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Abstract

In many applications, fusion of images acquired via two or more sensors requires image alignment

to an identical pose, a process called image registration. Image registration methods select a sequence

of transformations to maximize an image similarity measure. Recently a new class of entropic-graph

similarity measures was introduced for image registration, feature clustering and classification. This

chapter provides an overview of entropic graphs in image registration and demonstrates their performance

advantages relative to conventional similarity measures. In this chapter we introduce : techniques to extend

image registration to higher dimension feature spaces using R´enyi’s generalized�-entropy. The�-entropy

is estimated directly through continuous quasi additive power weighted graphs such as the minimal

spanning tree (MST) and k-Nearest Neighbor graph (kNN). Entropic graph methods are further used to

approximate similarity measures like the� mutual information,�-Jensen divergence, Henze-Penrose

affinity and Geometric-Arithmetic mean affinity. These similarity measures offer robust registration

benefits in a multisensor environment. Higher dimensional features used for this work include basis

functions like multidimensional wavelets and independent component analysis (ICA). Registration is

performed on a database of multisensor satellite images. Lastly, we demonstrate the sensitivity of our

approach by matching local image regions in a multimodal medical imaging example.
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Entropic graphs for registration

I. INTRODUCTION

Given 2D or 3D images gathered via multiple sensors located at different positions, the multi-sensor

image registration problem is to align the images so that have an identical pose in a common coordinate

system (Figure 1). Image registration is becoming a challenging multi-sensor fusion problem due to the

increased diversity of sensors capable of imaging objects and their intrinsic properties. In medical imaging,

cross sectional anatomic images are routinely acquired by magnetic induction (Magnetic Resonance

Imaging, MRI), absorption of accelerated energized photons (X-Ray Computed Tomography, CT) and

ultra high frequency sound (Ultrasound) waves. Artifacts such as motion, occlusion, specular refraction,

noise, inhomogeneities in the object and imperfections in the transducer compound the difficulty of image

registration. Cost and other physical considerations canm constrain the spatial or spectral resolution and

the signal to noise ratio (SNR). Despite these hindrances, image registration is now commonplace in

medical imaging, satellite imaging and stereo vision. Image registration also finds widespread usage in

other pattern recognition and computer vision applications such as image segmentation, tracking and

motion compensation. A comprehensive survey of the image registration problem, its applications, and

implementable algorithms can be found in [52], [51]. Image fusion is defined as task of extracting co-

occurring information from multisensor images. Image registration is hence a precursor to fusion. Image

fusion finds several applications in medical imaging where it is used to fuse anatomic and metabolic

information [72], [53], [24], and build global anatomical atlases [80].

The three chief components of an effective image registration system (Figure 2) are: (1) definition

of features that discriminate between different image poses; (2) adaptation of a matching criterion that

quantifies feature similarity, is capable of resolving important differences between images, yet is robust

to image artifacts; (3) implementation of optimization techniques which allow fast search over possible

transformations. In this chapter, we shall be principally concerned with the first two components of the

system. In a departure from conventional pixel-intensity features, we present techniques that use higher

dimensional features extracted from images. We adapt traditional pixel matching methods that rely on

entropy estimates to include higher dimensional features. We propose a general class of information
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Fig. 1. Image fusion: (left) Co-registered images of the face acquired via visible light and longwave senors. (right) Registered

brain images acquired by time-weighted responses . Face and brain images courtesy ([23]) and ([16]) respectively.

theoretic feature similarity measures that are based on entropy and divergence and can be empirically

estimated using entropic graphs, such as the minimal spanning tree (MST) or k-Nearest Neighbor (kNN)

graph, and do not require density estimation or histograms.

Traditional approaches to image registration have included single pixel gray level features and corre-

lation type matching functions. The correlation coefficient is a poor choice for the matching function in

multi-sensor fusion problems. Multi-sensor images typically have intensity maps that are unique to the

sensors used to acquire them and a direct linear correlation between intensity maps may not exist (Fig

3). Several other matching functions have been suggested in the literature [37], [42], [66]. Some of the

most widespread techniques are: histogram matching [39]; texture matching [2]; intensity cross correlation

[52]; optical flow matching [47]; kernel-based classification methods [17]; boosting classification methods

[19], [44]; information divergence minimization [81], [77], [76], [29]; and mutual information (MI)

maximization [84], [28], [53], [11]. The last two methods can be called ”entropic methods” since both use

a matching criterion defined as a relative entropy between the feature distributions. The main advantage
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Fig. 2. Block diagram of an image registration system

of entropic methods is that they can capture non-linear relations between features in order to improve

discrimination between poor and good image matches. When combined with a highly discriminatory

feature set, and reliable prior information, entropic methods are very compelling and have been shown to

be virtually unbeatable for some multimodality image registration applications [48], [53], [37]. However,

due to the difficulty in estimating the relative entropy over high dimensional feature spaces, the application

of entropic methods have been limited to one or two feature dimensions. The independent successes of

relative entropy methods, e.g., MI image registration, and the use of high dimensional features, e.g.,

SVM’s for handwriting recognition, suggest that an extension of entropic methods to high dimensions

would be worthwhile. Encouraging initial studies on these methods have been conducted by these authors

and can be found in [60], [58].

Here we describe several new techniques to extend methods of image registration to high dimensional

feature spaces. Chief among the techniques is the introduction of entropic graphs to estimate a generalized

�-entropy: Rényi’s�-entropy. These entropic graph estimates can be computed via a host of combinatorial

optimization methods including the MST and the k-Nearest neighbor graph (kNNG). The computation

and storage complexity of the MST and kNNG-based estimates increase linearly in feature dimension as

opposed to the exponential rates of histogram-based estimates of entropy. Furthermore, as will be shown,
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Fig. 3. MRI images of the brain, with additive noise. (left) T1 weightedI1, (center) T2 weightedI2. Images courtesy [16].

Although acquired by a single sensor, the time weighting renders different intensity maps to identical structures in the brain.

(right) Joint gray-level pixel coincidence histogram is clustered and does not exhibit a linear correlation between intensities.

entropic graphs can also be used to estimate more general similarity measures. Specific examples include

the�-mutual information (�-MI) ; �-Jensen difference divergence, the Henze-Penrose (HP) affinity, which

is a multidimensional approximation to the Wald-Wolfowitz test [85], and the�-geometric-arithmetic (�-

GA) mean divergence [79]. To our knowledge, the last two divergence measures have never been utilized

in the context of image registration problems. We also explore variants of entropic graph methods that

allow estimation with faster asymptotic convergence properties and reduced computational complexity.

The�-entropy of a multivariate distribution is a generalization of the better known Shannon entropy.

Alfred Rényi introduced the�-entropy in a 1961 paper [71] and since then many important properties

of �-entropy have been established [4]. From R´enyi’s �-entropy the R´enyi �-divergence and the R´enyi

�-mutual information (�-MI) can be defined in a straightforward manner. For� = 1 these quantities

reduce to the standard (Shannon) entropy, (Kullback-Liebler) divergence, and (Shannon) MI, respectively.

Another useful quantity that can be derived from the�-entropy is the�-Jensen difference, which is a

generalization of the standard Jensen difference and has been used here in our extension of entropic

pattern matching methods to high feature dimension. As we will show, this generalization allows us to

define an image matching algorithm that benefits from a simple estimation procedure and an extra degree

of freedom (�).

Some additional comments on relevant prior work by us and others is in order. Various forms of
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�-entropy have been exploited by others for applications including: reconstruction and registration of

interferometric synthetic aperture radar (ISAR) images [29], [26]; blind deconvolution [25]; and time-

frequency analysis [3], [86]. Again, our innovation with respect to these works is the extension to

high dimensional features via entropic graph estimation methods. On the other hand, the alpha-entropy

approaches described here should not be confused with entropy-alpha classification in SAR processing

[15] which has no relation whatsoever to our work. A tutorial introduction to the use of entropic graphs to

estimate multivariate�-entropy and other entropy quantities was published by us in a recent survey article

[35]. As introduced in [36] and studied in [35], [34] an entropic graph is any graph whose normalized

total weight (sum of the edge lengths) is a consistent estimator of�-entropy. An example of an entropic

graph is the minimal spanning tree and due to its low computational complexity it is an attractive entropic

graph algorithm. This graph estimator can be viewed as a multidimensional generalization of the Vasicek

Shannon entropy estimator for one dimensional features [83], [7].

We have developed experiments that allows the user to examine and compare our methods with

other methods currently used for image fusion tasks. The applications presented in this chapter are

primarily selected to illustrate the flexibility of our method, in terms of selecting high dimensional

features. However, they help us compare and contrast multidimensional entropy estimation methods. In

the first example we perform registration on images obtained via multi-band satellite sensors. Images

acquired via these geostationary satellites serve in research related to heat dissipation from urban centers,

climactic changes and other ecological projects. Thermal and visible light images captured for the Urban

Heat Island [68] project form a part of the database used here. NASA’s visible earth project [57] also

provides images captured via different satellite sensors, and such multi-band images have been used here

to provide a rich representative database of satellite images. Thermal and visible-light sensors image

different bands in the electromagnetic spectrum and thus have different intensity maps, removing any

possibility of using correlation-based registration methods.

As a second example we apply our methods to registering medical images of the human brain acquired

under dual modality (T1,T2 weighted) magnetic resonance imaging. Simulated images of the brain under

different time-echo responses to magnetic excitation are used. Different areas in the brain (neural tissue, fat

and water) have distinct magnetic excitation properties. Hence, they express different levels of excitation

when appropriately time-weighted. This example qualifies as a multisensor fusion example due to the
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disparate intensity maps generated by the imaging sequence, commonly referred to as the T1 and T2

time weighted MRI sequences. We demonstrate an image matching technique for MRI images sensitive

to local perturbations in the image.

Higher dimensional features used for this work include those based on independent component analysis

(ICA) and multidimensional wavelet image analysis. Local basis projection coefficients are implemented

by projecting local 8 by 8 sub-images of the image onto the ICA basis for the local image matching

example from medical imaging. Multi-resolution wavelet features are used for registration of satellite

imagery. Local feature extraction via basis projection is a commonly used technique for image represen-

tation [74], [82]. Wavelet bases are commonly used for image registration as is evidenced in [87], [78],

[43]. ICA features are somewhat less common but have been similarly applied by Olshausen, Hyv¨arinen

and others [49], [41], [64]. The high dimensionality (= 64 for local basis projections) of these feature

spaces precludes the application of standard entropy-based pattern matching methods and provides a good

illustration of the power of our approach. The ability of the wavelet basis to capture spatial-frequency

information in a hierarchical setting makes them an attractive choice for use in registration.

The paper is organized as follows: Section II introduces various entropy and�-entropy based similarity

measures such as R´enyi entropy and divergence, mutual information and�-Jensen difference divergence.

Section III describes continuous Euclidean functionals such as the MST and the kNNG that asymptotic

converge to the R´enyi entropy. Section IV presents the Henze-Penrose test statistic as a divergence measure

for image registration. Next, Section VI describes, in detail, the feature based matching techniques used

in this work, different types of features used and the advantages of using such methods. Computational

considerations involved in constructing graphs are discussed in Section VII. Finally, Sections VIII and

IX present the experiments we conducted to compare and contrast our methods with other registration

algorithms.

II. ENTROPIC FEATURE SIMILARITY /DISSIMILARITY MEASURES

In this section we review entropy, relative entropy, and divergence as measures of dissimilarity between

probability distributions. LetY be a q-dimensional random vector and letf(y) and g(y) denote two

possible densities forY . Here Y will be a feature vector constructed from the reference image and
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the target image to be registered andf and g will be multidimensional feature densities. For example,

information divergence methods of image retrieval [76], [21], [82] specifyf as the estimated density

of the reference image features andg as the estimated density of the target image features. When the

features are discrete valued the densitiesf andg are interpreted as probability mass functions.

A. Ŕenyi Entropy and Divergence

The basis for entropic methods of image fusion is a measure of dissimilarity between densitiesf andg.

A very general entropic dissimilarity measure is the R´enyi�-divergence, also called the R´enyi�-relative

entropy, betweenf andg of fractional order� 2 (0; 1) [71], [18], [4] :

D�(fkg) =
1

�� 1
log

Z
g(z)

�
f(z)

g(z)

��
dz

=
1

�� 1
log

Z
f�(z)g1��(z)dz: (1)

When the densityf is supported on a compact domain andg is uniform over this domain the�-divergence

reduces to the R´enyi �-entropy off :

H�(f) =
1

1� �
log

Z
f�(z)dz: (2)

When specialized to various values of� the �-divergence can be related to other well known di-

vergence and affinity measures. Two of the most important examples are the Hellinger dissimilarity

�2 log
R p

f(z)g(z)dz obtained when� = 1=2, which is related to the Hellinger-Battacharya distance

squared,

DHellinger(fkg) =

Z �p
f(z)�

p
g(z)

�2
dz (3)

= 2
�
1� exp

�
1

2
D 1

2
(fkg)

��
; (4)

and the Kullback-Liebler (KL) divergence [46], obtained in the limit as�! 1,

lim
�!1

D�(fkg) =

Z
g(z) log

g(z)

f(z)
dz: (5)
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B. Mutual Information and�-Mutual Information

The mutual information (MI) can be interpreted as a similarity measure between the reference and target

pixel intensities or as a dissimilarity measure between the joint density and the product of the marginals

of these intensities. The MI was introduced for gray scale image registration [84] and has since been

applied to a variety of image matching problems [28], [48], [53], [69]. LetX0 be a reference image and

consider a transformation of the target image (X1), defined asXT = T (X1). We assume that the images

are sampled on a grid ofM �N pixels. Let(z0k; zTk) be the pair of (scalar) gray levels extracted from

the k-th pixel location in the reference and target images, respectively. The basic assumption underlying

MI image matching is thatf(z0k; zTk)gMN
k=1 are independent identically distributed (i.i.d.) realizations of

a pair(Z0; ZT ), (ZT = T (Z1)) of random variables having joint densityf0;1(z0; zT ). If the reference and

the target images were perfectly correlated, e.g., identical images, thenZ0 andZT would be dependent

random variables. On the other hand, if the two images were statistically independent, the joint density of

Z0 andZT would factor into the product of the marginalsf0;1(z0; zT ) = f0(z0)f1(zT ). This suggests using

the �-divergenceD�(f0;1(z0; zT )kf0(z0)f1(zT )) betweenf0;1(z0; zT ) and f0(z0)f1(zT ) as a similarity

measure. For� 2 (0; 1) we call this the�-mutual information (or�-MI) betweenZ0 andZT and it has

the form

�MI = D�(f0;1(Z0; ZT ) k f0(Z0)f1(ZT )) (6)

=
1

�� 1
log

Z
f�0;1(z0; zT )f

1��
0 (z0)f

1��
i (zT )dz0dzT : (7)

When�! 1 the�-MI converges to the standard (Shannon) MI

MI =

Z
f0;1(z0; zT ) log

�
f0;1(z0; zT )

f0(z0)f1(zT )

�
dz0dzT : (8)

For registering two discreteM � N images, one searches over a set of transformations of the target

image to find the one that maximizes the MI (8) between the reference and the transformed target. The

MI is defined using features(Z0; ZT ) 2 fz0k; zTkg
MN
k=1 equal to the discrete-valued intensity levels at

common pixel locations(k; k) in the reference image and the rotated target image. We call this the

“single pixel MI”. In [84], the authors empirically approximated the single pixel MI (8) by “histogram
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plug-in” estimates, which when extended to the�-MI gives the estimate

[�MI
def
=

1

�� 1
log

255X
z0;zT=0

f̂�0;1(z0; zT )
�
f̂0(z0)f̂1(zT )

�1��
: (9)

In (9) we assume 8-bit gray level,̂f0;1 denotes the joint intensity level “coincidence histogram”

f̂0;1(z0; zT ) =
1

MN

MNX
k=1

Iz0k;zTk
(z0; zT ); (10)

andIz0k;zTk
(z0; zT ) is the indicator function equal to one when(z0k; zTk) = (z0; zT ) and equal to zero

otherwise. Other feature definitions have been proposed including gray level differences [11] and pixel

pairs [73].

Figure 4 illustrates the MI alignment procedure through a multisensor remote sensing example. Aligned

images acquired by visible and thermally sensitive satellite sensors, generate a joint gray level pixel

coincidence histogramf0;1(z0; z1). Note, that the joint gray-level pixel coincidence histogram is not

concentrated along the diagonal due to the multisensor acquisition of the images. When the thermal image

is rotationally transformed, the corresponding joint gray-level pixel coincidence histogramf0;1(z0; zT ) is

dispersed, thus yielding a lower mutual information than before.

1) Relation of�-MI to Chernoff Bound:The�-MI (7) can be motivated as an appropriate registration

function by large deviations theory through the Chernoff bound. Define the average probability of error

Pe(n) associated with a decision rule for deciding whetherZT andZ0 are independent (hypothesisH0)

or dependent (hypothesisH1) random variables based on a set of i.i.d. samplesfz0k; zTkg
n
k=1, where

n =MN . For any decision rule, this error probability has the representation:

Pe(n) = �(n)P (H1) + �(n)P (H0); (11)

where�(n) and�(n) are the probabilities of Type II (sayH0 whenH1 true) and Type I (sayH1 when

H0 true) errors, respectively, of the decision rule andP (H1) = 1 � P (H0) is the prior probability of

H1. When the decision rule is the optimal minimum probability of error test the Chernoff bound implies

that [20]:

lim
n!1

1

n
logPe(n) = � sup

�2[0;1]
f(1� �)D�(f0;1(z0; zT )kf0(z0)f1(zT )g : (12)

Thus the mutual�-information gives the asymptotically optimal rate of exponential decay of the error

probability for testingH0 vs H1 as a function of the numbern = MN of samples. In particular, this
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(a) I1 : Urban Atlanta - visible (b) I2 : Urban Atlanta, IR
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andI2
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(f) Joint gray-level pixel coinci-

dence histogram ofI1 andT (I2)

Fig. 4. Mutual information based registration of multisensor, visible and thermal infrared, images of Atlanta acquired via satellite

[68]. Top row (in-registration): (a) Visible light imageI1 (b) Thermal imageI2 (c) Joint gray-level pixel coincidence histogram

f̂0;1(z0; z1). Bottom row (out-of-registration): (d) Visible light image, unalteredI1 (e) Rotationally transformed thermal image

T (I2) (f) Joint gray-level pixel coincidence histogram shows wider dispersionf̂0;1(z0; zT ).
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implies that the�-MI can be used to select optimal transformationT that maximizes the right side of (12).

The appearance of the maximization over� implies the existence of an optimal parameter� ensuring

the lowest possible registration error. When the optimal value� is not equal to 1 the MI criterion will

be suboptimal in the sense of minimizing the asymptotic probability of error. For more discussion of the

issue of optimal selection of� we refer the reader to [33].

C. �-Jensen Dissimilarity Measure

An alternative entropic dissimilarity measure between two distributions is the�-Jensen difference. This

function was independently proposed by Ma [32] and Heet al [29] for image registration problems. It

was also used by Michelet al in [54] for characterizing complexity of time-frequency images. For two

densitiesf andg the�-Jensen difference is defined as [4]

�H�(p; f; g) = H�(pf + qg)� [pH�(f) + qH�(g)]; (13)

where� 2 (0; 1) andp 2 [0; 1] andq = 1� p. As the�-entropyH�(f) is strictly concave inf , Jensen’s

inequality implies that�H�(p; f; g) > 0 when f 6= g and�H�(p; f; g) = 0 when f = g (a.e.). Thus

the�-Jensen difference is a bone fide measure of dissimilarity betweenf andg.

The �-Jensen difference can be applied as a surrogate optimization criterion in place of the�-

divergence. One identifiesf = f1(zT ) and g = f0(z0) in (13). In this case an image match occurs

when the�-Jensen difference is minimized overi. This is the approach taken by [29], [32] for image

registration applications and discussed in more detail below.

D. �-Geometric-Arithmetic Mean Divergence

The�-geometric-arithmetic (�-GA) mean divergence [79] is another measure of dissimilarity between

probability distributions. Given continuous distributionsf andg, the�-GA :

�DGA(f; g) = D�(pf + qgkfpgq) (14)

=
1

�� 1
log

Z
(pf(z) + qg(z))�(fp(z)gq(z))1��dz (15)

The �-GA divergence is a measure of the discrepancy between the arithmetic mean and the geometric

mean off andg, respectively, with respect to weightsp andq = 1� p, p 2 [0; 1]. The�-GA divergence
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can thus be interpreted as the dissimilarity between the weighted arithmetic meanpf(x)+ qg(x) and the

weighted geometric meanfp(x)gq(x). Similarly to the�-Jensen difference (13), the�-GA divergence

is equal to zero if and only iff = g (a.e.) and is otherwise greater than zero.

E. Henze-Penrose Affinity

While divergence measures dissimilarity between distributions, similarity between distributions can be

measured by affinity measures. One measure of affinity between probability distributionsf andg is

AHP (f; g) = 2pq

Z
f(z)g(z)

pf(z) + qg(z)
dz; (16)

with respect to weightsp andq = 1� p; p 2 [0; 1]. This affinity measure was introduced by Henze and

Penrose [30] as the limit of the Friedman-Rafsky statistic [27] and we shall call it the Henze-Penrose

(HP) affinity. The HP affinity can be related to the divergence measure:

DHP (fkg) = 1�AFR(f; g) =

Z
p2f2(z) + q2g2(z)

pf(z) + qg(z)
dz (17)

All of the above divergence measures can be obtained as special cases of the general class of f-

divergences, e.g., as defined in [18], [4]. In this article we focus on the cases for which we know how

to implement entropic graph methods to estimate the divergence. For motivation consider the�-entropy

(2) which could be estimated by plugging in feature histogram estimates of the multivariate densityf .

A deterrent to this approach is the curse of dimensionality, which imposes prohibitive computational

burden when attempting to construct histograms in large feature dimensions. For a fixed resolution per

coordinate dimension the number of histogram bins increases geometrically in feature vector dimension.

For example, for a32 dimensional feature space even a coarse10 cells per dimension would require

keeping track of1032 bins in the histogram, an unworkable and impractically large burden for any

envisionable digital computer. As high dimensional feature spaces can be more discriminatory this creates

a barrier to performing robust high resolution histogram-based entropic registration. We circumvent this

barrier by estimating the�-entropy via an entropic graph whose vertices are the locations of the feature

vectors in feature space.
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III. C ONTINUOUS QUASI ADDITIVE EUCLIDEAN FUNCTIONALS

A principal focus of this article is the use of minimal graphs over the feature vectorsZn = fz1; : : : ; zng,

and their associated minimal edge lengths, for estimation of entropy of the underlying feature densityf(z).

For consistent estimates we require convergence of minimal graph length to a entropy related quantity.

Such convergence issues have been studied for many years, beginning with Beardwood, Halton and

Hammersley [6]. The monographs of Steele [75] and Yukich [88] cover the interesting developments in

this area. In the general unified framework of Redmond and Yukich [70] a widely applicable convergence

result can be invoked for graphs whose length functionals can be shown to Euclidean, continuous and

quasi additive. This result can often be applied to minimal graphs constructed by minimizing a graph

length functionL of the form:

L(Zn) = min
E2


X
e2E

ke(Zn)k
 ;

where
 is a set of graphs with specified properties, e.g., the class of acyclic or spanning graphs,e is

an edge in
, kek is the Euclidean length ofe,  is called the edge exponent or the power weighting

constant, and0 <  < d. The determination ofL requires a combinatorial optimization over the set
.

If Zn = fz1; : : : ; zng is a random i.i.d. sample of d-dimensional vectors drawn from a Lebesgue

multivariate densityf and the length functionalL is continuous quasi additive then the following limit

holds [70]

lim
n!1

L(Zn)=n
� = �d;

Z
f�(z)dz; (a:s:) (18)

where� = (d�)=d and�d; is a constant independent off . Comparing this to the expression (2) for the

Rényi entropy it is obvious that an entropy estimator can be constructed as(1��)�1 log (L(Zn)=n�) =

H�(f)+c, wherec = (1��)�1 log �d; is a removable bias. Furthermore, it is seen that one can estimate

entropy for different values of� 2 [0; 1] by adjusting. In many cases the topology of the minimal

graph is independent of and only a single combinatorial optimization is required to estimateH� for

all �.

A few words are in order concerning the sufficient conditions for the limit (18). Roughly speaking,

continuous quasi additive functionals can be approximated closely by the sum of the weight functionals

of minimal graphs constructed on a uniform partition of[0; 1]d. Examples of graphs with continuous
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quasi additive length functionals are the Euclidean minimal spanning tree (MST), the traveling salesman

tour solving the traveling salesman problem (TSP), the steiner tree, the Delaunay triangulation, and the

k nearest neighbor graph (kNNG). An example of a graph that does not have a continuous quasi additive

length functional is the k-point MST (kMST) discussed in [36].

Even though any continuous quasi additive functional could in principle be used to estimate entropy

via relation (18), only those that can be simply computed will be of interest to us here. An uninteresting

example is the TSP length functionalLTSP (Zn) = minC2c
P

e2C kek
 , whereC is a cyclic graph that

spans the pointsZn and visits each point exactly once. Construction of the TSP is NP hard and hence is

not attractive for practical image fusion applications. The following sections describe, in detail, the MST

and kNN graph functionals.

A. Minimal Spanning Tree for Entropy Estimation

A spanning tree is a connected acyclic graph which passes through alln feature vectors inZn. The

MST connect these points withn�1 edges, denotedfeig, in such a way as to minimize the total length:

L(Zn) = min
e2T

X
e

kek ; (19)

whereT denotes the class of acyclic graphs (trees) that spanZn. See Figures 5 and 6 for an illustration

whenZn are points in the unit square. We adopt = 1 for the following experiments.

The MST lengthLn = L(Zn) is plotted as a function ofn in Figure 7 for the case of an i.i.d. uniform

sample (right panel) and non-uniform sample (left panel) ofn = 100 points in the plane. It is intuitive

that the length of the MST spanning the more concentrated non-uniform set of points increases at a slower

rate inn than does the MST spanning the uniformly distributed points. This observation has motivated

the MST as a way to test for randomness in the plane [38]. As shown in [88], the MST length is a

continuous quasi additive functional and satisfies the limit (18). More precisely, with�
def
= (d�)=d the

log of the length function normalized byn� converges (a.s.) within a constant factor to the�-entropy.

lim
n!1

log

�
L(Zn)

n�

�
= H�(f) + cMST ; (a.s.); (20)

Thus we can identify the difference between the asymptotes shown on the left Figure 7 as the difference

between the�-entropies of the uniform and non-uniform densities (� = 1=2). Thus, iff is the underlying
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Fig. 5. A set ofn = 100 uniformly distributed pointsfZig in the unit square inR2 (left) and the corresponding Minimal

Spanning Tree (MST) (right).
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Fig. 6. A set ofn = 100 normally distributed pointsfZig in the unit square inR2 (left) and the corresponding Minimal

Spanning Tree (MST) (right).
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density ofZn, the�-entropy estimator

bH�(Zn) = 1=(1 � �) [logL(Zn)=n
� � log �d; ] ; (21)

is an asymptotically unbiased and almost surely consistent estimator of the�-entropy off where�d;

is a constant which does not depend on the densityf .

The constantcMST = (1 � �)�1 log �d;) in (20) is a bias term that can be estimated offline. The

constant�d;;k is the limit of L(Zn)=n� asn ! 1 for a uniform distributionf(z) = 1 on the unit

cube [0; 1]d. This constant can be approximated by Monte Carlo simulation of mean MST length for a

large number of uniform d-dimensional random samples.
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Fig. 7. Mean Length functionsLn of MST implemented with = 1 (left) andLn/
p
n (right) as a function ofn for uniform

and normal distributed points.

The MST approach to estimating the�-Jensen difference between the feature densities of two images

can be implemented as follows. Assume two sets of feature vectorsZ0 = fz
(i)
0 g

n0
i=1 andZ1 = fz

(i)
1 g

n1
i=1

are extracted from imagesX0 andX1 and are i.i.d. realizations from multivariate densitiesf0 and f1,

respectively. In the applications explored in this papern0 = n1 but it is worthwhile to maintain this level

of generality. Define the set unionZ = Z0 [ Z1 containingn = n0 + n1 unordered feature vectors.

If n0, n1 increase at constant rate as a function ofn then any consistent entropy estimator constructed

from the vectorsfZ(i)gn0+n1i=1 will converge toH�(pf0+ qf1) asn!1 wherep = limn!1 n0=n. This
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motivates the following finite sample entropic graph estimator of�-Jensen difference

� bH�(p; f0; f1) = bH�(Z0 [ Z1)�
�
p bH�(Z0) + q bH�(Z1)

�
; (22)

wherep = n0=n, bH�(Z0 [ Z1) is the MST entropy estimator constructed on then point union of both

sets of feature vectors and the marginal entropiesbH�(Z0), bH�(Z1) are constructed on the individual sets

of n0 andn1 feature vectors, respectively. We can similarly define a density-based estimator of�-Jensen

difference. Observe that for affine image registration problems the marginal entropiesfH�(fi)g
K
i=1 over

the set of image transformations will be identical, obviating the need to compute estimates of the marginal

�-entropies.

As contrasted with histogram or density plug-in estimator of entropy or Jensen difference, the MST-

based estimator enjoys the following properties [33], [31], [36]: it can easily be implemented in high

dimensions; it completely bypasses the complication of choosing and fine tuning parameters such as

histogram bin size, density kernel width, complexity, and adaptation speed; as the topology of the MST

does not depend on the edge weight parameter, the MST�-entropy estimator can be generated for the

entire range� 2 (0; 1) once the MST for any given� is computed; the MST can be naturally robustified

to outliers by methods of graph pruning. On the other hand the need for combinatorial optimization

may be a bottleneck for a large number of feature samples for which accelerated MST algorithms are

necessary.

B. Nearest Neighbor Graph Entropy Estimator

The k-nearest neighbor graph is a continuous quasi additive power weighted graph is a computationally

attractive alternative to the MST. Given i.i.d vectorsZn in Rd , the 1-nearest neighbor ofzi in Zn is

given by

arg min
z2Znnfzig

kz � zik; (23)

wherekz � zik is the usual Euclidean(L2) distance inRd . For general integerk � 1, the k-nearest

neighbor of a point is defined in a similar way [8], [12], [62]. The kNN graph puts a single edge between

each point inZn and its k-nearest neighbors. LetNk;i = Nk;i(Zn) be the set of k-nearest neighbors of

zi in Zn. The kNN problem consists of finding the setNk;i for each pointzi in the setZn � fzg.
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Fig. 8. A set ofn = 100 uniformly distributed pointsfZig in the unit square inR2 (left) and the corresponding k-Nearest

Neighbor graph(k = 4) (right).

This problem has exact solutions which run in linear-log-linear time and the total graph length is:

L;k(Zn) =
NX
i=1

X
e2Nk;i

kek : (24)

In general, the kNN graph will count edges at least once, but sometimes count edges more than once. If

two pointsX1 andX2 are mutual k-nearest neighbors, then the same edge betweenX1 andX2 will be

doubly counted.

Analogously to the MST, the log length of the kNN graph has limit

lim
n!1

log

�
L;k(Xn)

n�

�
= H�(f) + ckNNG; (a.s.). (25)

Once again this suggests an estimator of the Renyi�-entropy

bH�(Zn) = 1=(1 � �) [logL;k(Zn)=n
� � log �d;;k] ; (26)

As in the MST estimate of entropy, the constantckNNG = (1��)�1 log �d;;k can be estimated off-line

by Monte Carlo simulation of the kNNG on random samples drawn from the unit cube. The complexity

of the kNNG algorithm is dominated by the nearest neighbor search, which can be done inO(n logn)

time for n sample points. This contrasts with the MST that requires aO(n2 logn) implementation.
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Fig. 9. A set ofn = 100 normally distributed pointsfZig in the unit square inR2 (left) and the corresponding k-Nearest

Neighbor graph(k = 4) (right).

A related k-NN graph is the graph where edges connecting two points are counted only once. Such

a graph eliminates one of the edges from each point pair that are mutual k-nearest neighbors. A kNN

graph can be built by pruning such that every unique edge contributes only once to the total length. The

resultant graph has the an identical appearance to the initial unpruned k-NN graph, when plotted on the

page. However, the cumulative length of the edges in the graphs differ, and so does their� factor (See

Figure 11). We call this special pruned k-NN graph, the “Single-Count k-NN graph”.

IV. ENTROPIC GRAPH ESTIMATE OF HENZE-PENROSEAFFINITY

Friedman and Rafsky [27] presented a multivariate generalization of the Wald-Wolfowitz [85] runs

statistic for the two sample problem. The Wald-Wolfowitz test statistic is used to decide between the

following hypothesis based on a pair of samplesX;O 2 Rd with densitiesfx andfo respectively:

H0 : fx = fo (27)

H1 : fx 6= fo;
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Fig. 10. Mean Length functionsLn of kNN graph implemented with = 1 (left) andLn/
p
n (right) as a function ofn for

uniform and Gaussian distributed points.

The test statistic is applied to an i.i.d. random samplefXigmi=1; fOigni=1 from fx andfo. In the univariate

Wald Wolfowitz test (p = 1), then+m scalar observationsfZigi = fXigi; fOigi are ranked in ascending

order. Each observation is then replaced by a class labelX or O depending upon the sample to which it

originally belonged, resulting in a rank ordered sequence. The Wald-Wolfowitz test statistic is the total

number of runs (run-length)R` of X’s or O’s in the label sequence. As in run-length coding,R`, is the

length of consecutive sequences of length` of identical labels.

In Friedman and Rafsky’s paper [27], the MST was used to obtain a multivariate generalization of the

Wald-Wolfowitz test. This procedure is called the Friedman-Rafsky (FR) test and is similar to the MST

for estimating the the�-Jensen difference. It is constructed as follows:

1. construct the MST on the pooled multivariate sample pointsfXig
S
fOig.

2. retain only those edges that connect an X labeled vertex to an O labeled vertex.

3. The FR test statistic,N , is defined as the number of edges retained.

The hypothesisH1 is accepted for smaller values of the FR test statistic. As shown in [30], the FR

test statisticN converges to the Henze-Penrose affinity (16) between the distributionsfx and fo. The

limit can be converted to the HP divergence by replacingN by the multivariate run length statistic

RFR
` = n+m� 1�N .
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Fig. 11. Mean Length functionsLn of Singe-Count kNN graph implemented with = 1 (left) andLn/
p
n (right) as a function

of n for uniform and normal distributed points.
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Fig. 12. Illustration of MST for Gaussian case. Two bivariate normal distributionsN (�1;�1) andN (�1;�1) are used. The

’x’ labeled points are samples fromf1(x) = N (�1;�1), whereas the ’o’ labeled points are samples fromf2(o) = N (�2;�2).

(left) �1 = �2 and�1 = �2 and (right)�1 = �2 � 3 while �1 = �2.
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Fig. 13. Illustration of kNN for Gaussian case. Two bivariate normal distributionsN (�1;�1) andN (�1;�1) are used. The

’x’ labeled points are samples fromf1(x) = N (�1;�1), whereas the ’o’ labeled points are samples fromf2(o) = N (�2;�2).

(left) �1 = �2 and�1 = �2 and (right)�1 = �2 � 3 while �1 = �2.
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Fig. 14. Illustration of Henze-Penrose affinity for Gaussian case. Two bivariate normal distributionsN (�1;�1) andN (�1;�1)

are used. The ’x’ labeled points are samples fromf1(x) = N (�1;�1), whereas the ’o’ labeled points are samples from

f2(o) = N (�2;�2). (left) �1 = �2 and�1 = �2 and (right)�1 = �2 � 3 while �1 = �2.
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For illustration of these graph constructions we consider two bivariate normal distributions with density

functions f1 and f2 parametrized by their mean and covariance(�1;�1); (�2;�2). Graphs of the�-

Jensen divergence calculated using MST (Figure 12), kNNG (Figure 13), and the Henze-Penrose affinity

(Figure 14) are shown for the case where�1 = �2;�1 = �2. The ‘x’ labeled points are samples from

f1(x) = N (�1;�1), whereas the ‘o’ labeled points are samples fromf2(o) = N (�2;�2). �1 is then

decreased so that�1 = �2 � 3.

V. ENTROPIC GRAPH ESTIMATORS OF�-GA MEAN AND �-MI

Assume for simplicity that the target and reference feature setsO = foigi andX = fxigi have the

same cardinalitym = n. Herei denotes theith pixel location in target and reference images. An entropic

graph approximation to�-GA mean divergence (15) between target and reference is:

\�DGA =
1

�� 1
log

2=d

2n

2nX
i=1

min

(�
ei(o)

ei(x)

�=2
;

�
ei(x)

ei(o)

�=2)
; (28)

whereei(o) andei(x) are the distances from a pointzi 2 ffoigi; fxigig 2 Rd to its nearest neighbor in

fOigi andfXigi, respectively. Here, as above� = (d� )=d.

Likewise, an entropic graph approximation to the�-MI (7) between the target and the reference is:

[�MI =
1

�� 1
log

1

n�

nX
i=1

 
ei(o� x)p
ei(o)ei(x)

!2

; (29)

whereei(o� x) is the distance from the pointzi = [oi; xi] 2 R2d to its nearest neighbor infZjgj 6=i and

ei(o) (ei(x)) is the distance from the pointoi 2 Rd ; (xi 2 Rd) to its nearest neighbor infOjgj 6=i(fXjgj 6=i).

The estimators (28) and (29) are derived from making a nearest neighbor approximation to the volume

of the Voronoi cells constituting the kNN density estimator after plug-in to formulas (15) and (7),

respectively. The details are given in the appendix. The theoretical convergence properties of these

estimators are at present unknown.

Natural generalizations of (28) and (29) to multiple (> 2) images exist. The computational complexity

of the�-MI estimator (29) grows only linearly in the number of images to be registered while that of the

�-GA estimator (28) grows as linear log linear. Therefore, there is a significant complexity advantage to

implementing�-MI via (29) for simultaneous registration of a large number of images.
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VI. FEATURE-BASED MATCHING

While scalar single pixel intensity level is the most popular feature for MI registration, it is not the

only possible feature. As pointed out by Leventon and Grimson [48], single pixel MI does not take

into account joint spatial behavior of the coincidences and this can cause poor registration, especially

in multi-modality situations. Alternative scalar valued features [11] and vector valued features [61], [73]

have been investigated for mutual information based image registration. We will focus on local basis

projection feature vectors which generalize pixel intensity levels.

Basis projection features are extracted from an image by projecting local sub-images onto a basis of

linearly independent sub-images of the same size. Such an approach is widely adopted in image matching

applications, in particular with DCT or more general 2D wavelet bases [82], [21], [74], [50], [22]. Others

have extracted a basis set adapted to image database using principal components (PCA) or independent

components analysis (ICA) [49], [41].

A. ICA Basis Projection Features

The ICA basis is especially well suited for our purposes since it aims to obtain vector features which

have statistically independent elements that can facilitate estimation of�-MI and other entropic measures.

Specifically, in ICA an optimal basis is found which decomposes the imageXi into a small number of

approximately statistically independent components (sub-images)fSjg:

Xi =

pX
j=1

aijSj: (30)

We select basis elementsfSjg from an over-complete linearly dependent basis using randomized selection

over the database. For imagei the feature vectorsZi are defined as the coefficientsfaijg in (30) obtained

by projecting the image onto the basis.

In Figure 15 we illustrate the ICA basis selected for the MRI image database. ICA was implemented

using Hyvarinen and Oja’s [41]FastICA code (available from [40]) which uses a fixed-point algorithm

to perform maximum likelihood estimation of the basis elements in the ICA data model (30). Figure 15

shows a set of 6416 � 16 basis vectors which were estimated from over 100,00016 � 16 training

sub-images randomly selected from 5 consecutive image slices each from two MRI volumes scan of the
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brain, one of the scans was T1 weighted whereas the other is T2 weighted. Given this ICA basis and

a pair of to-be-registeredM � N images, coefficient vectors are extracted by projecting each16 � 16

neighborhood in the images onto the basis set. For the 64 dimensional ICA basis shown in Figure 15

this yields a set ofMN vectors in a 64 dimensional vector space which will be used to define features.

Fig. 15. 16 � 16 ICA basis set obtained from training on randomly selected16 � 16 blocks in 10 T1 and T2 time weighted

MRI images. Features extracted from an image are the 64-dimensional vectors obtained by projecting16 � 16 sub-images of

the image on the ICA basis.

B. Multiresolution Wavelet basis features

Coarse-to-fine hierarchical wavelet basis functions describe a linear synthesis model for the image.

The coarser basis functions have larger support than the finer basis; together they incorporate global and

local spatial frequency information in the image. The multiresolution properties of the wavelet basis offer

an alternative to the ICA basis, which is restricted to a single window size. Wavelet basis are commonly

used for image registration [87], [78], [43] and we briefly review them here.

A multiresolution analysis of the space of Lebesgue measurable functions,L2(R), is a set of closed,
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nested subspacesVj, j 2 Z. A wavelet expansion uses translations and dilations of one fixed function, the

wavelet 2 L2(R).  is a wavelet if the collection of functionsf (x� l)jl 2 Zg is a Riesz basis ofV0

and its orthogonal complementW0. the The continuous wavelet transform of a functionf(x) 2 L2(R)

is given by:

Wf(a; b) =< f; a;b >; a;b =
1p
jaj
 (
x� b

a
); (31)

wherea; b 2 R; a 6= 0.

For discrete wavelets, the dilation and translation parameters,b anda, are restricted to a discrete set,

a = 2j ; b = k wherej andk are integers. The dyadic discrete wavelet transform is then given as:

Wf(j; k) =< f; j;k >  j;k = 2�j=2 (2�jx� k) (32)

wherej; k 2 Z. Thus the wavelet coefficient off at scalej and translationk is the inner product of

f with the appropriate basis vector at scalej and translationk. The 2D discrete wavelet analysis is

obtained by a tensor product of two multiresolution analysis ofL2(R). At each scale,j, we have one

scaling function subspace and three wavelet subspaces. The discrete wavelet transform of an image is

the projection of the image onto the scaling functionV0 subspaces and the wavelet subspacesW0. The

corresponding coefficients are called the approximate and detail coefficients, implying the low and high

pass characteristics of the basis filters. The process of projecting the image onto the successively coarser

spaces continues to achieve the approximation desired. The difference information sensitive to vertical,

horizontal and diagonal edges are treated as the three dimensions of each feature vector. Several members

of the discrete Meyer basis used in this work are plotted below in Figure (16)

VII. C OMPUTATIONAL CONSIDERATIONS

A popular sentiment about graph methods, such as the MST and the kNN graph, is that they could

be computationally taxing. However, since the early days, graph theory algorithms have evolved and

several variants with low time-memory complexity have been found. Henze-Penrose and the�-GA mean

divergence metrics are based directly on the MST and kNNG and first require the solution of these

combinatorial optimization problems. This section is devoted to providing insight into the formulation of

these algorithms and the assumptions that lead to faster, lower complexity variants of these algorithms.
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Fig. 16. 2D Discrete Meyer Wavelet basis from coarse (a) to fine (d).

A. Reducing time-memory complexity of the MST

The MST problem has been studied since the early part of this century. Due to its widespread

applicability in other computer science, optimization theory and pattern recognition related problems

there have been and continue to be sporadic improvements in the time-memory complexity of the MST

problem. Two principal algorithms exist for computing the MST, the Prim algorithm [67] and the Kruskal

algorithm [45]. For sparse graphs the Kruskal algorithm is the fastest general purpose MST computation
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algorithm. Kruskal’s algorithm maintains a list of edges sorted by their weights and grows the tree

one edge at a time. Cycles are avoided within the tree by discarding edges that connect two sub-trees

already joined through a prior established path. The time complexity of the Kruskal algorithm is of order

O(E logE) and the the memory requirement isO(E), whereE is the initial number of edges in the

graph. Recent algorithms have been proposed that offer advantages over these older algorithms at the

expense of increased complexity. A review can be found in [5]

An initial approach may be to construct the MST by including all the possible edges within the feature

set. This results inN2 edges forN points; a time requirement ofO(N2) and a memory requirement

of O(N2 logN). The number of points in the graph is the total number ofd-dimensional features

participating in the registration from the two images. If each image hasM �N features (for eg. pixels),

the total number of points in the graph is2�M �N � 150,000 for images of size 256� 256 pixels.

The time and memory requirements of the MST is beyond the capabilities of even the fastest available

desktop processors.

The earliest solution can be attributed to Bentley and Friedman [10]. Using a method to quickly

find nearest neighbors in high dimensions they proposed building a minimum spanning tree using the

assumption that local neighbors are more likely to be included in the MST than distant neighbors.

Several improvements have been made on this technique, and have been proposed in [14] and [56].

For our experiments we have been motivated by the adapted the original Bentley method, as explained

below. This method achieves significant acceleration by sparsification of the initial graph before tree

construction.

We have implemented a method for sparsification that allows MST to be constructed for several hundred

thousand points in a few minutes of desktop computing time. This implementation uses a disc windowing

method for constructing the edge list. Specifically, we center disc’s at each point under consideration

and pick only those neighbors whose distance from the point is less than the radius of the disc (See

Figure 17 for illustration). A list intersection approach similar to [62] is adopted to prune unnecessary

edges within the disc. Through a combination of list intersection and disc radius criterion we reduce the

number of edges that must be sorted and simultaneously ensure that the MST thus built is valid. We

have empirically found that for uniform distributions, a constant disc radius is best. For non uniform
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distributions, the disc radius is better selected as the distance to thekth-nearest neighbor (kNN). Figure

18 shows the bias of modified MST algorithm as a function of the radius parameter and the number of

nearest neighbors for a uniform density on the plane.
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Fig. 17. Disc-based acceleration of Kruskal’s MST algorithm fromn2 log n to n log n (left) and comparison of computation

time for Kruskal’s standard MST algorithm with respect to our accelerated algorithm (right).

It is straightforward to prove that, if the radius is suitably specified, our MST construction yields a

valid minimum spanning tree. Recall that the Kruskal algorithm ensures construction of the exact MST

[45]. Consider a pointpi in the graph.

(1) If point pi is included in the tree, then the path of its connection to the tree has the lowest weight

amongst all possible non-cyclic connections. To prove this is trivial. The disc criterion includes lower

weight edge before considering an edge with a higher weight. Hence, if a path is found by imposing the

disc, that path is the smallest possible non-cyclic path. The non-cyclicity of the path is ensured in the

Kruskal algorithm through a standard Union-Find data set.

(2) If a point pi is not in the tree, it is because all the edges betweenpi and its neighbors considered

using the disc criterion of edge inclusion have total edge weight greater than disc radius or have led

to a cyclic path. Expanding the disc radius would then provide the path which is lowest in weight and

non-cyclic.
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neighbors (right) for uniform points in the unit square.

B. Reducing time-memory complexity of the kNN Graph

Time memory considerations in the nearest neighbor graph have prompted researchers to come up

with various exact and approximate graph algorithms. With its wide-spread usage, it is not surprising

that several fast methods exist for nearest neighbor graph constructions. Most of them are expandable to

construct k-NN graphs. One of the first fast algorithms for constructing NNG was proposed by Bentley

[9], [8]. A comprehensive survey of the latest methods for nearest neighbor searches in vector spaces

is presented in [12]. A simple and intuitive method for nearest neighbor search in high dimensions is

presented in [62].

Though compelling, the methods presented above focus on retrieving the exact nearest neighbors. One

could hypothesize that for applications where the accuracy of the nearest neighbors is not critical, we

could achieve significant speed-up by accepting a small bias in the nearest neighbors retrieved. This is

the principal argument presented in [1]. We conducted our own experiments on the approximate NN

method using the code provided in [55] (Figure 19). We conducted benchmarks on uniformly points

distributed in 8 dimensional space. If the error incurred in picking the incorrectk-th nearest neighbor

� �, the cumulative error in the length of the kNNG is plotted in Figure 19. Compared to an exact kNN
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search using k-d trees a significant reduction (> 85%) in time can be obtained, through approximate NN

methods, incurring a 15% cumulative graph length error.
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VIII. A PPLICATIONS: MULTISENSOR SATELLITE IMAGE FUSION

In this section, we shall illustrate entropic graph based image registration for a remote sensing example.

Images of sites on the earth are gathered by a variety of geostationary satellites. Numerous sensors gather

information in distinct frequency bands in the electromagnetic spectrum. These images help predict

daily weather patterns, environmental parameters influencing crop cycles such as soil composition, water

and mineral levels deeper in the Earth’s crust, and may also serve as surveillance sensors meant to

monitor activity over hostile regions. A satellite may carry more than one sensor and may acquire images

throughout a period of time. Changing weather conditions may interfere with the signal. Images captured

in a multisensor satellite imaging environment show linear deformations due to the position of the sensors

relative to the object. This transformation is often linear in nature and may manifest itself as relative

translational, rotational or scaling between images. This provides a good setting to observe different
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divergence measures as a function of the relative deformation between images. We simulated linear

rotational deformation in order to reliably test the image registration algorithms presented above.

Figure 20 shows two images of downtown Atlanta, captured with visible and thermal sensors, as a

part of the ‘Urban Heat Island’ project [68] that studies the creation of high heat spots in metropolitan

areas across the USA. Pairs of visible light and thermal satellite images were also obtained from NASA’s

Visible Earth website [57]. The variability in imagery arises due to the different specialized satellites

used for imaging. These include weather satellites wherein the imagery shows heavy occlusion due to

clouds and other atmospheric disturbances. Other satellites focus on urban areas with roads, bridges and

high rise buildings. Still other images show entire countries or continents, oceans and large geographic

landmarks such as volcanoes and active geologic features. Lastly, images contain different landscapes

such as deserts, mountains and valleys with dense foliage.

Fig. 20. Images of downtown Atlanta obtained from Urban Heat Island project [68]. (a) Thermal image (b) Visible-light image

under artificial rotational transformation
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A. Deformation and feature definition

Images are rotated through0Æ to 32Æ, with a step size adjusted to allow a finer sampling of the objective

function near0Æ. The images are projected onto a Meyer wavelet basis, and the coefficients are used

as features for registration. A feature sample from an imageI in the database is represented as tuple

consisting of the coefficient vector, and a two dimensional vector identifying the spatial coordinates of

the origin of the image region it represents. For examplefW(i;j); x(i;j); y(i;j)g represents the a tuple from

position fi; jg in the image. Now,W(i;j) � fwLow�Low
(i;j) ; wLow�High

(i;j) ; wHigh�Low
(i;j) ; wHigh�High

(i;j) g, where

the super-script identifies the frequency band in the wavelet spectrum. Features from both the images

fZ1; Z2g are pooled together to form a joint sample poolfZ1
S
Z2g. The MST and k-NN graph are

individually constructed on this sample pool.

Figure 21 shows the rotational mean-squared registration error for the images in our database, in the

presence of additive noise. Best performance under the presence of noise can be seen through the use of

the �-MI estimated using wavelet features and kNN graph. Comparable performances are seen through

the use of Henze-Penrose and�Geometric-Arithmetic mean divergences, both estimated using wavelet

features. Interestingly, the single pixel Shannon MI has the poorest performance which may be attributed

to its use of poorly discriminating scalar intensity features. Notice that the�-GA, Henze-Penrose affinity,

and�-MI(Wavelet-kNN estimate), all implemented with wavelet features, have significantly lower MSE

compared to the other methods.

Further insight into the performance of these wavelet-based divergence measures may be gained by

considering the mean objective function over 750 independent trials. Figure 22.a shows the�-MI, HP

affinity and the�-GA affinity and Fig. 22.b shows the�-Jensen difference divergence calculated using the

kNN graph and the MST. The sensitivity and robustness of the dissimilarity measures can be evaluated

by observing the divergence function near zero rotational deformation (Figure 22).

IX. A PPLICATIONS: LOCAL FEATURE MATCHING

The ability to discriminate differences between images with sensitivity to local differences is pivotal

to any image matching algorithm. Previous work in these techniques has been limited to simple pixel

based mutual information (MI) and pixel correlation techniques. In [65], local measures of MI outperform
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Fig. 21. Rotational root mean squared error obtained from rotational registration of multisensor satellite imagery using six

different image similarity/dissimilarity criteria. Standard error bars are as indicated. These plots were obtained from Monte Carlo

trials consisting of adding i.i.d. Gaussian distributed noise to the images prior to registration.

global MI in the context of adaptive grid refinement for automatic control point placement. However,

the sensitivity of local MI deteriorates rapidly as the size of the image window decreases below40� 40

pixels in 2D.

The main constraints on these algorithms, when localizing differences, are (1) limited feature resolution

of single pixel intensity based features, and (2) histogram estimatorsh(X;Y ) of joint probability density

f(X;Y ) are noisy when computed with a small number of pixel features and are thus poor estimators of
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Fig. 22. Average affinity and divergence, over all images, in the vicinity of zero rotation error: (left)�-Jensen (kNN) and

�-Jensen (MST), (right)�-GA mean affinity, HP affinity and�-MI estimated using wavelet features and kNN graph.

f(X;Y ) used by the algorithm to derive joint entropyH(X;Y ). Reliable identification of subtle local

differences within images, is key to improving registration sensitivity and accuracy [59]. Stable unbiased

estimates of local entropy are required to identify sites of local mismatch between images. These estimates

play a vital role in successfully implementing local transformations.

A. Deformation localization

Iterative registration algorithms apply transformations to a sequence of images while minimizing

some objective function. We demonstrate the sensitivity of our technique by tracking deformations that

correspond to small perturbations of the image. These perturbations are recorded by the change in the

mismatch metric.

Global deformations reflect a change in imaging geometry and are modeled as global transformations on

the images. However, global similarity metrics are ineffective in capturing local deformations in medical
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images that occur due to physiological or pathological changes in the specimen. Typical examples are:

change in brain tumor size, appearance of micro-calcifications in breast, non-linear displacement of

soft tissue due to disease and modality induced inhomogeneities such as in MRI and nonlinear breast

compression in XRay mammograms. Most registration algorithms will not be reliable when the size of

the mismatch site is insufficiently small, typically(m� n) � 40� 40 [65]. With a combination of ICA

and�-entropy we match sites having as few as8� 8 pixels. Due to the limited number samples in the

feature space, the faster convergence properties of the MST are better suited to this problem. Although

we do not estimate other divergence measures,�-Jensen calculated using the MST provides a benchmark

for their performance.

In Figure 23, multimodal synthesized scan of T1 and T2 weighted brain MRI each of size256� 256

pixels [16] are seen. The original target images shall be deformed locally (see below) to generate a

deformed target image.

1) Locally deforming original image using B-Splines:B-spline deformations are cubic mapping func-

tions that have local control and injective properties [13]. The 2D uniform tensor B-spline functionF ,

is defined with a4� 4 control lattice� in R2 as:

F (u; v) =
3X
i=0

3X
j=0

Bi(u)Bj(v)�ij ; (33)

where 0 � u; v � 1, �ij is the spatial coordinates of the lattice andBi are the standard B-Spline

basis functions. The uniform B-Spline basis functions used here are quite common in computer graphics

literature and may be found in [13] are defined as:

B0(u) =
(1� u)3

6
;

B1(u) =
3u3 � 6u2 + 4

6
; (34)

B2(u) =
�3u3 + 3u2 + 3u+ 1

6
;

B3(u) =
u3

6
:

Given that the original images have256�256 pixels, we impose a grid(�) of 10�10 control points on

Itar. Since the aim is to deformItar locally, not globally, we select a sub-grid (�) of 4�4 control points

in the center ofItar. We then diagonally displace, bỳ= 10 mm, only one of the control points in�, to

June 1, 2004 DRAFT



37

generate deformed grid�def . Itar is then reconstructed according to�def . The induced deformation is

measured asjj�def��jj. Figure 23 shows the resultant warped image and difference image,Itar�T (Itar).

For smaller deformations,� is a finer grid of20� 20 points, from which� is picked. A control point in

� is then displaced diagonally bỳ= 1; 2; : : : 10 to generate�def . When` � 3, noticeable deformation

spans only8� 8 pixels.

2) Feature discrimination algorithm:We generate ad-dimensional feature setfZig
m�n
i=1 , m� n � d

by sequentially projecting sub-image block (window)f�jg
M�N
j=1 of sizem � n onto a d-dimensional

basis function setfSkg extracted from the MRI image, as discussed in Section VI-A. Raster scanning

throughIref we select sub-image blocksf�refi gM�N
i=1 . For this simulation exercise, we pick only the sub-

image block�tar from T (Itar) corresponding to the particular pixel locationk = (128; 128). �tar128;128

corresponds to the area inItar where the B-Spline deformation has been applied.

The size of the ICA basis features is8�8, i.e. the feature dimension is,d = 64. The MST is constructed

over the joint feature setfZref
i ; Ztar

j g. When suitably normalized with1=n�; � = 0:5, the length of the

MST becomes an estimate ofH�(Z
ref
i ; Ztar

j ). We score all the sub-image blocksf�refi gM�N
i=1 with

respect to the sub-image block�tar128;128. Let O` be the resultantM �N matrix of scores, at deformation

`. The objective function surfaceO` is a similarity map betweenf�refgM�N
i=1 and�tar. When two sites

are compared, the resulting joint probability distribution depends on the degree of mismatch. The best

match is detected by searching for the region inIref that corresponds to�tar as determined by the MST

length. As opposed to the one-to-all block matching approach adopted here, one could also perform a

block-by-block matching, where each block�refi is compared with its corresponding block�tari .

B. Local Feature matching Results

Figure 23 showsO10 for m � n = 8 � 8, 16 � 16 and 32 � 32. Similar maps can be generated for

` = `1; `2; : : : `p. The gradientr(O) = O`1�O`2 reflects the change inH�, the objective function, when

Itar experiences an incremental change in deformation, from` = `1 ! `2. This gradient, at various

sub-image block size is seen in Figure 23, where`1 = 0 and `2 = 10. For demonstration purposes in

Figure 23, we imposed a large deformation toItar. Smaller deformations generated using a control grid

spanning only40 � 40 pixels are used to generate Figure 24. It shows the ratio of the gradient of the
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objective function:

R =

1
(m�n)

Pm�n
i=1 jr(O(i))j

1
(M�N�m�n)

PM�N�m�n
i=1 jr(O(i))j

; (35)

over the deformation site v/s background in the presence of additive Gaussian noise.

Figure 25 shows the similarity mapO` when constructed using a histogram estimate of joint entropy

calculated over sub-image sizem�n (8). At lower sub-image sizes, the estimate displays bias and several

local minima even under noise free conditions. It is thus unsuitable for detection of local deformation of

Itar.

The framework presented here could be extended to (1) enhance registration performance by sensitizing

it to local mismatch, (2) automatically track features of interest, such as tumors in brain or micro-

calcifications in breast across temporal image sequences, (3) reliably match or register small images or

image regions so as to improve disease diagnosis by locating and identifying small pathological changes

in medical image volumes and (4) automate control point placement to initiate registration.

X. CONCLUSION

In this paper we presented several techniques to extend the multisensor image fusion problem to high

dimensional feature spaces. R´enyi’s �-entropy is estimated directly in high dimensions through the use

of entropic graph methods. These include the use of Euclidean functionals such as the�-Jensen, the HP

divergence and GA mean divergence. Graph theory methods such as the MST and the kNN graph are

central to our approach due to their quasi additive properties in estimating Euclidean functionals. These

methods provide a robust and viable alternative to traditional pixel intensity histograms used for estimating

MI. Higher dimensional features used for this work are the Wavelet basis and ICA, where features are 64

dimensional. Our methods are validated through a demonstration of registration of multisensor satellite

and medical imagery.
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Fig. 23. B-Spline deformation on MRI images of the brain. (a) Reference image, (b) Warped target (c) True Deformation, (d)

O10 = H� as seen with a32� 32 window, (e)16 � 16 window and (f)8� 8 window. (g)r(O) = r(H�) = O10 � O0 as

seen with a32� 32, (h) 16� 16 and (i) 8� 8 window.
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XI. A PPENDIX

Here we give a derivation of the entropic graph estimators of�-GA (28) and�-MI (29) estimators.

The derivation is based on the heuristic equivalences (44) and (45) and the convergence properties are,

at present, unknown.

First consider estimating�DGA(f; g) = (� � 1)�1 log IGA(f; g), whereIGA(f; g) is the integral in

(15), by\�DGA = (�� 1)�1 logdIGA where:

dIGA =
1

m+ n

m+nX
i=1

 
f̂p(zi)ĝ

q(zi)

ĥ(zi)

!1��

: (36)

Here ĥ(z) is an estimate of the common pdfpf(z) + qg(z) of the i.i.d. pooled unordered sample

fZig
m+n
i=1 = ffOigmi=1f;Xigni=1g, p = m=(m + n); q = 1 � p, and f̂ , ĝ are estimates of the common

densitiesf , g of the i.i.d. samplesfOigmi=1 andfXigni=1, respectively. We assume that the support set of

f , g, h is contained in a bounded regionS of Rd and thatm = �n for some fixed� > 0 (p = �=(1+�)).

If f̂ , ĝ, ĥ are consistent, i.e., they converge (a.s.) asn!1 to f , g, h then by the strong law of large
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Fig. 25. Performance of Shannon MI, computed using pixel intensity histograms, on deformed MRI images: (a)32 � 32

window, (b) 16� 16 window and (c)8� 8 window.

numbersdIGA converges (a.s) to

E[bIGA] = E

"�
fp(zi)g

q(zi)

h(zi)

�1��
#

(37)

=

Z
S

�
fp(z)gq(z)

h(z)

�1��

h(z)dz; (38)

Taking the log of expression (38) and dividing by�� 1, we obtain�DGA(f; g) in (15) so that\�DGA

is asymptotically unbiased and its variance goes to zero.

Next divide the samplesfZig
m+n
i=1 into two disjoint sets of samplesZtrain and test samplesZtest,

where we have preserved the relative number� = m=n of labels in each of these sets. Using the training

sample construct the Voronoi partition density estimators

ĥ(z) =
�(�z(z))

�(�z(z))

f̂(z) =
�(�o(z))

�(�o(z))
(39)

ĝ(z) =
�(�x(z))

�(�x(z))
;

where�Z(z), �O(z), �X(z) are the cells of the Voronoi partition ofS 2 Rd containing the pointz 2 Rd

and constructed from training samplesZtrain � fOtrain;Xtraing, Otrain andXtrain respectively using
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K-means or other algorithm. Here� and� are the (normalized) counting measure and Lebesgue measure

respectively, i.e�(�) is the number of points in the set� divided by the total number of points and

�(�) is the volume of the set�. Let fKz;Ko;Kxg be the number of cells in the partitionsf�z;�o;�xg

respectively and letntrain be the number of training samples. The Voronoi partition density estimators

are asymptotically consistent ask; ntrain !1 andk=ntrain ! 0, for k 2 fKz;Ko;Kxg [63].

Therefore, under these conditions and defining~Zi = Ztest(i),

\�DGA =
1

�� 1
log

0@ 1

ntest

ntestX
i=1

 
f̂p(~zi)ĝq(~zi)

ĥ(~zi)

!1��
1A ; (40)

is an asymptotically consistent estimator.

We next consider a similar plug-in estimator of�-MI. Assume that the concatenated pair of feature

vectorsZi = [Oi;Xi] 2 R2d are collected,i = 1; : : : ; n. The plug-in estimator[�MI = (� � 1) logdIMI

is constructed, where

dIMI =
1

n

nX
i=1

 
f̂o(oi)f̂x(xi)

f̂ox(oi; xi)

!1��

; (41)

and f̂ox is an estimate of the joint density of[Oi;Xi] 2 R2d , f̂o and f̂x are estimates of the marginal

densities ofOi andXi, respectively. Again, iff̂o, f̂x and f̂ox are consistent then it is easily shown thatdIMI converges to the integral in the expression (7) for�-MI:Z
S�S

Z  
f̂o(u)f̂x(v)

f̂ox(u; v)

!1��

fox(u; v)dudv; (42)

whereS is a bounded set containing the support of densitiesfo andfx. Similarly, separatingf[Oi;Xi]gni=1

into training and test samples, we obtain an asymptotically consistent estimator:

[�MI =
1

�� 1
log

0@ 1

ntest

ntestX
i=1

 
f̂o( ~oi)f̂x( ~xi)

f̂ox( ~oi; ~xi)

!1��
1A : (43)

The entropic graph�MI estimator (29) is obtained by specializing to the casentrain = 0; ntest = n,

in which case�(�O(z)) = �(�X(z)) = �(�O�X(z)) = 1=n, and using the Voronoi cell volume
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approximations

�(�X(zi)) � edi (x)

�(�Y (zi)) � edi (o)

�(�O�X(zi)) � e2di (o� x) (44)

where� denotes “proportional to.” The quantityei(o � x) is the distance of the closest point toZi =

[Oi;Xi] 2 R2d in the cartesian product spaceO�X andei(o), ei(x) are the componentwise NN distances

minj 6=i kOi �Ojk andminj 6=i kXi �Xjk.

The entropic graph�GA divergence estimator (28) can be similarly obtained. Again specializing to the

casentrain = 0; ntest = n+m we have:�(�Z(z)) = (m+n)�1, �(�O(z)) = 1=m and�(�X(z)) = 1=n.

Making the following Voronoi cell volume approximations

�(�X(zi)) � edi (x)

�(�Y (zi)) � edi (o)

�(�Z(zi)) � edi (z) = minfedi (o); e
d
i (x)g (45)

whereei(o), ei(x) denote the distances of the pointZi 2 Rd to the nearest “O” and “X” labeled points,

respectively, in the pooled samplefZigi 6=j Substitution of these relations into (40) gives

\�DGA =
1

�� 1
log

 
c

m+ n

m+nX
i=1

min

��
ei(o)

ei(x)

�q
;

�
ei(x)

ei(o)

�p�!
; (46)

wherec = ((m+ n)=(mpnq))1�� = ((1 + �)=�p)=d which reduces to the expression (28) upon special-

izing to the casem = n (� = 1).
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[71] A. Rényi, “On measures of entropy and information,” inProc. 4th Berkeley Symp. Math. Stat. and Prob., volume 1, pp.

547–561, 1961.

[72] T. Rohlfing, J. West, J. Beier, T. Liebig, C. Tachner, and U. Thornale, “Registration of functional and anatomical mri:

accuracy, assessment and applications in navigated neurosurgery,”Computer Aided Surgery, vol. 5, no. 6, pp. 414–425,

2000.

[73] D. Rueckert, M. Clarkson, D. Hill, and D. Hawkes, “Non-rigid registration using higher order mutual information,” in

Proc. SPIE, volume 3979, pp. 438–447, 2000.

[74] A. Srivastava, A. B. Lee, E. P. Simoncelli, and S. C. Zhu, “On advances in statistical modeling of natural images,”Journal

of Mathematical Imaging and Vision, vol. 18, no. 1, , Jan. 2003.

[75] J. M. Steele,Probability theory and combinatorial optimization, volume 69 ofCBMF-NSF regional conferences in applied

mathematics, Society for Industrial and Applied Mathematics (SIAM), 1997.

[76] R. Stoica, J. Zerubia, and J. M. Francos, “Image retrieval and indexing: A hierarchical approach in computing the distance

between textured images,” inIEEE Int. Conf. on Image Processing, Chicago, Oct. 1998.

[77] R. Stoica, J. Zerubia, and J. M. Francos, “The two-dimensional wold decomposition for segmentation and indexing in

image libraries,” inProc. IEEE Int. Conf. Acoust., Speech, and Sig. Proc., Seattle, May 1998.

June 1, 2004 DRAFT



48

[78] H. Stone, J. L. Moigne, and M. McGuire, “The translation sensitivity of wavelet-based registration,”IEEE Trans. Pattern

Anal. Mach. Intelligence, vol. 21, no. 10, pp. 1074–1081, 1999.

[79] I. J. Taneja, “New developments in generalized information measures,”Advances in Imaging and Electron Physics, vol.

91, pp. 37–135, 1995.

[80] A. Toga,Brain Warping, Academic Press, ISBN: 0126925356, 1999.

[81] N. Vasconcelos and A. Lippman, “A Bayesian framework for content-based indexing and retrieval,” inIEEE Data

Compression Conference, Snowbird, Utah, 1998.nuno.www.media.mit.edu/people/nuno/ .

[82] N. Vasconcelos and A. Lippman, “Bayesian representations and learning mechanisms for content based

image retrieval,” in SPIE Storage and Retrieval for Media Databases 2000, San Jose, CA, 2000.

nuno.www.media.mit.edu/people/nuno/ .

[83] O. Vasicek, “A test for normality based on sample entropy,”J. Royal Statistical Society, Ser. B, vol. 38, pp. 54–59, 1976.

[84] P. Viola and W. M. Wells III, “Alignment by maximization of mutual information,” inProceedings of IEEE International

Conference on Computer Vision, pp. 16–23, Los Alamitos, CA, Jun. 1995.

[85] W. Wald and J. Wolfowitz, “On a test whether two samples are from the same population,”Ann. Math. Statist., vol. 11,

pp. 147–162, 1940.

[86] W. J. Williams, M. L. Brown, and A. O. Hero, “Uncertainty, information, and time-frequency distributions,” inProc. of

Meeting of Intl. Soc. for Optical Engin. (SPIE), volume 1566, pp. 144–156, 1991.

[87] Y. Wu, T. Kanade, C. Li, and J. Cohn, “Image registration using wavelet-based motion model,”International Journal of

Computer Vision, vol. 38, no. 2, pp. 129–152, 2000.

[88] J. E. Yukich, Probability theory of classical Euclidean optimization, volume 1675 ofLecture Notes in Mathematics,

Springer-Verlag, Berlin, 1998.

June 1, 2004 DRAFT


