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Abstract

We consider the computational cut-o� rate and its implications on signal design for the complex quasi-
static Rayleigh at fading spatio-temporal channel under a peak power constraint where neither transmitter
nor receiver know the channel matrix. The cut-o� rate has an integral representation which is an increasing
function of the distance between pairs of complex signal matrices. When the analysis is restricted to �nite
dimensional sets of signals interesting characterizations of the optimal rate-achieving signal constellation can
be obtained. For arbitrary �nite dimension, the rate-optimal constellation must admit an equalizer distribu-
tion, i.e., a positive set of signal probabilities which equalizes the average distance between signal matrices
in the constellation. When the number N of receive antennas is large the distance-optimal constellation is
nearly rate-optimal. When the number of matrices in the constellation is less than the ratio of the number
of time samples to the number of transmit antennas, the rate-optimal cut-o� rate attaining constellation is
a set of equiprobable mutually-orthogonal unitary matrices. When the SNR is below a speci�ed threshold the
matrices in the constellation are rank one and the cut-o� rate is achieved by applying all transmit power
to a single antenna and using orthogonal signaling. Finally, we derive recursive necessary conditions and
suÆcient conditions for a constellation to lie in the feasible set.
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Figure Captions

1. Two dimensional slice of three dimensional cone cone(Ek) (k = 3) with inscribed and circumscribed
three dimensional spheres used to establish suÆcient and necessary conditions, respectively, for es-
tablishing that 1k 2 cone(Ek). Interior of triangle is slice of cone(Ek) in a plane orthogonal to the
vector cu. Vertices of triangle are located at points fci"k(i)g3i=1 along extremal rays of cone(Ek). The
inner dotted circle is the corresponding slice of the largest possible sphere centered at cu that can be
inscribed in cone(Ek). The outer dotted circle is the slice of the smallest possible sphere centered at
cu through which all rays in cone(Ek) must pass.

2. Interior of outer triangle is slice of cone(Ek) for k = 3 in a plane orthogonal to the vector c1k. Vertices
of outer triangle are located at points fci"3(i)g3i=1 along the extremal rays of cone(Ek). The interior
of the smaller equilateral triangle in the center is the slice of cone(Fk(�k)) within the same plane. The
equilateral triangle has center point c1k. The dotted circle is the slice of a sphere with radius d equal
to the distance between c1k and the vertices of the smaller triangle. b is the distance of c1k to the
closest face of cone(Ek). cone(Fk(�k)) � cone(Ek) as long as the smaller triangle is inscribed in the
larger triangle; i.e. d � b.

3. Top panel shows Mo given by (55) as a function of the SNR parameter �TM . Bottom panel is blow
up of �rst panel over a reduced range of SNR. The straight line is a least squares linear �t to the
upper panel. The linear approximation has slope 0.32 and zero intercept 0.08. Average residual error
between linear �t and exactMo vs SNR step function is less than 0.09 and maximum error is less than
0.52. By Corollary 2, for T;K;M;Mo satisfying T � KMo and Mo �M , the curve gives the number
of antennas utilized by the optimal constellation for various SNR's
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1 Introduction

In this paper we investigate the single-user cut-o� rate for a Rayleigh fading spatio-temporal channel model

under a maximum peak transmitted power constraint. For a wider perspective on di�erent channel fading

models we refer the reader to [4]. Multi-channel at Rayleigh fading models have been widely used to

investigate space-time channel capacity [30, 8, 14, 20, 31, 12], to investigate random coding error exponents

[1, 31], and to motivate and evaluate robust space time coding schemes [15, 16, 29, 7]. Similarly to Marzetta

and Hochwald [20] our results are derived under the quasi-static Rayleigh fading model and under the

assumption that neither transmitter nor receiver knows the channel. The quasi-static fading model assumes

a propagation matrix of zero mean complex Gaussian distributed coeÆcients which remain constant over

several time samples, called the coherent fade sampling interval,but change independently over successive

fade intervals. The signal set for this channel consists of complex matrices whose rows are indexed over

temporal coordinates that span the fade interval, and whose columns are indexed over spatial coordinates

that span the locations of the transmitter antennas.

The channel cut-o� rate Ro is a lower bound on the Shannon channel capacity C. Ro also speci�es an

upper bound on the error rate of an optimal decoder operating at a given symbol rate which can be used to

majorize the minimum probability of decoding error. Cut-o� rate analysis has frequently been adopted to

establish practical coding limits [32, 11] as the cut-o� rate speci�es the highest information rate beyond which

sequential decoding becomes impractical [27, 34] and as it is frequently simpler to calculate than channel

capacity. Cut-o� rate analysis has also been used to evaluate relative merits between di�erent coding and

modulation schemes [22], signal design for optical communications [28], and establishing achievable rate

regions for multiple access channels [24, 25].

The following are some of the principal results obtained.

1. An integral representation for the cut-o� rate is obtained (Lemma 1) which depends on a pairwise

dissimilarity measure over the set of signal matrices. This dissimilarity measure is a decreasing function

of the spatial correlation between pairs of signal matrices.

2. For low SNR the dissimilarity measure reduces to a distance metric equal to the trace norm of pairwise

di�erences between outerproducts of the signal matrices (Lemma 7).

3. The K dimensional cut-o� rate, de�ned as the cut-o� rate for constellations whose dimension does
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not exceed K, is the appropriate limiting factor for �nite dimensional space time coding/decoding and

when signal sets must be generated with �nite numerical precision. A necessary condition for such a

signal constellation to attain cut-o� rate is that there exist a probability distribution on the constel-

lation which equalizes the average exponentiated distance between signal matrices in the constellation

(Proposition 3). We call this the equalization condition and it plays a central role in this work.

4. The determination of the K dimensional cut-o� rate reduces to maximization of a quadratic form over

the set of feasible constellations, de�ned as those constellations which satisfy both the peak power

constraint and the �nite dimensional equalization condition (Proposition 4). This quadratic form is

similar to that arising in the Capon/MVDR method for adaptive beamforming arrays. If the feasible set

of K dimensional constellations is empty then the rate-optimal constellation is necessarily of dimension

less than K.

5. For low symbol-rate the rate-optimal constellation is a set of scaled mutually orthogonal unitary ma-

trices in Cl T�M (Proposition 9). This constellation is also distance-optimal in the sense of having the

largest possible minimal distance over all constellations of the same dimension (Corollary 2). When

SNR is low the rank of the signal matrices in the constellation is one and cut-o� rate is achieved by

transmitting all power from a single antenna element. As the SNR increases the rank of the signal

matrices increases and more and more antenna elements are utilized. Interestingly, the number of

receive antennas N plays no role whatsoever in determining how many transmit antennas should be

used.

6. When K exceeds T=M but is �nite, the K dimensional cut-o� rate is not closed form and must

be determined by numerical optimization of the cut-o� rate objective function over the feasible set of

constellations. We derive simple necessary conditions and simple suÆcient conditions for a constellation

to be in the feasible set (Lemma 3). The necessary conditions characterize properties of the optimal cut-

o� rate achieving constellation while the suÆcient conditions can be used to generate feasible signal sets.

To satisfy these conditions, among other attributes, the signal matrices should have pairwise distances

of low variability. As these conditions can be used to check if a candidate set of constellations is in the

feasible set or not, they provide a potentially useful signal design tool, especially when dealing with

large constellations of high dimensional signal matrices for which computing the globally rate-optimal

signal set may be impractical.

7. When the number N of receive antennas increases the distance-optimal constellation becomes nearly
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rate-optimal and the K dimensional cut-o� rate becomes approximately equal to lnK. Furthermore,

the dimension K of the rate-optimal constellation among all constellations of countable dimension

increases as N increases (Proposition 6).

The outline of this paper is as follows. In Section 2 the Rayleigh fading measurement model is introduced,

we briey review the computational cut-o� rate. and we characterize general structural properties of space-

time codes that achieve cut-o� rate. In Section 3 an integral expression is speci�ed for cut-o� rate involving

the pairwise dissimilarity function. In Section 4 we specialize to the �nite dimensional cut-o� rate which

reduces to maximization of a quadratic form over signal dissimilarity matrices. In Section 5 we consider

quadratic programming for computing the cut-o� rate. In Section 6 general characterizations for the feasible

set are given. In Section 7 we specialize to the case of �nite constellations with dimension smaller than T=M ,

for which the cut-o� rate is closed form.

2 Preliminaries

2.1 Rayleigh Fading Spatio-Temporal Channel

We use substantially the same notation as in the papers of Hochwald and Marzetta [20, 14]. Let there be M

transmitter antennas and N receiver antennas and let the MN channel fading coeÆcients be constant over

an interval of length T time periods, called the coherent fade sampling interval. A transmitted signal S is a

T �M matrix having complex valued entries. Let S = Cl T�M denote the set of all possible signal matrices.

The norm of a matrix S 2 S is de�ned as

kSk =
q
trfSSHg =

vuut TX
i=1

j�ij2;

where SH denotes the Hermitian transpose of S and f�igTi=1 are the singular values of S. Note that if T > M

only M of these singular values will be non-zero.

For N receiver antennas and an observation time interval of LT time periods the received signal is a

sequence fXigLi=1 of L complex valued T �N matrices Xi 2 X = Cl T�N which has the representation [20]:

Xi =
p
�SiHi +Wi; i = 1; : : : ; L; (1)

where Si 2 S is the i-th transmitted signal, � = �=M is the normalized signal-to-noise ratio (SNR) with

� > 0 the expected SNR at each receiver per transmit antenna, Hi is an M �N matrix of complex channel
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coeÆcients, and Wi is a T � N matrix of complex noises. The quasi-static Rayleigh at fading model

corresponds to taking the LN(T+M) elements of the matrices fHigLi=1 and fWigLi=1 to be i.i.d. complex zero

mean (circularly symmetric) Gaussian random variables with unit variance. Therefore the joint conditional

probability density of the observations factors into a product of marginals

p(X1; : : : ; XLjS1; : : : ; SL) =
LY
i=1

p(XijSi);

where

p(XijSi) =
exp

��trf[IT + �SiS
H
i ]

�1XiX
H
i

�
�TN

��IT + �SiSHi
��N ; (2)

IT is the T �T identity matrix, and jAj = j det(A)j denotes the magnitude determinant of square matrix A.

Let Pe denote the probability of decoding error for a block code of rate R (nats) with blocklength L. It

is well known [34, 10, 9] that for R below capacity C, the minimum decoding error probability Pe of the best

code satis�es

Pe � e�LEU(R); (3)

where EU (R) > 0 is a reliability function, called the random coding error exponent, controlling the error

rate of the optimal decoder:

EU (R) = max
�2[0;1]

max
P2P

(
��R� ln

Z
X2X

�Z
S2S

(p(X jS))1=(1+�) dP (S)
�1+�

dX

)
; nats=symbol; (4)

where the inner maximization is performed over a suitably constrained set P of probability distributions

P de�ned over the set of signal matrices S. Additional constraints on P are determined by factors such

as total power budget or envelope constraints and are left implicit in (4). The distribution P = P � which

attains the maximum in EU (R) gives an optimal signal distribution for which there exists a decoder achieving

minimum probability of decoding error for suÆciently large blocklengths. Generally, P � is not discrete and

an optimal set of signal matrices can only be constructed by a random coding procedure. The function EU (R)

was studied for the spatio-temporal Rayleigh quasi-static fading model by Abou-Faycal and Hochwald [1]

and Telatar [31] under a mean power constraint on transmitted signal matrices. Unfortunately, the double

maximization in (4) is generally very diÆcult since the inner integral is raised to a fractional exponent when

� 2 (0; 1). The cut-o� rate speci�ed below is a lower bound on the error exponent EU (R) which is frequently

simpler to analyze.

The random coding error exponent EU (R) can be lower bounded by the tangent line Q(R) having slope

�1: Q(R) = Ro � R, where Ro is this line's intercept on both the EU (R) and the R axes [34]. The point
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of tangency Rc = maxR2[0;C]fR : EU (R) = Q(R)g is the critical rate and the intercept Ro is called the

computational cut-o� rate. The cut-o� rate is given by

Ro = max
P2P

� ln

Z
X2X

�Z
S2S

p
p(X jS)dP (S)

�2
dX; nats=symbol (5)

which is equivalent to the error exponent EU (R) in (4) with the maximization over � 2 [0; 1] replaced by

the simpler evaluation at the point � = 1.

While use of cut-o� rate for evaluating system performance has its limitations, in particular it is an

upper bound only for sequential decoding [5, 21], it satis�es useful properties which in our opinion justify

its application to space-time coding:

� Since Ro � C cut-o� rate provides a lower bound on channel capacity.

� EU (R) � Ro � R when the symbol rate R is close to Rc. Thus the signal distribution P = P � which

attains the maximum in the de�nition of Ro will attain optimal error rates for R near Rc.

� For sequential decoding strategies, Ro is the maximum practical symbol transmission rate. Speci�cally,

even though Shannon's coding theorems ensure that there exists a low error decoding algorithm for all

R such that R < C, if Ro < R < C the probability of arbitrary long decision delays becomes signi�cant

[27]. Even though it has recently been demonstrated that non-sequential turbo decoders can achieve

rates greater than Ro [3], sequential decoding remains of interest and cut-o� rate analysis continues to

give useful insights [4, 33, 18, 32, 11].

� Combining (3), (4) and (5) a useful upper bound is obtained on the minimum probability of decoder

error for transmission rates R less than Ro

Pe � exp f�L(Ro �R)g ; R < Ro: (6)

Thus R � Ro is an upper bound on the error rate (lnPe)=L of the optimal decoder regardless of the

decoding algorithm.

� When analysis of channel capacity C is diÆcult or intractable, Ro o�ers an alternative which may be

easier to analyze.

2.2 Structure of Space-Time Codes Attaining Cut-o� Rate

Below we give a result that parallels Theorems 1 and 2 of Marzetta and Hochwald for channel capacity [20],

but covers the case of peak power constrained signal sets.
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Proposition 1 Assume that the transmitted signal S is constrained to satisfy the peak power constraint

kSk2 � MT . The peak power constrained cut-o� rate attained with M > T transmit antennas is the same

as that attained with M = T antennas. Therefore, there is no advantage to using more than T transmit

antennas. Furthermore, for M � T the signal matrix which achieves peak power constrained cut-o� rate can

be expressed as S = V � where V is a T � T unitary matrix, � = [�M ; O]T is a T �M matrix, and �M is a

diagonal M �M matrix.

Proof of Proposition 1

We �rst treat the case that M > T . Let S have singular value decomposition (SVD) S = V �UH where

V is a T �T unitary, U is anM �M unitary and � = [�T ; O] is a T �M matrix partitioned into a diagonal

T � T matrix �T and a T � (M � T ) matrix of zeros. The fading model (1) for L = 1 speci�es the received

signal as the T �N matrix

X =
p
�SH +W;

where the M �N matrix H and the T �N matrix W are mutually independent matrices of of i.i.d. zero

mean complex Gaussian random variables. Substituting the SVD of S into the model we obtain

X =
p
�SH +W

=
p
�V �UHH +W

=
p
�V �T [IT ; O]U

HH +W

=
p
�V �T ~HT +W:

Note that, as U is unitary, ~HT = [IT ; O]U
HH is a T � N matrix of i.i.d. zero mean complex Gaussian

r.v.s. Note also that, as kSk2 = kV �T k2, the T � T transformed signal V �T satis�es the same peak power

constraint as the original T �M signal S. Thus the signal X measured at the receiver after transmission of

the signal S on M antennas is statistically equivalent to X received when the signal V �T is transmitted on

only T antennas.

When M � T the SVD of S is identical to S = V �UH above except that now � = [�M ; O]T , where �M

is an M �M diagonal matrix. Therefore

X =
p
�V [�M ; O]T ~H +W

where ~H = UHH . 2
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Readers familiar with Theorems 1 and 2 of [20] might suspect that characterization of the statistical

distribution P of the optimal cut-o� achieving signal matrix S can be obtained. Indeed, paralleling the

arguments of [20], it can be shown that, as trfSSHg � TM is invariant to unitary premultiplication of S

and as the maximization in the de�nition of Ro is over a concave function of P , the peak-power constrained

cut-o� rate is attained by random matrices of the form S = V � where V is a T �T isotropically distributed

matrix, � = [�M ; 0]T is a random T �M diagonal matrix, and V and � are statistically independent.

3 Ro Representation for Quasi-Static Rayleigh Flat Fading Chan-
nel

Here we give integral representations for the cut-o� rate.

Lemma 1 The cut-o� rate for the spatio-temporal fading model (1) is given by

Ro = max
P2P

� ln

Z
S12S

dP (S1)

Z
S22S

dP (S2)

2
4
q��IT + �S1SH1

�� ��IT + �S2SH2
����IT + �

2
(S1SH1 + S2SH2 )

��
3
5
N

; nats=symbol (7)

where the maximization is performed over the set P of distributions P of suitably constrained signal matrices.

Proof of Lemma 1

For notational convenience de�ne the T � T matrix A(S) = IT + �SSH . Then the conditional p.d.f.

(2) takes the form p(XijSi) = exp
��trfA(Si)�1XiX

H
i

�
=(�TN jA(Si)jN ). The integral in (5) is the triple

integral
R
dX
R
dP (S1)

R
dP (S2)

p
P (X jS1)P (X jS2). As �SiS

H
i is non-negative de�nite jA(Si)j � 1 and

therefore p(XijSi) � 1=�NT < 1. Thus by Fubini we can interchange order of integration in the triple

integral to obtain

Ro = max
P2P

� ln

Z
S12S

dP (S1)

Z
S22S

dP (S2)

Z
X2X

dX
p
p(X jS1)p(X jS2) (8)

The inner integral has the explicit formZ
X2X

dX
p
p(X jS1)p(X jS2) (9)

=
1

jA(S1)jN=2 jA(S2)jN=2
1

�TN

Z
exp

�� 1

2

�
A�1(S1) +A�1(S2)

�
XXH

�
| {z }��1

2
A�1(S1)+

1

2
A�1(S2)

��N
=

 pjA(S1)j jA(S2)j
j 1
2
A(S1) +

1

2
A(S2)j

!N
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where in the �rst line the normalization constant of the multivariate complex Gaussian p.d.f. has been iden-

ti�ed (
R
expf�tr(B�1XXH)gdX = �TN jBjN ) and in the second line the determinant property jBCjjB�1+

C�1j = jB + Cj has been used. 2

The form of the cut-o� rate given in (7) suggests de�ning the pairwise dissimilarity measure for any two

signal matrices S1; S2 2 S

D(S1kS2) def
= 1

2
ln

jIT+ �

2
(S1S

H
1 +S2S

H
2 )j2

jIT+�S1SH1 jjIT+�S2SH2 j : (10)

Thus the cut-o� rate can be equivalently expressed as

Ro = max
P2P

� ln

Z
S12S

dP (S1)

Z
S22S

dP (S2) e
�ND(S1kS2) nats=symbol: (11)

As the integral (9) is upper bounded by one (Cauchy-Schwarz inequality) D(S1jS2) is non-negative. By
Lemma 7, given in the Appendix, D(S1kS2) = �2=8kS1SH1 � S2S

H
2 k2 + o(�2); so that in the asymptotic

regime of low SNR (� small), D(S1kS2) is to a good approximation proportional to the squared norm

kS1SH1 � S2S
H
2 k2 of the matrix outerproduct di�erence. We de�ne the minimal distance (dissimilarity) of

a set of signal matrices Sk = fSigki=1 as Dmin = minSi;Sj2Sk:i6=j D(SikSj). A set of signal matrices which

is close to optimal, in terms of nearly attaining the cut-o� rate, might be expected to have large value of

Dmin. Indeed, Proposition 9 implies that the rate-optimal peak constrained signal constellation maximizes

Dmin for low symbol-rates.

In the following sections we specialize to the case of discrete signal constellations for which equalizer

distributions are always optimal.

4 Finite (K) Dimensional Cut-o� Rate

For practical coding schemes it is of interest to restrict attention to �nite sets of signal matrices. Let K be

a prespeci�ed �nite positive integer. The cut-o� rate (11) restricted to discrete distributions concentrated

on at most K signal matrices will be called the K dimensional cut-o� rate and takes the form

~Ro(K) = max
fPi;SigKi=12G

K
� ln ~Q

�fPigKi=1; fSigKi=1

�
= � ln min

fPi;SigKi=12G
K

~Q
�fPigKi=1; fSigKi=1

�
(12)

where ~Q is the quadratic form

~Q
�fPigKi=1; fSigKi=1

�
=

KX
i=1

Pi

KX
j=1

Pj e
�ND(SikSj); (13)
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and where GK is a suitably constrained set of signal matrices fSigKi=1 and signal probabilities fPigKi=1 (see

subsection below for examples).

When Pi = 0 the signal Si is never transmitted which motivates a natural de�nition of a signal constel-

lation.

De�nition 1 A set of matrices fSigKi=1 in Cl T�M is a signal constellation if all assigned signal probabilities

Pi are strictly positive, i = 1; : : : ;K.

As the optimization in (12) is performed over a restricted set ~Ro(K) is a lower bound on Ro. Hence, in

particular, ~Ro(K) can be used in (6) to specify an upper bound on probability of decoding error or a lower

bound on capacity. If the optimizing distribution P in (11) over P actually concentrates on a constellation

consisting of a discrete �nite number of signal matrices then the bound is tight, i.e. P is a discrete probability

and ~Ro(K) = Ro for some �nite K. This hypothesis may not be unreasonable, e.g. when N = M = 1, the

optimal P was shown to be discrete by Abou-Faycal and Hochwald [1] for codes that achieve the random

coding error exponent. However, for cut-o� rate and for more general values of N and M this property

remains to be veri�ed. On the other hand, when the signal matrices are generated under �nite precision

arithmetic the bound ~Ro(K) is always tight for an appropriately chosen K, e.g., K = 2T �M2B for B bit

register resolution on each complex entry of the signal matrix.

4.1 Peak Power vs. Average Power Constraints

When an average transmitted power constraint is imposed, such as adopted in [20], the optimization (12)

must be performed over the restricted set

GK = GKavg =
(
fPi; SigKi=1 : Pi � 0; Si 2 Cl TM ;

KX
i=1

Pi = 1;
KX
i=1

PikSik2 � TM

)

where TM is the average transmitter power budget. Thus the average power constraint introduces additional

dependency between signal matrices and signal probabilities which complicates the optimization problem.

On the other hand, when a peak power constraint is imposed, the optimization (12) is performed over

the simpler product set

GK = GKpeak =
(
fPi; SigKi=1 : Pi � 0;

KX
i=1

Pi = 1; Si 2 Cl TM ; kSik2 � TM

)
= PK � SKpeak (14)
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where

PK =

(
fPigKi=1 : Pi � 0;

KX
i=1

Pi = 1

)
(15)

and

SKpeak =
�fSigKi=1 : Si 2 Cl TM ; kSik2 � TM

	
: (16)

In particular, under the constraint (14) the optimization (12) decomposes into two nested minimizations

~Ro(K) = � ln min
fSigKi=12S

K
peak

~Q
�fP �i gKi=1; fSigKi=1

�
; (17)

where, for �xed fS1gKi=1, P
�
i = P �i (S1; : : : ; SK), i = 1; : : : ;K, is the optimal probability assignment to the

signal Si

fP �i gKi=1 = argminfPigKi=12PK
~Q
�fPigKi=1; fSigKi=1

�
: (18)

4.2 Signal Dissimilarity Matrix

A more compact form for ~Ro(K) (12) is obtained by putting the quadratic form into vector form with a

dissimilarity matrix EK . For K signal matrices S1; : : : ; SK , and for eK(i; j) = exp(�ND(SikSj)), EK =

EK(S1; : : : ; SK) is the K �K matrix

EK = ((eK(i; j)))
K
i;j=1

=

2
66664

1 e1;2 � � � e1;K

e2;1
. . .

. . .
...

...
. . .

. . . eK�1;K
eK;1 � � � eK;K�1 1

3
77775 : (19)

Note that EK is symmetric with non-negative entries.

Lemma 2 EK is non-negative de�nite. If the K outerproduct matrices fSiSHi gKi=1 are distinct then: (i)

EK is positive de�nite; and (ii) eK(i; j) < 1, i 6= j.

Proof of Lemma 2

From the de�ning relations (10) and representation (9) in the proof of Lemma 1 we have eK(i; j) =R
X2X dX

p
p(X jSi)p(X jSj). For assertion (i) consider for any a 2 IRK

aTEKa =

KX
i=1

KX
j=1

aieK(i; j)aj
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=

Z
X2X

dX

KX
i=1

KX
j=1

aiaj

q
p(X jSi)p(X jSj)

=

Z
X2X

dX

 
KX
i=1

ai
p
p(X jSi)

!2

� 0:

Thus aTEKa is equal to zero i�
PK

i=1 ai
p
p(X jSi) = 0 almost everywhere (X). In view of (2):

PK
i=1 ai

p
p(X jSi) =PK

i=1 ~ai~p(X jSi) where ~p(X jSi) is a multivariate circular complex Gaussian density with zero mean and co-

variance matrix 2[IT + �SiS
H
i ] and ~ai = ai2

TN�TN=2jIT + �SiS
H
i jN=2. For a reference signal S1 2 S an easy

calculation establishes that for any S2 2 S the Kullback-Leibler divergence [6] of ~p(X jS2) from ~p(X jS1) is

K(S1kS2) =

Z
X2X

~p(X jS1) ln (~p(X jS1)=~p(X jS2)) dX

= N

KX
i=1

[(�i � 1)� ln�i]

where f�igKi=1 are the eigenvalues of the positive de�nite matrix A = [IT + �S2S
H
2 ]�

1

2 [IT + �S1S
H
1 ][IT +

�S2S
H
2 ]�

1

2 . As (�i � 1) � ln�i � 0, with equality i� �i = 1, we see that K(S1kS2) = 0 i� A = IK , as

A is symmetric. Thus K(S1kS2) = 0 i� S1S
H
1 = S2S

H
2 and therefore for distinct fSiSHi gKi=1 the density

functions f~p(X jSi)gKi=1 are almost everywhere linearly independent functions of X [17]. Gathering together

the above results: if fSiSHi gKi=1 are distinct then
PK

i=1 ai
p
p(X jSi) = 0 (a.e.) implies faigKi=1 are identically

zero. Hence EK is positive de�nite.

As for assertion (ii) of the Lemma we have by Cauchy-Schwarz

e2K(i; j) =

�Z
X2X

dX
q
p(X jSi)p(X jSj)

�2

�
Z
X2X

p(X jSi)dX
Z
X2X

p(X jSj)dX

with equality i� p(X jSi) = p(X jSj) (a.e. X). As shown above, this equality condition can only occur if

SiS
H
i = SjS

H
j . Hence eK(i; j) < 1 under the hypotheses of the lemma. 2

5 General Properties of Solutions to Ro

In this and the following subsections we establish properties of solutions to (12) under the peak power

constraint (14).

First we give a relation between the average distance of the rate-optimal constellation and the largest

13



possible minimum distance of any constellation of identical dimension. De�ne this latter distance

D��
min

def
= max

fSigKi=12S
K
peak

min
i6=j

D(SikSj):

A constellation whose minimum distance Dmin attains D��
min is said to be distance-optimal.

Proposition 2 Let fS�i gKi=1 be a constellation that attains the K dimensional cut-o� rate ~Ro(K). Then,

D(S�i kS�j ) � D��
min;

where D(S�i kS�j ) is the mean value

D(S�i kS�j ) =
P

i6=j P
�
i P

�
j D(S

�
i kS�j )P

i6=j P
�
i P

�
j

:

As D(S�i kS�j ) � maxi6=j D(S
�
i kS�j ), combination of Proposition 2 and a sphere-packing bound on D��

min

derived in [13, Prop 2] gives the following bound on the maximum distance of the constellation attaining

cut-o� rate

max
i6=j

D(S�i kS�j ) �
�2(TM)2

128
K�2=T (1 + o(�2)):

Proof of Proposition 2

Let fP �i gKi=1 achieve the minimum value ~Q� of the quadratic form ~Q
�fPigKi=1; fS�i gKi=1

�
in (18). First we

show that P
i6=j P

�
i P

�
j e

�ND(S�i kS
�
j )P

i6=j P
�
i P

�
j

� e�ND
��
min; (20)

Assume the contrary. Then

~Q� =

KX
i6=j

P �i P
�
j e

�ND(S�i kS
�
j ) +

KX
i=1

(P �i )
2

> e�ND
��

KX
i6=j

P �i P
�
j +

KX
i=1

(P �i )
2:

On the other hand,

~Q� � min
fSigKi=12S

K
peak

8<
:

KX
i6=j

P �i P
�
j e

�ND(SikSj) +

KX
i=1

(P �i )
2

9=
;

� min
fSigKi=12S

K
peak

n
e�Nmini6=j D(SikSj)

o KX
i6=j

P �i P
�
j +

KX
i=1

(P �i )
2

= e�ND
��
min

KX
i6=j

P �i P
�
j +

KX
i=1

(P �i )
2;

14



which is a contradiction. The Proposition follows after application of Jensen's inequality to the left hand

side of (20).

5.1 Optimality of Equalizer Distributions

The solution P �K = [P �1 ; : : : ; P
�
K ]

T to the minimization (18) can be found by convex quadratic optimization

subject to linear equality and inequality constraints. De�ne the Lagrangian

J(PK) = PT
KEKPK � 2c(1TKPK � 1); (21)

where, PK = [P1; : : : ; PK ]
T , 1K = [1; : : : ; 1]T is a K-element vector of ones, and c > 0 is an undetermined

multiplier that must be chosen to enforce the equality constraint 1TKP = 1. As J(P ) is convex cup the

Kuhn-Tucker conditions [26] assert that the minimum exists and must satisfy

@J(P �K)

@P �i

�
= 0 if P �i > 0
� 0 if P �i = 0

or equivalently

"TK(i)P
�
K = c if P �i > 0 (22)

"TK(i)P
�
K � c if P �i = 0 (23)

where "K(i) is the i-th column of EK . By reordering the entries of P
�
K and the rows and columns of EK we

can assume, without loss of generality, that the "K(i),'s satisfying (22) are the �rst k columns of EK with the

remainder satisfying (23), k � K. Making this assumption, (22) and (23) imply that P �k+1 = : : : = P �K = 0

and

EkP
�
k = c1k: (24)

Furthermore, we can assume that fSiSHi gKi=1 are distinct (see Lemma 9) and therefore, by Lemma 2, Ek is

positive de�nite. Therefore, from (22)-(24) the strictly positive component of the minimizer P �K is given by

P �k = cE�1k 1k; (25)

where c is determined via the constraint 1TKP
�
K = 1Tk P

�
k = 1, or

c = 1=1TkE
�1
k 1k: (26)

Note that c > 0 since Ek is positive de�nite and c � 1 since (1TkE
�1
k 1k)(1

T
kEk1k) � (1T 1)2 = k2 and

1TEk1 � k2 as the elements of Ek are � 1. Thus, in view of (24), the strictly positive elements of P �K satisfy

15



the equalization condition

kX
j=1

P �j e
�ND(SjkSi) = c; i = 1; : : : ; k; (27)

where fSigki=1 are the signal matrices in fSigKi=1 with strictly positive assigned probabilities fP �i gki=1. For

low SNR � it is easily shown using Lemma 7 that the equalization condition (27) is equivalent to equalizing

over i = 1; : : : ; k the average distance from Si to all other codewords Sj , i 6= j:

X
j 6=i

P �j D(SjkSi) = �+ o(�2); i = 1; : : : ; k;

where � = (1� c)=N .

We have thus shown that rate-optimal �nite dimensional constellations, de�ned in De�nition 1, must

have equalizer distributions. These results are summarized in the following.

Proposition 3 A constellation of dimension K achieves the K dimensional peak constrained cut-o� rate

(12) only if the optimal distribution fP �i gKi=1 over signal matrices in the constellation is an equalizer distri-

bution of the form P �K = E�1K 1K=1
T
KE

�1
K 1K .

An equivalent condition to (24) is that there exist a vector x = [x1; : : : ; xk]
T , not identically zero, lying

in the positive orthant IRk+ which satis�es

Ekx = 1k; (28)

or, equivalently, E�1k 1k 2 IRk+. De�ne the feasibility set ~SKpeak of K-dimensional constellations

~SKpeak =
�fSigKi=1 : Si 2 Cl TM ; kSik2 � TM;E�1K 1K 2 IRK+ ; SiS

H
i 6= SjS

H
j ; i 6= j

	
: (29)

By Proposition 3 ~Ro(K) is attained by a constellation of dimension K only if ~SKpeak is non-empty. Sub-
stitution of the form of the optimal probability vector P �K speci�ed in Proposition (3) into (13) we obtain

the following alternative characterization of ~Ro(K).

Proposition 4 Let K be a positive integer. The peak power constrained K dimensional cut-o� rate is

~Ro(K) = ln

(
max

0<k�K
max

fSigki=12
~Sk
peak

1TkE
�1
k 1k

)
: (30)
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Observe that by taking the limit K !1 in Proposition 4, we obtain the cut-o� rate of constellations of

countable, but possibly in�nite, dimension. The objective function 1TkE
�1
k 1k maximized in (30) is similar to

the criterion used in Capon's method, also known as minimum variance distortionless response (MVDR), for

adapting the weights of a beamforming array of antenna elements and for high resolution spectral estimation

[19].

The cut-o� rate ~Ro(K) and the rate achieving signal set can be iteratively computed using (30) in the

following steps: (1) select a candidate set of signal matrices fSigKi=1 in SKpeak, (2) use quadratic programming
to �nd the zero entries of P �K , speci�ed by condition (23), e.g. using slack variable or active set methods

[23]; (3) reorder the zero and non-zero entries of P �K and permute the rows and columns of EK as described

above; (4) solve EKx = 1K for x; (5) compute inner product 1Tx and take its natural logarithm; (6) perturb

the candidate set of signal matrices and repeat (1)-(5). This iterative procedure is repeated for each new set

of candidate signal matrices until 1=1TKE
�1
K 1K attains a maximum. The procedure becomes computationally

heavy when K becomes large. Proposition 4 suggests an alternative optimization method which bypasses

steps (1) and (2) by preselecting the candidate set of signal matrices fSigKi=1 to lie in
~SKpeak.

It will thus be of interest to establish conditions on EK which guarantee existence of a positive vector

x satisfying (28) or, equivalently, which guarantee that the vector E�1K 1K lies in the positive orthant. The

�rst result in this direction is that this always holds for a suÆciently large number N of receiver antennas.

5.2 Large Number of Receiver Antennas

The equalization condition (27) is easily manipulated to yield P �i + O(e�NDmin) = c, i = 1; : : : ; k. This

suggests that, for any constellation having Dmin > 0, if N is suÆciently large the equiprobable distribution

Pi = 1=K, i = 1; : : : ;K will satisfy this condition. We give stronger results below.

Proposition 5 Let fSigKi=1 be a set of peak constrained signal matrices with distinct outerproducts fSiSHi gKi=1.

De�ne the �nite positive integer No

No = b ln(K � 1)

Dmin
c+ 1; (31)

where Dmin = mini6=j D(SikSj). Then, for N � No the optimal distribution de�ned in (18) is

P �K = E�1K 1K=1
T
KE

�1
K 1K = (1 +O(ÆN�No+1)) 1K=K; (32)

where Æ = exp(�Dmin).
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The signi�cance of the above proposition is that if K is no greater than exp(NDmin) + 1 any peak

constrained set of signal matrices fSigKi=1 is in the feasible set ~SKpeak and thus has an equalizer distribution

P �(S1; : : : ; SK). Furthermore, as N ! 1, P �K converges to the equiprobable distribution 1K=K. Using

[13, Prop. 2] the following bound on No for the distance-optimal constellation can be derived: No �
b128K2=T ln(K � 1)=(�2(TM)2)c+ 1 (�2 small).

Proof of Proposition 5

First observe that under the hypothesis of the proposition No < 1 since, by Lemma 2, D(SikSj) > 0,

i 6= j. De�ne the symmetric matrix � = EK � IK . The elements fdi;jg of � are di;j = e�ND(SikSj) � ÆN ,

i 6= j, and di;i = 0. Therefore 0 � di;j < 1. When N � No the eigenvalues �
�
i of � are bounded

j��i j � ÆN (K � 1) < 1; i = 1; : : : ;K: (33)

The left hand inequality of (33) follows from the sequence of inequalities

max
i
j��i j � max

y2IRK

��yT�y��
yT y

= max
y2IRK

���PK
i;j=1 yiyjdi;j

���PK
i=1 y

2
i

� max
y2IRK

���PK
i=1 y

2
i

PK
j=1 di;j

���PK
i=1 y

2
i

� max
i

KX
j=1

di;j

� ÆN (K � 1):

The inequality on the second line follows from Cauchy-Schwarz0
@ KX
i;j=1

(yi
p
di;j)(yj

p
di;j)

1
A2

�
0
@ KX
i;j=1

(yi
p
di;j)

2

1
A2

;

and the inequality on the third line follows from non-negativity of di;j . The right hand inequality of (33)

follows from

ÆN (K � 1) = ÆNo(K � 1)ÆN�No � ÆN�No+1 < 1; N � No: (34)

Now (28) can be expressed as the perturbed linear system by expressing EK = IK +�

[IK +�]x = 1K :

As EK is positive de�nite [IK +�] is invertible. Furthermore, from (33) the eigenvalues of �2 are strictly

less than one and by elementary matrix manipulations

x = [IK +�]�11K = [IK ��2]�1[IK ��]1K :
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The i-th element of the vector [IK ��]1K is 2 �PK
j=1 di;j � 1 � (K � 1)ÆN which by (34) is positive for

N � No. Also, [IK ��2]�1 = IK +
P1

m=1�
2m has positive entries. This implies that for N � No, x 2 IRK+

and the i-th element of �1K is upper bounded by (K�1)ÆN and consequently, as it is non-negative, of order

O(ÆN�No+1) by (34). Hence, x = [IK +�]�11K = 1K +O(�1K) = 1K(1 +O(ÆN�No+1)). 2

From the proof of Proposition 5 we can identify a weaker condition on the number of receiver antennas

necessary to ensure P �K be an equalizer distribution: N be suÆciently large to make EK a diagonally

dominant matrix, i.e. to make
PK

j=1;j 6=i e
�ND(SikSj) < 1, i = 1; : : : ;K.

For large K a signi�cantly stronger version of Proposition 5 can be established. For arbitrary signal

matrices fSigKi=1 and probabilities fPigKi=1 de�ne the quantity

~Ro(K; fSi; PigKi=1) = � ln
KX

i;j=1

PiPje
�ND(SikSj):

With this de�nition and (12) we observe that the cut-o� rate is expressed as ~Ro(K) = ~Ro(K; fS�i ; P �i gKi=1)

where, as above, fS�i ; P �i gKi=1 is the rate-optimal set of signals and probabilities.

Proposition 6 Fix K and assume N � b ln(K�1)D��
min

c+ 1. Then

ln(K)� ln 2 � ~Ro(K; fSi; PigKi=1) � ~Ro(K) � lnK (35)

where fSigKi=1 is the distance-optimal constellation de�ned earlier in Section 5, D��
min = D��

min(K) = mini6=j D(SikSj)
is its minimal distance, and Pi = 1=K corresponds to the equiprobable distribution. Furthermore, as N in-

creases to in�nity the size of any rate-optimal countable constellation and the cut-o� rate both increase

without bound.

The above Proposition implies that for a suÆciently large numberN of receive antennas theK-dimensional

cut-o� rate takes the form ~Ro(K) = lnK � O(1) which is attained by an equiprobable K-dimensional

distance-optimal constellation.

Proof of Proposition 6

The upper bound ~Ro(K) � lnK holds independently of N and is an immediate consequence of the

inequality  
KX
i=1

p
p(X jSi)Pi

!2

�
KX
i=1

p(X jSi)P 2
i
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which when substituted into the discrete form of (5) yields

~Ro(K) = max
fPigKi=1

max
fSig2SKpeak

� ln

Z
X2X

"
KX
i=1

p
p(X jSi)Pi

#2
dX

� max
fPigKi=1

� ln

KX
i=1

P 2
i

� lnK

where the last line follows from the elementary inequality
PK

i=1 P
2
i � 1=K, for any set of probabilities

fPigKi=1, with equality when Pi = 1=K.

As for the two lower bounds on ~Ro(K) in (35) �rst observe that, with Si and Pi as de�ned in Proposition

6,

~Ro(K) � ~Ro(K; fSi; PigKi=1)

= � ln
1

K2

KX
i;j=1

e�ND(SikSj)

� � ln
1

K

�
1 + (K � 1)e�ND

��
min(K)

�
;

as D(SikSi) = 0 and D(SikSj) � D��
min(K), i 6= j. Therefore, since

N � b ln(K � 1)

D��
min(K)

c+ 1 � ln(K � 1)

D��
min(K)

we have

� ln
1

K

�
1 + (K � 1)e�ND

��
min(K)

�
� � ln

2

K
= lnK � ln 2

and the two lower bounds in (35) are established. Furthermore, for arbitrary N > 0 let

K
def
= max

�
k : b ln(k � 1)

D��
min(k)

c+ 1 � N

�
:

Then, as D��
min(k + 1) � D��

min(k) both K and ~Ro(K) = ln(K) � O(1) are monotone increasing in N as

N !1. 2

6 Characterization of Feasible Set of Constellations

Here we derive suÆcient conditions and necessary conditions for E�1K 1K to lie in the positive orthant. Several

of these conditions will be de�ned recursively in K. So as to not confuse the reader, and to improve clarity

of the equations, we will use lower case k throughout this section to distinguish it from the �xed index K.
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For a square k � k matrix A consisting of columns a1; : : : ; ak the positive polyhedral cone generated by

A is [2, 26]

cone(A) = fAx : x 2 IRk+g =
(

kX
i=1

aixi : xi > 0; i = 1; : : : ; k

)
:

This cone is convex and each of its k faces are contained in one of the hyper-planes spanfa1; : : : ; ai�1; ai+1; : : : ; akg.
The extremals of cone(A) are the k positive rays fcai : c > 0g, i = 1; : : : ; k.

It is evident that if cone(Ek) contains the vector 1k then, as Ek is positive de�nite, x = E�1k 1 must have

positive elements, which would guarantee that P �k = x=1Tk x is the optimal equalizer distribution.

6.1 Conditions for Feasibility

Here we give two conditions, one suÆcient and one necessary, to ensure 1k 2 cone(Ek). The suÆcient

condition reduces to specifying the largest inscribed right circular cone which �ts inside cone(Ek) while

the necessary condition is equivalent to specifying the smallest right circular cone which contains cone(Ek).

This suÆcient condition is slightly weaker than the suÆcient condition presented in Lemma 4 of the next

section and obtained by recursive inscription of a polyhedral cone. On the other hand, as contrasted with

the condition of Lemma 4, the suÆcient condition in this section is not easy to express recursively in k

As in (22)-(23), "k(i) will denote the i-th column of Ek = ((ek(i; j)))
k
i;j=1. For i = 1; : : : ; k, de�ne Ek(�i)

the k � (k � 1) matrix obtained by deleting its i-th column. De�ne

�Ek(�i) = Ek(�i)[ET
k (�i)Ek(�i)]�1ET

k (�i) (36)

the idempotent k � k matrix which orthogonally projects vectors in IRk onto the column span of Ek(�i).

Lemma 3 Let u be any vector in cone(Ek). A suÆcient condition for 1k to be contained in cone(Ek) isu� uT 1k
k1kk2

1k

2 < min
i
uT [I ��Ek(�i)]u: (37)

A necessary condition for 1k to be contained in cone(Ek) isu� uT 1k
k1kk2

1k

2 < max
i

u� uT "k(i)

k"k(i)k2
"k(i)

2 : (38)

Both of the conditions speci�ed in Lemma 3 require that the test vector u be close to the ray fc1k : c > 0g.
As a particularly simple application of the Lemma, consider setting u = "k = Ek1k=k; the arithmetic mean
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of the columns of Ek . In this case, as all but the i-th column of Ek are orthogonal to Ik � �Ek(�i), the

suÆcient condition becomes

"k � "k1k
k1kk2

1k

2 < 1

k2
min
i
"Tk (i)[I ��Ek(�i)]"k(i):

This condition requires that the distance between 1k and "k be less than k�2 times the prediction error

squared of the most predictable column of Ek using the remaining columns of Ek as predictor vectors.

Proof of Lemma 3

Fix c > 0 and let z = cu. As z 2 cone(Ek) there exists a sphere centered at z that �ts inside cone(Ek)

(See Figure 1). Such a sphere can have radius b no larger than the distance between z and the closest face of

cone(Ek). As the k faces of cone(Ek) are contained in the column span of Ek(�i), i = 1; : : : ; k and cone(Ek)

is convex, the radius b of the largest sphere is given by the distance between z and its orthogonal projection

onto this span

b2 = min
i

(
min

ŷ2spanfEk(�i)g

�kz � ŷk2	
)

= min
i
zT [I ��Ek(�i)]z

= c2 min
i
uT [I ��Ek(�i)]u;

which is the right hand side of (37). If the positive ray fa1k : a > 0g passes through this sphere then, by

convexity of cone(Ek), 1k must lie in cone(Ek). This occurs i� the distance from z to this ray is less than

b2, i.e. z � zT 1k
k1kk2

1k

2 = c2
u� uT 1k

k1kk2
1k

2 < b2

Since c > 0 is arbitrary, we obtain the inequality (37).

As for the necessary condition, for any c > 0 there exists a sphere centered at z = cu through which

all positive rays in cone(Ek) must pass (See Figure 1). The smallest such sphere has radius equal to the

maximum distance between z and the faces of cone(Ek). Points at maximum distance must occur along one

of the rays fa"k(i) : a > 0g, i = 1; : : : ; k, which are the extremals of cone(Ek). Therefore the radius of this

smallest sphere is

d2 = max
i

z � zT "k(i)

k"k(i)k2
"k(i)

2 = c2 max
i

u� uT "k(i)

k"k(i)k2
"k(i)

2 :
Finally, if 1k 2 cone(Ek) this sphere must intersect the ray fa1k : a > 0g in which case c2 u� (uT 1k)=k1kk2 1k

2 <
d2. 2
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6.2 A Recursive Construction

Here the objective will be to specify conditions for which 1k+1 lies in cone(Ek+1) when it is known that 1k

lies in cone(Ek). To proceed we will need a recursive update for E�1k+11k+1 in terms of E�1k 1k. For a set of

signal matrices S1; : : : ; Sk+1 let the (k + 1)� (k + 1) matrix Ek+1be partitioned as

Ek+1 =

�
Ek ek
eTk 1

�
; (39)

where ek is the vector of pairwise dissimilarity functions

ek =
h
e�ND(S1kSk+1); : : : ; e�ND(SkkSk+1)

iT
: (40)

We also recall the partitioned matrix inverse identity for the case that Ek+1 is positive de�nite

E�1k+1 =

"
E�1k + 1

jEk+1j
E�1k eke

T
kE

�1
k � 1

jEk+1j
E�1k ek

� 1
jEk+1j

eTkE
�1
k

1
jEk+1j

#
(41)

where jEk+1j = 1 � eTE�1k e > 0. Let xk = E�1k 1k have partitioned form xk = [xkk�1; x
k
k]
T where xkk is a

scalar.

Proposition 7 For a given set of signal matrices fSigk+1
i=1 with distinct outerproducts fSiSHi gk+1

i=1�
xk+1
k

xk+1
k+1

�
=

�
E�1k (1k � �kek)

�k

�
=

�
xk � �kE

�1
k ek

�k

�
; (42)

where

�k =
1� eTkE

�1
k 1k

1� eTkE
�1
k ek

: (43)

Proof of Proposition 7

By Lemma 2 Ek+1 is positive de�nite. Applying the partitioned matrix inverse identity (41) to the right

hand side of xk+1 = E�1k+11k+1,

E�1k+11k+1 =
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Using the de�nitions of jEk+1j and �k yields (42). 2
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Corollary 1 For a given set of signal matrices fSigki=1 with distinct outerproducts fSiSHi gki=1 assume that

the k-element vector xk = E�1k 1k lies in IRk+. Let Sk+1 be a signal such that Sk+1S
H
k+1 62 fSiSHi gki=1. Then

the (k + 1)-element vector xk+1 = E�1k+11k+1 is in IRk+1
+ i� (a) �k > 0 and (b) E�1k (1k � �kek) is in IRk+.

Furthermore (b) implies that �k � 1.

Proof of Corollary 1

It only need be shown that condition (b) of the Corollary implies that �k � 1. If this condition holds

then eTkE
�1
k (1k � �kek) � 0 as ek has non-negative elements. Therefore

�ke
T
kE

�1
k ek � eTkE

�1
k 1k: (44)

By de�nition (43) �k(1� eTkE
�1
k ek) = 1� eTkE

�1
k 1k. Adding this latter equation to the inequality (44) gives

�k � 1. 2

Corollary 1 motivates an iterative procedure, speci�ed in Hero and Marzetta [13], for generating an

monotonically improving sequence of constellations lying in the feasibility set ~Skpeak de�ned in Proposition 4.

At iteration k assume that a k-dimensional peak constrained constellation S1; : : : ; Sk has been constructed

whose optimal distribution P �k attaining the minimum in (18) is an equalizer distribution: P �k = cE�1k 1k.

Consider adding a candidate signal Sk+1, with Sk+1S
H
k+1 distinct from fSiSHi gki=1, having associated dissim-

ilarity vector ek given by (40). The two conditions (a) and (b) of the corollary may be used to select Sk+1

to ensure that the optimal distribution P �k+1 for the updated constellation S1; : : : ; Sk+1 is also an equalizer

distribution.

6.3 Feasibility via Polyhedral Inscribed Cones

Here we specify a simpler positive cone which is inscribed inside cone(Ek) and is generated by the positive

de�nite k � k matrix

Fk(Æ)
def
= Ik(1� Æ) + Æ1k1

T
k ; (45)

where, Æ 2 [0; 1). We recall the Sherman-Morrissey-Woodbury identity for the inverse

F�1k (Æ) =
1

1� Æ

�
Ik � Æ

1 + (k � 1)Æ
1k1

T
k

�
: (46)

The set cone(Fk(�)) is centered along the positive ray fc1k : c > 0g. The set cone(Fk(�)) is equal to

the positive orthant IRk+ for � = 0 while it approaches the aforementioned positive ray as � approaches 1.

Furthermore cone(Fk(�)) is decreasing in � in the sense that cone(Fk(�)) � cone(Fk(�
0

)) for � � �
0

.
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De�ne the maximum, minimum, mean, and rms values of a real vector a = [a1; : : : ; ak]
T

min(a) = min
1�i�k

ai; max(a) = max
1�i�k

ai; avg(a) = 1Tk a=k; rms(a) =
q
aT a=k:

Lemma 4 Let fSigki=1 be a set of signal matrices with distinct outerproducts fSiSHi gki=1 such that E�1k 1k 2
IRk+. Assume that cone(Fk(�)) � cone(Ek) for 0 � � < 1. Let Sk+1 be a signal such that Sk+1S

H
k+1 62

fSiSHi gki=1. Then the (k + 1)-element vector xk+1 = E�1k+11k+1 lies in IRk+1
+ if

(a) 0 < �k � 1; and (b) max(ek) +
k�
1�� [max(ek)� avg(ek)] < 1 (47)

where ek and �k are de�ned in (40) and (43).

An alternative form for (b) in Lemma 4 is:

(1�max(ek))=(1� avg(ek)) > �(�); (48)

where �(z)
def
= kz=(1 + (k � 1)z) 2 [0; 1) is monotonic increasing over z 2 [0; 1) and, as by Lemma 2

avg(ek) < 1, under condition (a): 1� �kavg(ek) � 1� avg(ek) > 0.

Interpretation of the suÆcient conditions in Lemma 4 is similar to the interpretation of Lemma 3. Con-

dition (a) is equivalent to

eTkE
�1
k ek � 1TkE

�1
k ek < 1: (49)

If ek lies close to the column span of Ek then 1 � eTkE
�1
k ek is small and condition (a) restricts the inner

product of ek and the previous un-normalized probability vector xk = E�1k 1k to a narrow range near 1.

Thus we can expect that constraint (a) will become active only for densely packed signal constellations

(large K=(TM)). When �k is close to one, which occurs for the case of small values of N maxiD(SijSk+1)

(low SNR), condition (b) places restrictions on the elements of feasible vectors ek to ensure low variation

about the mean value avg(ek). This can be ensured if Sk+1 can be selected to minimize the variation of its

pairwise dissimilarities fD(SikSk+1)gki=1.

Proof of Lemma 4

Condition (a) of Lemma 4 obviously implies condition (a) of Corollary 1. Under the assumption

cone(Fk(�)) � cone(Ek) we will show conditions that (a) and (b) of Lemma 4 jointly imply condition (b) of

Corollary 1. First, observe that E�1k (1k � �kek) is in IRk+ i� 1k � �kek 2 cone(Ek). Second, since cone(Ek)

contains cone(Fk(�)) it will suÆce to show that 1k��kek 2 cone(Fk(�)) or, equivalently, [Fk(�)]
�1(1k��kek)
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is in IRk+, under the conditions of Lemma 4. Applying the Sherman-Morrison-Woodbury identity (46) to

[Fk(�)]
�1

[Fk(�)]
�1(1k � �kek) =

1

1� �

�
1k � �kek �

k�

1 + (k � 1)�
(1� �kavg(ek))1k

�
: (50)

The minimum element of the vector (50) is

min
�
[Fk(�)]

�1(1k � �kek)
�

=
1

1� �

�
1� �kmax(ek)�

k�

1 + (k � 1)�
(1� �kavg(ek))

�

=
1

1 + (k � 1)�

�
1� �k

�
max(ek) +

k�

1� �
[max(ek)� avg(ek)]

��

which is positive under conditions (a) and (b) of the Lemma. Thus [Fk(�)]
�1(1k � �kek) is in the positive

orthant which establishes condition (b) of Corollary 1. 2

Since Ek is positive de�nite and cone(Fk(�)) and cone(Ek) are convex, 1k does not lie on the boundary

of cone(Ek) and there always exists a value �o > 0 such that cone(Fk(�)) � cone(Ek) for all � 2 [�o; 1). As

the set cone(Fk(�)) is monotone decreasing in � the largest possible inscribed cone is obtained by using the

minimum possible value of �. This gives the least restrictive suÆcient condition (b) in (47). The form of

this minimum � is speci�ed for k � 2 in the Lemma below.

Lemma 5 For a given set of signal matrices fSigki=1 with distinct outerproducts fSiSHi gki=1 assume that the

k-element vector xk = E�1k 1k lies in IRk+. For k � 2 the minimum value of � 2 [0; 1) ensuring cone(Fk(�)) �
cone(Ek) is the value �k given by

�k =

8><
>:

(k�1)�k
p

(k�1)min(1�min)

(k�1)(1�kmin)
; min 6= 1

k

1
2 � min

2
k

k�1 min =
1
k

(51)

where min = mini k(i), 0 � min � 1=k, and

k(i) =
1

k
1Tk [Ik ��Ek(�i)]1k (52)

and �Ek(�i) is the orthogonal projector de�ned in (36).

Proof of Lemma 5

Fix a value c > 0. Let b be the distance between the vector c1k and the closest face of cone(Ek) (See

Fig. 2). As each face is contained in the column span of Ek(�i)) and as cone(Ek) is convex and contains

c1k, b is speci�ed by the projection theorem

b2 = c2min
i

�
1Tk [Ik ��Ek(�i)]1k

	
= c2k min; (53)
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Since Ik � �Ek(�i) is an idempotent matrix k(i) = k[Ik � �Ek(�i)]1kk2=k � 0. As the elements of Ek are

non-negative the projection error norm 1Tk [Ik � �Ek(�i)]1k is maximum when cone(Ek) is largest, which

occurs for Ek = Ik. In this case Ik ��Ek(�i) = diag(0; : : : ; 0; 1; 0; : : : ; 0) and k(i) = 1=k.

Next let d(�) be the maximum distance from c1k to cone(Fk(�)) (See Figure 2). As the extremals of

cone(Fk(�)) are symmetric about the ray fa1k : a > 0g each extremal has a point at identical maximum

distance from c1k. Consider the extremal faf1 : a > 0g where f
1
is the �rst column of Fk(�). We thus have

d2(�) = c2

1k � 1Tk f1
kf

1
k2 f

1


2

= c2k

�
1� (1 + (k � 1)�)2

k(1 + (k � 1)�2)

�
: (54)

Evidently cone(Fk(�)) � cone(Ek) as long as d2(�) � b2. Let �k be the minimum corresponding value

of � 2 [0; 1) for which d2(�k) = b2. Equating (53) and (54) yields the following quadratic equation for �k

(k � 1)(�(k � 1)� 1)�2k + 2(k � 1)��k + � � 1 = 0

where � = (1+min=(1�min))=k. For min 2 [0; 1=k) the quadratic equation has two non-negative solutions

only one of which is contained in [0; 1). For min = 1=k, � = 1=(k � 1) and there is one solution in [0; 1). In

both cases this solution is given by (51). 2

7 Low Rate Optimality of Unitary Orthogonal Constellations

When the number of signal matrices K to be considered is suÆciently small signi�cant simpli�cation of the

optimization (17) is possible. In particular, one obtains optimality of a set of scaled mutually orthogonal

unitary signal matrices and a simple form for ~Ro(K).

The �rst result speci�es the solution to optimization of the dissimilarity measure D(SikSj) de�ned in

(10).

For given �, T and M de�ne the integer Mo

Mo = argmaxm2f1;:::;Mg

�
m ln

(1 + �TM=(2m))2

1 + �TM=m

�
: (55)

We will see below that under some conditions Mo is the rank of the signal matrices Si in the optimal

K-dimensional constellation.
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Proposition 8 Let 2M � T . Then

Dmax
def
= max

S1;S22SKpeak

D(S1kS2) =Mo ln
(1 + �TM=(2Mo))

2

1 + �TM=Mo
: (56)

Furthermore, the optimal signal matrices which attain Dmax can be taken as scaled rank Mo mutually

orthogonal unitary T �M matrices of the form

S1 =
p
TM=Mo �1; S2 =

p
TM=Mo �2

where, for j = 1; 2,

�Hj �j = IMo
; and �Hi �j = 0; i 6= j:

The assumption 2M � T is critical and ensures that the singular vectors of S1 and S2 can be chosen as

mutually orthogonal for any set of singular values.

The rank Mo of the optimal matrices S1 and S2 increases from 1 to M as the SNR parameter �TM

increases from 0 to1 (see Fig. 3). Numerical evaluation has shown that the functional relationship between

Mo and SNR is well approximated by the relation

Mo � max (1; ba�TM + b+ 0:48c)

where a, b are the slope and intercept of the least squares linear �t to the function y(x) = argmaxm=1;2;:::m

ln[(1 + x=(2m))2=(1 + x=m)]. The approximation is a lower bound and underestimates the exact value of

Mo, given by (55), by at most 1 over less than 0.5% of the SNR range shown in Fig. 3 (0 < �TM � 120).

If the SNR is suÆciently large, e.g. (from Fig. 3) �TM � 17 for M = 6 and T � 12, Mo = M and the

optimal signal matrices utilize all M transmit antennas. On the other hand for small SNR, i.e. (from Fig.

3) �TM < 4, Mo = 1 and the optimal signal matrices apply all available transmit power to a single antenna

element over the coherent fade interval T .

Proof of Proposition 8

Let S1 and S2 have the singular value decompositions

S1 = V1�1U
H
1 ; S2 = V2�2U

H
2 ; (57)

where V1; V2 are T �M unitaries, i.e. V H
1 V1 = V H

2 V2 = IM , U1; U2 are M �M unitaries, and �1;�2 are

M �M real diagonal matrices of singular values f�1igMi=1 and f�2igMi=1, respectively.
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The function D(S1kS2) of S1SH1 and S2S
H
2 only depends on S1 and S2 through V1;�1; V2;�2. Thus

unitaries U1 and U2 can be arbitrarily chosen without a�ecting D(S1kS2) and hence we can choose them as

IM . We denote this functional dependence by writing D(S1kS2) = D(V1;�1kV2;�2). Therefore

max
S1;S2

D(S1kS2) = max
�1;�2

max
V1;V2

D(V1;�1kV2;�2): (58)

Using the form for D given in Lemma 6 (see the Appendix)

D(V1;�1kV2;�2) = ln

��IM + �

2
SH1 S1

�� ��IM + �

2
SH2 S2

��q��IM + �SH1 S1
�� ��IM + �SH2 S2

�� + ln
��IM � �H�

��

=

MX
i=1

ln
(1 + �

2
�21i)(1 +

�

2
�22i)p

(1 + ��21i)(1 + ��22i)
+ ln

��IM � �H�
�� (59)

For �xed arbitrary �1;�2 �rst consider the inner maximization in (58), i.e. maximization over V1; V2 of the

right hand side of (59). Observe that the �rst term in (59) depends only on the singular values �1;�2 and

not on V1; V2. Observe that as S
H
1 S2 = �1V

H
1 V2�2, for any �1;�2 the product S

H
1 S2 can be forced to zero

by selecting matrices V1 and V2 to be mutually orthogonal { possible under the assumption 2M � T . Recall

that � = ~SH2
~S1 where ~S1 and ~S2, de�ned in Lemma 6, have the same column spaces as S1 and S2. Therefore,

when V1 and V2 are mutually orthogonal � = 0 and the second term in (59) is equal to its maximum value

(0). This establishes that the optimum signal matrices S1 and S2 have orthogonal singular vectors V1 and

V2 and that

max
�1;�2

max
V1;V2

D(V1;�1kV2;�2) = max
f�1ig

MX
i=1

ln
1 + �

2
�21ip

1 + ��21i
+ max
f�2ig

MX
i=1

ln
1 + �

2
�22ip

1 + ��22i
:

Due to the assumed peak power constraint each of the above maximizations on the right hand side

are performed over the inequality constraint sets
n
�j1; : : : ; �jM :

PM
i=1 �

2
ji � TM

o
, j = 1; 2. As these

maximizations are of identical form,

max
�1;�2

max
V1;V2

D(V1;�1kV2;�2) = 2max
f�ig

MX
i=1

ln
1 + �

2
�2ip

1 + ��2i
= max

f�ig

MX
i=1

ln
(1 + �

2
�2i )

2

1 + ��2i
(60)

where the maximization on the right hand side is subject to
PM

i=1 �
2
i � TM . Observe that as each summand

is monotone increasing in �2i the inequality constraint in the maximization is always met with equality.

Consider the Lagrangian

J(�1; : : : ; �M ) =

MX
i=1

�
2 ln(1 + �

2
�2i )� ln(1 + ��2i )

�� �

MX
i=1

�2i

where � � 0 is an undetermined multiplier. For a suitable value of �, the maximum of J over unconstrained

f�ig is identical to the maximum of the right hand side of (60) over power constrained f�ig. The derivative
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of J with respect to �i is

@J

@�i
= ���2 �i (�

2
i )

2 + 2�2i v=� + 2=�2

(1 + ��2i )(1 +
�

2
�2i )

where v = 3���
2� . Therefore, for each �i, there are �ve possible stationary points of J given by either �i = 0

or by
+�
p
�2i where �

2
i is one of the roots

�2i = (�v +�
p
v2 � 2)=�; i = 1; : : : ;M: (61)

With respect to (61) there are three cases which must be considered. For v � p
2 both roots are real

negative and for �p2 < v <
p
2 both roots are complex. For v � �p2 both roots are real positive.

Thus only the latter case is relevant. It can be veri�ed that, when �2i is equal to one of these two positive

roots, the second derivative of J is @2J=@�2i = �4��2�2i �2i+v=�

(1+��i)(1+
�

2
�i)

which is negative only for the root

�2i = (�v +p
v2 � 2)=�. Therefore, we can restrict attention to a candidate maximizer f�1; : : : ; �Mg of J

for which each �2i can take on either of two values: zero or c = (�v + p
v2 � 2)=�. Let m 2 f1; : : : ;Mg

denote the number of nonzero valued �i for one of these candidate maximizers. Then, invoking the constraintPM
i=1 �

2
i = TM and noting that the ordering of the indices of �2i is irrelevant, any candidate maximizer of

J can be put in the form

�2i =

�
TM=m; i = 1; : : : ;m

0; i = m+ 1; : : : ;M
; (62)

and now m is the only remaining free parameter. Substituting this expression for �2i = �2i into (60) we obtain

the expression (56) with Mo equal to the optimal value of m given by (55). Using the SVD representation

(57) with U1 = U2 = IM it is easily seen that the optimal signal matrices, corresponding to (62) with

m = Mo, have the form Sj = Vj�j =
p
TM=Mo �j ; j = 1; 2; where the �j 's are rank Mo mutually

orthogonal rectangular unitaries as de�ned in the statement of the Proposition. 2

Proposition 8 implies that for low symbol rate, the distance-optimal signal constellations are constellations

of scaled mutually orthogonal unitary matrices of rank Mo �M .

Corollary 2 Let 2M � T and let Mo be as de�ned in (55). Assume Mo � minfM;T=Kg and de�ne the

set of signal matrices fS�i gKi=1 by S�i =
p
TM=Mo �i where f�igKi=1 are a set of T �M mutually orthogonal

rectangular unitary matrices of rank Mo (�Hi �i = IMo
and �Hi �j = 0, i 6= j). This set of signal matrices

are equidistant in the sense D(S�i kS�j ) = Dmax = Dmin, i 6= j, and they attain the maximum possible value

of Dmin = minl6=mD(SlkSm) over all signal sets fSigKi=1 2 SKpeak of dimension K.

Proof of Corollary 2
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First observe that if Mo � minfM;T=Kg then such an orthogonal unitary set f�igKi=1 exists, e.g.

the set of K mutually orthogonal permutation matrices of dimension T �M whose columns are formed

from K disjoint Mo-dimensional subsets of the columns of IT . The set fS�i gKi=1 satis�es the peak power

constraint kS�i k2 � TM , i = 1; : : : ;K, with equality and, by Proposition 8, it has the property that

D(S�i kS�j ) = Dmax
def
= maxS1;S2 D(S1kS2), i 6= j. Let fSigKi=1 be any set of K signal matrices in Cl T�M

satisfying the same power constraint. Then mini6=j D(SikSj) � Dmax = mini6=j D(S
�
i kS�j ) and thus fS�i gKi=1

maximizes Dmin. 2

It can be easily veri�ed that the mutually orthogonal unitary constellation of Corollary 2 satis�es the

suÆcient conditions (a) and (b) of Lemma 4 when ~SKpeak is not empty. For this constellation EK = FK(Æ),

Æ = e�NDmax < 1, and

�K = (1� 1TK [FK(Æ)]
�11KÆ)=(1� 1K [FK(Æ)]

�11KÆ
2)

= (1� �)=(1� Æ�):

where � = �(Æ) 2 [0; 1) is de�ned below (48) with k = K. Therefore 0 < �K � 1. Furthermore, as

max(eK) = avg(eK) = Æ, condition (b) reads: �KÆ < 1, which is satis�ed regardless of the value of �.

The �nal result of this section is an expression for the cut-o� rate.

Proposition 9 Let 2M � T and let Mo be as de�ned in (55). Suppose that Mo � minfM;T=Kg. Then the

peak constrained K dimensional cut-o� rate (12) is

~Ro(K) = ln

�
K

1 + (K � 1)e�NDmax

�

and Dmax is given by (56). Furthermore, an optimal constellation attaining ~Ro(K) is the set of K rank

Mo mutually orthogonal matrices speci�ed in Corollary 2 and the optimal probability assignment is uniform:

P �i = 1=K, i = 1; : : : ;K.

Any unitary transformation on the columns (spatial coordinates) of a set of signal matrices produces a set

of signal matrices with identical Dmin. In particular, any set of K mutually orthogonal T �Mo permutation

matrices, speci�ed in the course of proof of Corollary 2, has optimal distance properties. This simple set

of signal matrices corresponds to transmitting energy on a single antenna element at a time, among a total

of Mo � M elements, in each of the available T time slots. Since ~Ro(K) is increasing in K the maximum

cut-o� rate achievable using these mutually orthogonal unitary matrices is obtained by using the maximum
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possible number of them: K = bT=Moc. Observe that the resulting optimal constellation may correspond

to a code of quite low symbol rate, e.g. for Mo =M = T=2 the symbol rate is only 1 bit-per-symbol.

It is noteworthy that the optimal peak constrained signal constellation speci�ed by Proposition 9 does

not include the zero valued signal matrix Si = O. Including zero in the signal constellation would allow

signalling using on-o� keying. On-o� keying is often proposed for average power constrained signalling over

low SNR channels since it permits energy discrimination at the receiver. As contrasted with on-o� keying

all signals in the optimal peak constrained signal set have equal power. We conjecture that the zero signal

would result from replacing the peak power constraint with an average power constraint in Proposition 9.

Proof of Proposition 9

De�ne Æ = e�NDmax which is strictly less than one under the hypotheses of the Proposition. For any set

of signal matrices fSigKi=1 satisfying the assumptions of Proposition 9, Proposition 8 asserts that D(SikSj) �
Dmax, i 6= j, with equality when fSigKi=1 consists of the speci�ed mutually orthogonal matrices. Using this

inequality and the fact D(SikSj) = 0, i = j,

min
fSigKi=12S

K
peak

KX
i=1

Pi

KX
j=1

Pj e
�ND(SikSj) = e�NDmax

X
i6=j

PiPj +

KX
i=1

P 2
i

= P T
KFK(Æ)PK : (63)

Now, using the identity (46), FK(Æ)x = 1K has a unique solution in the positive orthant

x = [F�1K (Æ)]�11K

=
1

1� Æ

�
1� KÆ

1 + (K � 1)Æ

�
1K

=
1

(1 + (K � 1)Æ)
1K :

Thus the minimizer P �K of P T
KFK(Æ)PK is the uniform distribution PK = 1K=K. Substitution of this

solution back into (63) establishes that

min
fPigKi=12P

K
min

f;SigKi=12S
K
peak

KX
i=1

Pi

KX
j=1

Pj e
�ND(SikSj) =

1

K2
1TKFK(Æ)1K =

(1� Æ) + ÆK

K

which when substituted into (12) yields the expression given for ~Ro(K) speci�ed in Proposition 9. 2

8 Conclusions

We have derived representations for the single user computational cut-o� rate for space time coding under the

Rayleigh quasi-static fading channel model under a peak transmitted power constraint. For �nite dimensional
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constellations the cut-o� rate and the optimal signal distribution were speci�ed as a solution to a quadratic

optimization problem and it was shown that optimal constellations have codeword distributions which satisfy

an equalization condition. This characterization of optimality motivated us to study properties of the set of

feasible constellations which satisfy the equalization property. In particular, we showed that distance-optimal

constellations are close to rate-optimal for large number of receive antennas. Easily veri�able necessary and

suÆcient conditions were given for validating that a given signal constellation lies in the feasible set. A

recursive form was given for one of these conditions which may be useful for design of feasible constellations.
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9 Appendix: Properties of D(S1kS2)

Here we collect various properties of the signal dissimilarity measure (10).

9.1 Alternative form for D(S1kS2)

D(S1kS2) can be equivalently expressed in terms of a signal multiple correlation matrix �.

Lemma 6 The signal dissimilarity measure (10) for the spatio-temporal fading model (1) has the equivalent

form

D(S1kS2) = 1

2
ln
jIM+

�

2
SH1 S1j2jIM+

�

2
SH2 S2j2

jIM+�SH
1
S1jjIM+�SH

2
S2j

��IM � �H�
��2 ;

where � is the M �M multiple correlation matrix

� = ~SH2 ~S1;

~S1 and ~S2 are the \prewhitened" signal matrices

~S1 =
p

�

2
S1[IM + �

2
SH1 S1]

�
1

2 ; ~S2 =
p

�

2
S2[IM + �

2
SH2 S2]

�
1

2 ;

and A
1

2 denotes the positive de�nite square root factor of positive de�nite square matrix A.
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Proof of Lemma 6

Consider the quantity in the numerator of expression (10)

��IT + �

2
(S1S

H
1 + S2S

H
2 )
�� =

����IT + �

2
[S1 S2]

�
SH1
SH2

�����
=

����IT + �

2

�
SH1
SH2

�
[S1 S2]

����
=

����
�
IM + �

2
SH1 S1 �SH1 S2

�SH2 S1 IM + �

2
SH2 S2

����� ;
where in the second line we have used the property jI +ABj = jI +BAj.

For A and C Hermitian positive de�nite matrices we recall the following determinant identity for block

partitioned matrices ����
�

A B
BH C

����� = jAj jCj ��I � BHA�1BC�1
�� :

Furthermore, denoting by C
1

2 the invertible square root factor of C, where C = C
H
2 C

1

2 ,

��I �BHA�1BC�1
�� =

���C H
2 (I � C�

H
2 BHA�

1

2A�
H
2 BC�

1

2 )C�
H
2

���
=

��I � �H�
��

where � = C�
H
2 BHA�

1

2 . Identifying A = IM + �

2
SH1 S1, C = IM + �

2
SH2 S2, and B = SH1 S2 �nishes the

proof of Lemma 6. 2

9.2 Bounds on D(S1kS2)

Lemma 7 The dissimilarity measure D(S1kS2) satis�es

D(S1kS2) = �2

8
kS1SH1 � S2S

H
2 k2 + o(�2)

where o(�2) is a non-negative function of � such that lim�!0 o(�
2)=�2 = 0.

Proof of Lemma 7

Let f�1igTi=1 and f�2igTi=1 denote the eigenvalues of A = S1S
H
1 and B = S2S

H
2 respectively and let

f�igTi=1 denote the eigenvalues of
1

2
(A+B). Since these are Hermitian non-negative de�nite matrices these

eigenvalues are real and positive. Thus the dissimilarity measure D(S1kS2), given in (10), can be written as

D(S1kS2) = 1

2

TX
i=1

(2 ln(1 + ��i)� ln(1 + ��1i)� ln(1 + ��2i)) :
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Using the relation ln(1 + a) = a� a2=2 + o(a2) and the fact that
PT

i=1(2�i � �1i � �2i) = 0

D(S1kS2) =
�2

4

TX
i=1

�
�21i + �22i � 2�2i

�
+ o(�2)

=
�2

4

�
tr(AAH ) + tr(BBH)� 2tr

�
(A+B)

2

(A+B)H

2

��
+ o(�2)

=
�2

8
tr
�
(A�B)(A �B)H

�
+ o(�2):

Since tr((A�B)(A�B)H ) = kA�Bk2 Lemma 7 is established. 2

Lemma 8 Let A and B be T � T complex matrices. Then the trace norm of A�B satis�es

kA�Bk2 = tr((A�B)(A �B)H) �
TX
i=1

jaii � biij2; (64)

where faiigTi=1 and fbiigTi=1 are the diagonal elements of A and B, respectively. Equality occurs in (64) i�

the trace norm of the anti-diagonal matrix A�B � diag(A�B) is equal to zero.

Proof of Lemma 8

Let � = A�B have diagonal elements fdiigTi=1 and consider the decomposition � = D+Z into diagonal

matrix D = diag(dii) and anti-diagonal matrix Z. Then

k�k2 = kDk2 + kZk2 + tr(DZH) + tr(ZDH):

As tr(DZH) = tr(ZDH) = 0,

k�k2 � kDk2 =
TX
i=1

d2ii;

with equality i� kZk = 0. 2

The following establishes that it is safe to assume that the signal matrices in the optimal constellation

have distinct outerproducts. While this result can also be obtained from the statistical invariance of the

Rayleigh fading model, the lemma below is proven using a more elementary non-statistical argument.

Lemma 9 Let the set of signal matrices fSigKi=1 have dissimilarity matrix EK and assume that for some

i 6= j: SiS
H
i = SjS

H
j . Then there exists a K � 1 dimensional subset of fSigKi=1 having dissimilarity matrix

EK�1 such that

min
P
K
2PK

P T
KEKPK = min

P
K�1

2PK�1
P T
K�1EK�1PK�1
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Proof of Lemma 9

Without loss of generality we can assume that SK�1S
H
K�1 = SKS

H
K . As D(SikSj) is a function of Si and

Sj only through SiS
H
i and SjS

H
j , EK takes the form

EK =

2
4 EK�2 e e

eT 1 1
eT 1 1

3
5 ; ;

where e is a vector with entries exp(�ND(SikSK)) = exp(�ND(SikSK�1)), i = 1; : : : ;K � 2. Let PK�2 =

[P1; : : : ; PK�2]
T and ~Q(fPigKi=1; fSigKi=1) = PT

KEKPK . Then using (9.2)

~Q (P1; : : : ; PK�1; PK ; S1; : : : ; SK�1; SK) = (PK + PK�1)
2 + 2[PK�2]

T e(PK + PK�1) + [PK�2]
TEK�2PK�2

= ~Q (P1; : : : ; PK�2; (PK + PK�1); S1; : : : ; SK�2; SK�1)

Since

min
P
K
2PK

~Q (P1; : : : ; PK�2; (PK + PK�1); S1; : : : ; SK�2; SK�1) = min
P
K�1

2PK�1

~Q (P1; : : : ; PK�1; S1; : : : ; SK�1)

the Lemma follows. 2
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c1"3(1)

c2"3(2)
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Figure 1: Two dimensional slice of three dimensional cone cone(Ek) (k = 3) with inscribed and circumscribed
three dimensional spheres used to establish suÆcient and necessary conditions, respectively, for establishing
that 1k 2 cone(Ek). Interior of triangle is slice of cone(Ek) in a plane orthogonal to the vector cu. Vertices
of triangle are located at points fci"k(i)g3i=1 along extremal rays of cone(Ek). The inner dotted circle is the
corresponding slice of the largest possible sphere centered at cu that can be inscribed in cone(Ek). The outer
dotted circle is the slice of the smallest possible sphere centered at cu through which all rays in cone(Ek)
must pass.
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Figure 3: Top panel shows Mo given by (55) as a function of the SNR parameter �TM . Bottom panel is
blow up of �rst panel over a reduced range of SNR. The straight line is a least squares linear �t to the upper
panel. The linear approximation has slope 0.32 and zero intercept 0.08. Average residual error between
linear �t and exact Mo vs SNR step function is less than 0.09 and maximum error is less than 0.52. By
Corollary 2, for T;K;M;Mo satisfying T � KMo and Mo � M , the curve gives the number of antennas
utilized by the optimal constellation for various SNR's.
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