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ABSTRACT Wireless sensor networks use low duty cycles, ie. low percent-
age of device ‘on’ time, on the order of 0.01% to 1%, allowing cir-
In energy-limited wireless sensor networks, detection using ‘cen- cuits to remain in a sleep state the vast majority of the time. When
soring sensors’ reduces the probability that a sensor must transmitnecessary, a device wakes up its sensor, processor, transmitter or
thereby saving energy. In this paper, we introduce a hierarchi- receiver in order to sense, process, receive or transmit a message.
cal distributed detection scheme designed specifically for multi- Each wake-up consumes significant energy. Specifically, for the
hop networks. If a sensor’s local likelihood ratio (LLR) crosses transmitter circuitry, it has been reported that there is a tradeoff
a threshold, it is sent to the next higher level sensor. A simple between the time required for (and thus energy expended during)
feedback scheme is also considered. We study the performance ofvake-up and the energy used during sleep mode [5]. Due to the
a Gaussian change-of-mean detection system using this hierarchitarge percentage of time spent in sleep mode, sleep mode energy
cal censoring scheme, with and without feedback. We show thatis minimized, and as a result, wake-up energy is high. It has also
good detection performance can be achieved while significantly been reported that wake-up energy can be significantly higher than
reducing sensor transmissions compared to the optimal detectiorthe energy used during transmission [7].
system. Much distributed detection research has focused on capacity-
constrained networks. Research has addressed quantization of sen-
sor data [8] and exploiting source correlation [9] to reduce sensor
1. INTRODUCTION bit rate. In particular cases, it has been shown that fBrsensor
network with a capacity constraint & bits per unit time, having
Large-scale wireless sensor networks are envisioned to monitoregch sensor send one bit is optimal [10].
times. Many example applications, such as temperature and VOCiing one bit involves wake-up energy and packet overhead such as
monitoring in buildings, moisture and fertilizer level sensing in  synchronization and id bits. Considering all energy costs in an en-
agricultural fields, and detection of intruders across borders, in- ergy budget as in [6] shows that sending one bit of data consumes
volve detection of events. Distributed detection using multiple only marginally less energy than sending several bits. In fact, it
sensors has been studied extensively in the literature [1][2]. Thiscan pe argued that the appropriate constraint to bound energy con-
paper applies a distributed detection framework to wireless Sensorisymption for many wireless sensor networks is the probability of
networks, which have the peculiarities of being energy-constrainedransmission from each sensor, as used in [11]. In this paper, a

and multi-hop. We argue that these characteristics lead naturallysensor's decision regarding whether or not to transmit its data is a
to a hierarchical topology and a “censoring sensors” [3] strategy. |ocal decision based on its LLR [3].

We present analysis of censoring in a hierarchical topology and
suggest a simple feedback scheme. Finally, we show numerical . .
results for a Gaussian change-of-mean detection system with andl‘z' Hierarchical Networks

without the feedback scheme. In wireless sensor networks, due to devices' limited range, com-
munication to a fusion center must be routed through intermediate
devices in the network. Multi-hop is used for energy-efficiency

and reducing device cost - long-range transmission energy is de-

Energy is of primary concern in wireless sensor networks [4][5][6]. créased due to lower/r* losses. Network-wide power savings

In most applications, the bit rate is very low, often less than one bit In Multi-hop systems can be significant, especially for large-scale
per second [5], and the bandwidth is wide. IC costs will fall with N€tworks when reception energy costs are small compared to trans-
Moore’s law, however, battery costs will remain relatively con- Mission costs. Technology scaling should reduce receiver energy
stant, thus economical deployment of thousands of sensors willcOnsumption, while transmission costs will remain constant [5].
require aggressive energy limitation. If energy consumption can This projection underscores the importance of both multi-hop and

be sufficiently reduced, solar power or energy-mining techniques Minimizing the probability of transmission.
can be used to power each sensor [5]. The use of multi-hop in wireless sensor networks can also be

exploited for improved detection performance. Often, distributed
This material is based in part upon work supported under a NSF Grad- detection literature assumes that all sensor data is sent to a fusion
uate Research Fellowship. center. Rather than simply relaying messages to a fusion center, in-

1.1. Energy Constraint




termediate nodes can perform data aggregation and make local deln terms of log-likelihood$r,; = log Lr,; andl;; = log L ;,

cisions, preventing a bottleneck at the fusion center. Furthermore,
feedback has been suggested to enable sensors to make reliab
decisions on certain events [12]. In this paper, we consider a hier-
archical or 'spanning tree’ topology (eg., Fig. 1) for the purposes
of censoring and feedback.
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Let the density of»; andl; ; be given byfr; and f; ;, respec-

We focus on the case where wireless sensor networks oper+jvely. Then fz; can be seen as a mixture pdf. This is stated

ate in weak signal environments, i.€(H,) is low. High P(H1)
applications are typically incompatible with low-duty cycle oper-
ation. Thus we constrain the average probability of sensor trans-
mission givenH(, and then optimize detection performance.

2. DERIVATION OF HIERARCHICAL CENSORING

In a hierarchical network oV sensors, we denot&;. as the set of
sensors on level of the hierarchyk = 1... M (eg.,G2 = {3,6}

specifically in the following example.

2.1. Using Feedback

In this paper, we test a simple feedback scheme in which a device
listens for transmissions from its ‘siblings’ (sensors with the same
parent). If one sibling transmits its LLR to the parent, then all
of the other siblings also transmit their LLRs to the parent. This
scheme doesn’t require the parent to transmit back to its children

in Fig. 1). Each sensor (except for the fusion center) has a parenito request feedback. Although feedback from the parent could in-

node. We denote the set of children of nades K;. At a given
round of sensing, a sensor records data We assumeX; are
i.i.d. conditional on the hypothesi;, j = 0, 1.

Censoring sensors was presented in [3] and [13]. The hierar-

clude more information than feedback from a sibling, analyzing

this basic scheme helps to determine when feedback is valuable.
To achieve the same probability of transmission as without

feedback, the thresholds of the LLRTs must be reduced. We still

chical version presented here expands censoring to multiple layergise (2), (3), and (4), but now the subset= K; if Lr; € R;,

of sensors with feedback. Each sensor forms a local likelihood ra-
tio (LLR) L ; from both its own daté&X; and the LLRs of its chil-
dren. TheF' subscript denotes thétr ; is a fusion of data not only
from sensor but also its children. IfLg; falls in a send region,
R;, then sensof sends its LLR to its parent with enough bits to
be essentially unquantized. If the LLR falls in the no-send region,
R;, sensor doesn't transmit, and its silence is used as information
by its parent. Define the constraiptas the mean probability of
sensor transmission giveio,
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Here, F'C is the index of the highest level sensor (7 in Fig. 1). Its
false alarm rate is the glob&lr that directly determines detection

performance, and is constrained independently of the energy con-

straint. In this paper we usk; to indicate the probability given
Hj, forj = {0, 1}.

In [3], the optimal censoring region was shown to be a single
interval, R = [v;,7;). Moreover, in cases where the prior prob-
ability of H; is sufficiently small and limited communication is
allowed, it is optimal to set; = 0. Sufficient conditions for the
optimality ofv; = 0 are given in [13]. In this analysis, we assume
v; = 0 because of the assumptions BiiH1) and limited trans-
mission probability detailed in Section 1. Thus the optimal fusion
rule for sensori’s decision whether or not to transmit is a local
likelihood ratio test (LLRT) with threshold;,
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whereL; ; is the likelihood ratio based only on the daxa, the
setsk; = {_7 € K;:Lpj; € R]‘} andk; = {_7 € K;:Lrj; €
R;} are the subsets df; which send, and do not send their LLR,
respectively. Note that for € G1, Lr,; = L;,; Since sensors on
level 1 have no children. The constantis the effect on the LLR
of a non-transmitting child node,

_ Pi(Lr; € R;)

"~ Py(Lr;i €R)’ @

Ci

Vj € K;, ork; = () otherwise. Similarlys; = K; N (7;)¢. The
constraint becomes,

N
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where#{ K;} is the number of children of sensaor

2.2. Binary Tree Simplification

level 3 @ root
2 6 children of {7}
1 S) children of {3, 6}

/
3-node case

Fig. 1. Diagram of an example hierarchical network of sensors.
Subset of senso#dl, 2, 3} is also used as an example.

Assume thatV sensors are arranged in a binary tree as the
N = 7 case shown in Fig. 1. We simplify the parameter space by
assuming that the thresholds for sensors on Iévate identical.
We let Prr (k) be the probability of false transmission from a sen-
sor on levelk. Without feedbackPrr (k) = Po[Lr,;; € R;], for
anyi € Gy. In the feedback cas®rr (k) =1— (1 — Po[LF, €
R;))?, for anyi € G. The constraint from (1) is now,
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The density of sensafs LLR given H; can be shown to be,

@)

wheree;. is the probability thak children of sensoi have LLRs
in the send region, ang,; is the density of thér,; given H;

[rilm; = €ogoim; + €1911; + €292/H;,



and givenk children have LLRs in the send region. The binomial

probability e, is,

€ = (z) [Pj(lp,u S Ru)]k[Pj (lp,u S Ru)]2ik,

(®)
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whereu € K;. The densitiegy #, of (7) can be calculated via
convolution. DefiningS., = {lru € Ru.} andS, = {lr. €

R,}, the densities of .., conditioned on; andS,, or S, are,

fruln; (£)
frum;,s, () = Plr.ehatly) L€ B 9)
0 te Ry
0 0 te Ry
frum;,5,(t) = Spuim; () 5 (10)
! P(IF,uERJu\Hj) t € Ry
In the case without feedback, the densitgsy, (¢) are,
9ol m; (1) Jrim; (t = 2log cu) (11)
gum;(t) = friw, (t —logeu) * frun; s, (t)
G2o1m; (1) = fram, (&) * fruim;, s, () * frum;,s, (1),

wherex indicates convolution. Note th@tz‘Hj (t) is the fl,i‘HJ
density convolved twice with the density in (9), since it represents
the density of the sum of sensis own LLR and the LLRs of two
children given both send their data.
In the feedback case, it can be shown that (11) holds except

thatg u, (t) is replaced by,

9u1m; () = frigm; () * frum;,s,(8) * frumn;s,@).  (12)
In this casegi|u; (t) is the frim; density convolved with both
densities in (9) and (10) since it represents the density of the sum
of sensor’s own LLR and the LLRs of two children given exactly
one child with LLR in the send region. Derivations of analyti-
cal results for highV are complicated by multiple convolutions
with (9) and (10). Approximations exist for Gaussian data, but for
brevity, we report numerical results.

3. NUMERICAL RESULTS
Consider the Gaussian change-of-mean detection system,

Ho . Xz NN(O,UQ)
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In this example, the log-likelihood for sensor d&g,
_ P Iz
lii = ;X'L 557 (14)

is also Gaussian. In this sectign~= 1 ando? = 1 are used.
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Fig. 2. ROCs for 3-sensor example (a) without feedback and (b)
with feedback. Plots show the optimal 1 and 3-sensor ROC and
the hierarchical ROC fop = 0.30, 0.15, 0.05, 0.02, and 0.01.

0.02, and 0.01 are shown. Optimal 3-sensor and 1-sensor cases
are shown as bounds on the system performance. Note that with
p = 0.30, there is a 70% reduction in transmission undgy,
but the detection performance remains close to optimal, especially
at low Pr. Even with the two level 1 sensors transmitting only
1/100 of the time, performance is significantly better than with
only one sensor. Comparing Figs. 2(a) and 2(b), feedback allows
performance closer to 3-sensor optimal at [Bw and highp, but
noticeably degrades performance at highand lowp.

For the 7-sensor hierarchy in Fig. 1, two thresholds must be
set. To meet the energy constraintin @)} 4Prr(1)+2Prr(2).
Although 7; for ¢ € G can be set analytically to achieve a par-

First, consider the 3-sensor hierarchy shown as a sub-tree inticular Prr (1), 7; for i € G2 must be set using the numeri-

Fig. 1. We set the thresholds on level 1 to achieve a given prob-
ability of false transmission for sensors 1 andp2= Ppr(1).
We calculate via Matlab the densitigg 1, () by sampling the re-
quired densities in (11) and (12) and using numerical convolution.
The weights;, are calcalated from (8), and then (7) is used to find
the densities of the LLR at sensor 8; 3, and fr 3| #, -

These densities are used to calculéte and Pp, and the
ROCs of the final decision are shown in Fig. 2 for cases with
and without feedback. Valugs = Prr(1) = 0.30, 0.15, 0.05,

cally calculated densityr 3 ,,. Several combinations @ rr =
[Prr(1), Prr(2)] can be tested in order to maximiZ&, for a
given Pr. In Fig. 3, three combinations that meet= 0.1 are
tested in the feedback cas®rr = [0.05,0.2], [0.1,0.1], and
[0.12,0.06]. Atvery low Pr, it is best to sePpr (1) > Prr(2),
while at highPr, itis best to sePrr(1) < Prr(2). In this case,
equal probability of false transmission on each level has very good
overall performance. Letting»r (k) be equalvk also ensures an
equal rate of energy consumption for all sensors in the network.
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Fig. 3. 7-sensor system with feedback and wjith= 0.10 for
various combinations aPrr (1) and Prr(2).
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Fig. 4. 7-sensor system with and without feedback for=
{0.30,0.10,0.03}. Prr(1) = Prr(2) = p for all three cases.

In Fig. 4, we plot the ROC results for both with and without

feedback cases wheP»r(1) = Prr(2) = pis set to 0.30, 0.10,

network should be considered for possible energy savings and re-
silience to sensor failures.
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or 0.03. Similar to the 3-sensor case, the feedback scheme results

inincreasedPp at low Pr, but has significantly lowePp whenp
is small andPr is high.

4. CONCLUSION

(11]

In this paper, we have applied censoring sensors to a hierarchical

framework. This framework will be increasingly important in the [12]
design of energy-limited wireless sensor networks used for dis-
tributed detection. We have shown in a Gaussian change-of-mearj; 3]

detection example that close to optimal detection performance can

be achieved when sensors may only transmit a fraction of their

sensor data. We introduced a simple feedback scheme that can

improve detection performance at lof-. However, more gen-

eral use of feedback must be studied in order to determine the best
use of the mechanism. Furthermore, adapting the hierarchy of a
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