. for̂d therefore serves as a strict upper bound for
the M.S.E. of the improved estimatord̃.

7.2. Comparison of dimension estimation methods

We compare the performance of our proposed dimension estimators
to the estimated proposed by Frahmand et. al. [2] (denote asd̂f ) and
Costa et. al. [1] (denote aŝdj).

Expressions for the optimal bandwidthk (eq. (3)) and partition
N, M (eq. (4)) depend on the unknown intrinsic dimensiond and
constantscb1 , cb2 andcv which depend on unknown densityf . The
constantscb1 , cb2 andcv can be estimated from the data using plug-
in methods similar to the ones used by Raykar et. al. [7] for opti-
mal bandwidth selection for kernel density estimation . To establish
the potential advantages of our dimension estimators we compare an
omniscient optimal form of our estimator, for which the truevalues
of these constants are known, to a suboptimal form of our estimator
that does not know the constants.

For the optimal estimator, we theoretically compute the optimal
choice fork, N andM for different choices of total sample sizeT
(sub-sampled from the initial105 samples), and use these optimal
parameters for the estimatorŝd andd̃. We use this optimal choice
of bandwidthk for the estimatorŝdf andd̂j as well (partitioning not
applicable). For the suboptimal estimator, we arbitrarilychoose the
parameters as follows: fixedk = 20,N = T/50, M = ⌊T/2⌋ −N .
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Fig. 2. Comparison of theoretically predicted and experimental
M.S.E. for varying choices ofk, N andM . The experimental perfor-
mance of the estimator̂d is in excellent agreement with the theoreti-
cal expression and, as predicted by our theory, the modified estimator
d̃ significantly outperformŝd.

The performance of these estimators as a function of sample size
T is shown in Fig. 3. Estimators with optimal choice of parameters
are indicated in solid line, and the suboptimal estimators are indi-
cated in dashed lines.

From our experiments we see that the performance of the origi-
nal estimator̂d with suboptimal choice of parameters is marginally
inferior when compared to the estimator with optimal choiceof pa-
rameters. This does not hold for the other estimators as can be ex-
pected since the parameters are optimized w.r.t. the performance of
d̂.

We note that the improved estimatord̃ outperforms all other es-
timators while the performance of our original estimatord̂ is sand-
wiched between̂df andd̂j . We conjecture that the performance of
d̂j is superior tôd for the same reason thatd̃ outperformŝd: corre-
lated error between different length statistics.

8. CONCLUSIONS

We proposed a new estimatord̂ for intrinsic dimension estimation
based on our theory on multivariate functionals ofkNN density es-
timates. We present results on the bias, variance and asymptotic
distribution of our proposed estimate. Using these results, we ob-
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Fig. 3. Comparison of performance of dimension estimates (Solid
line: Optimal (optimal choice ofk,N and M as per eq. (3) and
eq. (4)); Dashed line: Suboptimal (fixedk = 20, N = T/50,
M = ⌊T/2⌋ − N )): The proposed improved kNN distance esti-
mator outperforms all other estimators considered.

tain theoretical expressions for optimal selection of freeparameters
- bandwidthk and partition schemeN, M - for minimum M.S.E..
We further improve upon the parameter optimized dimension esti-
mator by applying a variance reducing correction that was motivated
directly by our theory. Simulations validate the theoretical results
presented in this paper. Furthermore, the improved estimator d̃ is
shown to have the best performance among otherkNN based intrin-
sic dimension estimates.
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