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Abstract— Providers of high quality-of-service over telecom-
munication networks require accurate methods for remote mea-
surement of link-level performance. Recent research in network
tomography has demonstrated that it is possible to estimate inter-
nal link characteristics, e.g., link delays and packet losses, using
unicast probing schemes in which probes are exchanged between
several pairs of sites in the network. In this paper we present a
new method for estimation of internal link delay distributions
using the end-to-end packet pair delay statistics gathered by
back-to-back packet-pair unicast probes. Our method is based
on a variant of the penalized maximum likelihood expectation-
maximization (PML-EM) algorithm applied to an additive finite
mixture model for the link delay probability density functions.
The mixture model incorporates a combination of discrete and
continuous components and we use a minimum message length
(MML) penalty for selection of model order. We present results
of matlab and ns-2 simulations to illustrate the promise of our
network tomography algorithm for light cross-traffic scenarios.

I. I NTRODUCTION

Herein we address the problem of determining internal link-
delay distributions from multiple end-to-end unicast packet
probes that are sent across a network of sensors, routers, or
terminals from many different edge node pairs. This is a sub-
problem of network tomography [1], [2] which is concerned
with reconstruction of unobserved states of a network from
a set of indirect measurements of these states. For example,
end-to-end network tomography allows a few agents at the
edge of a network to gain important information on global
network behavior without cooperation of internal nodes. This
is especially useful when link parameters are inaccessible
or when direct measurement of data traffic statistics are not
supported by internal switches and routers [1], [2], [3], [4],
[5]. The unicast tomography methods we present in this paper
are applicable to this situation and are designed to perform
well when the network is lightly loaded. While modification
of our methods may also be applicable to wireless networks,
here we focus on the simpler case of wired networks, such as
the Internet.

The causes of delays along a packet probe’s path through
the network can be separated into the sum of two types of
delays: constant link transmission delays and time-varying
link processing delays. Link transmission delays are due to
the propagation delays through the physical medium, e.g., a
wire, or optical fiber. Link processing delays are due to a
combination of router queueing, buffering and servicing delays
that depend on factors such as: the amount of cross-traffic at
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the router, the number of retransmits required over the link,
and the integrity of router equipment and associated software.
While transmission delays usually remain constant over a
probing interval, processing delays are highly variable and
are thus commonly modelled as random variables. Thus it is
generally impossible to recover the actual internal link delays
that probes encounter along their end-to-end path. However,
the determination of the statistical distribution of the internal
link delays from multiple end-to-end delay measurements can
be formulated as a statistical inverse problem whose solution
yields estimates of the internal delay distribution [2], [6].
These estimates can be used by an autonomous system (AS),
e.g. an Internet service provider (ISP), to evaluate its average
quality of service (QoS) or to assess link performance of other,
perhaps competing, AS’s. When acquired over large portions
of the network, link delay estimates can also be used for
detecting network anomalies such as imminent link failures
or coordinated denial of service (DoS) attacks.

The problem of empirically characterizing Internet link de-
lay distributions has been looked at by several researchers, see
for example [7], [8], [9], [10]. A common observation is that
when the link is lightly loaded, such as in the early morning,
link delay scatterplots appear stationary. Furthermore, while
much of the scatter appears spread out over a continuum of
delay values, a non-negligable proportion of the delays appear
to concentrate at one or more discrete values, see for example
[10, Fig. 4]. This implies the existence of point masses in
the time-averaged link delay distribution. The positions of
these point masses vary according to factors such as: length
of packet; incoming and outgoing queue sizes of routers on
the link; router configuration; deployment of firewalls; and the
physical distance between routers [10].

In this paper we propose to capture these empirically
observed features by fitting hybrid continuous/discrete finite
mixture models to the link delay distributions. While our
algorithms are easily generalizable to multiple discrete point
masses, for simplicity we focus here on the case where the
discrete component is a single point mass. Unlike purely
continuous models the hybrid continuous/discrete model is
identifiable and is justified under the lightly loaded scenario. In
this scenario there is a non-zero probability that a packet will
encounter an empty queue in which case the packet delay is
non-random, being due to fixed propagation and processing
delays. While this is unlikely in a congested network, the
model is valid for a number of common monitoring situations
such as service and performance verification and detection of
onset congestion. Moreover, we would like to point out that
the delay point mass is implicit in canonical delay trees, used
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in discrete delay tomography, for which there is a non-zero
probability that a packet traverses each link without any delay
(see, e.g., [6]).

Lo Presti et. al [6] were the first to propose estimating
internal delay distributions from end-to-end measurements.
These authors uniformly discretized the internal delay dis-
tributions and derived an algorithm based on empirical his-
togram estimation. Their method uses multicast probes, which
requires cooperation of the network to run a multicast session
such as RTP during the probing interval. To overcome this
restriction, Coates and Nowak [5] developed an internal delay
histogram estimator based on an alternative unicast probing
scheme in which edge sites exchange a succession of closely
spaced packet pairs. Their estimator is based on a statistical
inverse problem formulation and used an iterative maximum
likelihood via expectation maximization (ML-EM) approach.
In related work these authors also developed a sequential
Monte-Carlo method for tracking changes in non-stationary
networks [11]. The principal restriction of the approaches [5],
[6], [11] is the requirement of discrete-valued link delays.
Overly coarse discretization, or binning, of the link delays
leads to excessive model approximation error and causes bias
in derived estimates such as delay mean and variance. At
the opposite extreme, excessively fine discretization leads to
high runtime complexity of these algorithms. Furthermore, the
determination of the appropriate number and size of the bins
requires tight bounds on link delay characteristics, such as
maximum and minimum processing delays, which are usually
unknown .

Several alternatives to the fixed and uniform binning scheme
of Lo Prestiet. al [6] have been studied. Duffieldet. alconsid-
ered a variable bin size model, where smaller bins are used to
describe probability mass concentrations for small delays [12].
Tseng, Coates, and Nowak [13] proposed a nonparametric
algorithm where the number of bins for internal link delays
is adapted to the number of measurements. (See paper by
these authors in this Special Issue.) They use a wavelet-
based penalized maximum likelihood estimator to smooth the
estimates. A non-parameteric method was proposed for unicast
probing by Shih and Hero [14] in which the statistical inverse
problem is formulated in the cumulant generating function
(CGF) domain. By sampling the CGF’s arising from the least
squares solution of the inverse problem, a set of continuous
(un-binned) link delay density estimates can be obtained.

Herein we propose a different method for estimation of
internal delay distributions from unicast end-to-end measure-
ments which is based on packet pair unicast probes and
additive mixture models for the internal link delays. As the
end-to-end delay measurement is a sum of the (assumed
independent) internal link delays over the probe path, the
densities of the measurements are convolutive mixtures of
these additive mixture models. This makes our estimation
problem more challenging than the standard mixture model
estimation problem which has received much attention in
both the statistical and engineering literature [15], [27], [29],
[30]. Additional issues which we address are: 1) the additive
mixture model orders are unknown in practice; and 2) the
internal link delay distributions are composed of a combination

of continuous and a discrete components. We handle the
convolutive mixture complication by adopting an iterative ML-
EM formulation of the estimation problem using an enlarged
complete data space. We handle the problem of unknown
model order by adapting the unsupervised minimum-message-
length (MML) approach used in Figueiredo and Jain [15].
Specifically, we add an information theoretic order selection
penalty to the log-likelihood to which a penalized ML-EM
(PML-EM) algorithm is applied. We handle the presence of
both discrete and continuous link delay components by the
following simple additive mixture model: the delay density is
a (unknown) convex combination of a point mass positioned
at the (unknown) transmission delay and a (unknown) number
of Gaussian components with (unknown) means and variances.
We adopted Gaussian continuous components to simplify the
implementation but heavy-tailed densities can also be easily
accommodated in our framework.

The outline of the paper is as follows. In Sec. II we give
the main assumptions underlying our work. In Sec. III we
review the continuous and discrete delay models for unicast
network delay tomography and discuss model identifiability.
In Sec. IV we introduce the hybrid mixture models for delays
of the internal links and present the ML-EM algorithm for
estimating the parameters of these models from end-to-end
delay measurements. In Sec. IV-C we present the PML-
EM algorithm with MML penalty to control excessive order
estimation of the unpenalized ML-EM algorithm. In Sec. V
we illustrate the performance of the ML-EM and PML-EM
algorithms on simulated data usingmatlab and ns-2 [16]
simulators.

II. N ETWORK MODEL AND MAIN ASSUMPTIONS

As in Coates and Nowak [5] we adopt the back-to-back
packet pair probing framework and represent the network
topology as a directed logical treeT = (V;E) whereV is
the set of nodes, e.g. routers and terminals, andE is the set
of links. Let there be a total ofL links in the network and
number them from1 to L. The logical tree representation has
a single root node, serving as a source, several internal nodes
having degree at least 2, and several leaf nodes, containing
receivers. The edge of the network is the set of leaf nodes
plus the root node. If there are a total ofR leaf nodes then
there areR possible paths from the root to the receivers. To
collect internal link information at the edge nodes, pairs of
packets are transmitted from the source to pairs of leaf nodes.
There areS = CR

2 binary sub-trees of paths, called probe
trees, on which the source can send each pair of packets to
two different receivers. We define the pair of receivers at the
edge of probe treei to beWi. Each node in the tree has two or
more child nodes, except the root and leaf nodes. A network
with three links is shown in Fig. 1(a) showing a single root
node, a single internal node, and two leaf nodes.

In a unicast probing session a pair of leaf nodes is (ran-
domly) selected by the source and two time stamped packets,
called a (unicast) probe pair, are sent to them respectively. The
two packets are transmitted in rapid succession and encounter
identical delays on the shared links of their paths. Each leaf
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Fig. 1. (a) and (b) are two-leaf and four-leaf networks, respectively. Receivers
are the leaf nodes while the source is the root node. Network (b) is used for
simulations in Sec. V.

node records the time that a packet is received. Subtracting
this number from the packet’s time stamp gives the end-to-end
delay of the packet. End-to-end delays of the probe pairs on the
same probe tree are random vectors due to the random ambient
cross traffic through links along their paths. If any packet
in a probe pair is dropped by the network, both packets are
considered lost. Unicast probing is repeated until the session
is over or enough packets are received by each leaf node to
perform the next step: network delay tomography. The aim
of network delay tomography is to identify the packet delay
distribution for each individual internal link from the end-to-
end delays observed by the receivers. Network tomography is
possible since the end-to-end delay is a sum of the internal link
delays encountered along the probe path and any two paths in
a probe tree must cross at common links.

Let Xl be the packet delay encountered by a probe at link
l, l = 1; : : : ; L, and letYi = be the end-to-end packet delay
along thei-th path, i = 1; : : : ; R. We make the following
independence and stationarity assumptions: (A1)Spatial In-
dependence: packet delays at different links are statistically
independent, i.e.,Xi andXj are independent fori 6= j. (A2)
Temporal Independence and Stationarity: for a given link, the
delays encountered by packets in different probe pairs at that
link are statistically independent and identically distributed
(i.i.d.). For each probe pair we make an additional consistency
assumption: (A3) the delays encountered by both packets in
a probe pair on the shared links of their paths are the same
(with probability 1). It is important to point out that while
(A1) and (A2) are normally not satisfied in practice (see, e.g.,
[17]), these are commonly assumed in order to permit tractable
analysis. An example where spatial independence (A1) is
violated is when there is interaction among different data flows
along the same path. As for (A2), temporal independence fails
when Internet traffic is bursty or the network has a long latency
time which correlates different packet pairs. Stationarity fails
when the unicast probing session has a longer duration than
the stationarity time of the network. However, experiments
have shown that the performance of network tomography is
remarkably insensitive to violations of (A1) and (A2) [4], [5],
[6], [11], [20]. In (A3) the assumption of identical delays

experienced by a probe pair on shared links does not hold
when a small discrepancy between the two is observed from
real network data (see, e.g., [18], [19]). Fortunately this
random error has mean close to 0 and can be reduced by
random ordering of the two packets [5].

III. U NICAST NETWORK DELAY TOMOGRAPHY

A. Discrete Delay Model

In the widely adopted discrete link delay model [5], [6],
[11] a universal bin sizeq is used to discretize link delaysXl

at each linkl = 1; : : : ; L. The time intervals(iq; (i+1)q], i =
0; : : : ; D, are called the delay bins. HereD is a positive integer
andD =1 can be used to account for lost probe packets or
large delays which are out of range. Discretization produces
the discretized delay valuei whenXl falls in the i-th bin. A
probability mass function (pmf), or histogram,Pl = fpl;d :
d = 0; : : : ; Dg, is then associated with the discretized delays
over link l, where the probabilitypl;d = P (Xl 2 (dq; (d+1)q])

is an unknown to be estimated and
PD

d=0 pl;d = 1. For a probe
path containingj links, the discretized end-to-end packet delay
varies over the range0; : : : ; j �D � q.

Consider the two-leaf tree network shown in Fig. 1(a), and
the associated delay pmf’sPl = fpl;d : d = 0; : : : ; Dg for
l = 1; 2; 3. Probe pairs are sent from the source to receiver
1 and 2. With assumption (A3) the identifiability ofPl’s
from end-to-end delays can be studied in a similar manner to
multicast networks. More specifically, in multicast each packet
is replicated by the network at the branching points of its paths
and all the packets at the receivers again have common delays
on shared links. Proof of identifiability in discrete network
delay tomography with multicast probes is provided in [6] and
the use of unicast probe pairs can be considered as a special
case.

The discrete delay model adopted in [5], [6], [11], [12],
[13], [18] has two main drawbacks. First, the proper bin size
needs to be carefully selected. Second, a universal bin size
may not be suitable due to large variation of packet delay
ranges over different links. Although in [6] it was proposed
to adopt different bin sizes for different links, those bin sizes
still need to be chosen in advance.

B. Continuous Delay Model

One way to avoid the pitfalls of binning is to use a
flexible continuous link delay model. For example, closed
form expressions for the probability density function (pdf) of
queueing delay have been derived for simple queueing models
such as M/M/1. These expressions could possibly be extended
to a network of queues but it is well known that the M/M/1
model is an inadequate model for Internet traffic [21]. An
alternative is to approximate each link delay density by a finite
mixture which, with sufficiently large number of components,
can describe any continuous density function [22]. Letfl(x)
be the link delay pdf at linkl. A finite mixture model for this
pdf is

fl(x) =

klX
m=1

�l;m�(x; �l;m); l = 1; : : : ; L (1)
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where kl denotes the number of components,�l;m, m =
1; : : : ; kl, denotes the mixing parameter for them-th com-
ponent

�
0 < �l;m < 1;

Pkl
m=1 �l;m = 1

�
, and �(x; �l;m) is

a density function over thex-domain parameterized by the
parameter vector�l;m. Many different choices for�(x; �)
are possible including: Gaussian; generalized Gaussian; ex-
ponential; or uniform. For the case of a Gaussian mixture
�l;m = [�l;m; �

2
l;m] is the vector specifying the position (mean)

and width (sqrt(variance)) of them-th mixture component at
the l-th link.

However, the use of pure continuous mixture density func-
tions can cause serious identifiability problems. To illustrate
consider again the simple two-leaf tree of Fig. 1. Assume that
all link delays are Gaussian, i.e.,k1; k2; k3 = 1 (single com-
ponent mixtures)�(x; �) = exp(�(x � �)2=(2�2))=(

p
2��).

The end-to-end delays(Y1,Y2) has the following joint pdf:

f(Y1; Y2) =
1

2�
p
�21�

2
2 + �21�

2
3 + �22�

2
3

�

exp

�
� 1

2(�21�
2
2 + �21�

2
3 + �22�

2
3)
��

�23(Y1 � (�1 + �2))
2 + �22(Y2 � (�1 + �3))

2+

�21((Y1 � Y2)� (�2 � �3))
2
��

(2)

If we look at the mean parameters, they are completely
described by the 3 parameters�1 = �0+�1, �2 = �0+�2, and
�3 = �1��2. This gives only two equations for the three un-
knowns parameters[�1; �2; �3] so the simple Gaussian model
is not identifiable for any value of the mean parameters. An
example is shown in Fig. 2 where (a) and (b) are two different
sets of internal link delay distributions for the network in Fig.
1(a).

One can also consider the packet-stripe schemes suggested
in [19], in which a “stripe” of several closely spaced unicast
packets with distinct destinations are sent back-to-back from
the root node. Similarly to packet pair probes, these packets
are assumed to encounter virtually the same delays on shared
links along their paths. As shown in [20], packet-stripe probing
allows identification of higher order moments of internal link
delays when the branching ratio is larger than two. However,
under the Gaussian mixture link delay model, the link delay
means still cannot be uniquely identified from end-to-end
delays.

IV. H YBRID FINITE MIXTURE APPROACH

A. Hybrid Finite Mixture Model

In analysis of a queueing system, the utilization factor� is
an important parameter for describing system behavior. The
parameter� denotes the probability that the system is busy
serving customers and, for a stable system,� must satisfy
0 � � < 1 [23]. A lightly loaded link satisfies� << 1, i.e.
there is a non-negligible probability that a packet encounters
an empty queue, i.e. an idle router, and passes without delay.
This suggests placing a point mass component with weight
1 � � in the link delay mixture model. If this point mass is
included in addition to the continuous components the link
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Fig. 2. Example of two sets (a) and (b) of Gaussian internal link delay
densities along the two probe paths in the network in Fig. 1(a). The two end-
to-end delays of each received packet pair obeys a Gaussian bivariate density
shown in (c). This bivariate density is parameterized by only two location
parameters which is insufficient to recover the three location parameters in
(a) and (b).

delay pdf becomes a hybrid discrete/continuous finite mixture
model. Hence, similar to (1), we obtain

fl(x) = �l;0Æ(x � xl;0) +

klX
m=1

�l;m�(x; �l;m): (3)

Here�0 = 1� �, Æ(x) is a point mass (dirac delta function)
at zero andxl;0 is the pure (non-random) transmission delay
experienced by the packet. All other parameters are defined
as in (1), except now the�’s must satisfy

Pkl
m=0 �l;m = 1,

�l;m � 0. The discrete mass componentÆ(x) not only makes
the delay distribution more precisely model the behavior of a
link queue, but as shown below also buys us identifiability of
all the link delay distribution parameters.

For any probe pair the distributions of the end-to-end probe
delay densities will be the convolution of the link distributions,
which are also hybrid mixtures. Now, similarly to the previous
section, let’s assume that the continuous mixture component
is a single Gaussian pdf. Let the point masses�l;0 = �l and
assume that they are all concentrated at zero delay, i.e.,xl;0 =
0. Figure 3 shows the end-to-end joint delay distribution in the
two-leaf tree network of Fig. 1(a), whose mathematical form
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is

f(Y1; Y2) = �1�2�3 ~f(Y1; Y2) + �1�2�3Æ(Y1)Æ(Y2)+

�1�2�3Æ(Y1)�(Y2;�3; �
2
3) + �1�2�3Æ(Y2)�(Y1;�2; �

2
2)

+�1�2�3Æ(Y1 � Y2)�(Y1;�1; �
2
1) +

�1�2�3�(Y1;�2; �
2
2)�(Y2;�3; �

2
3) +

�1�2�3�(Y1;�1; �
2
1)�(Y2 � Y1;�3; �

2
3) +

�1�2�3�(Y2;�1; �
2
1)�(Y1 � Y2;�2; �

2
2); (4)

where�l = 1 � �l for l = 1; 2; 3 and ~f(Y1; Y2) is the joint
distribution shown in (2). Due to the point mass in (3), (4) has
additional isolated Gaussian components which appear with
discrete masses at locations in the(Y1; Y2) plane specified by
: fY1 = 0g; fY2 = 0g, and fY1 = Y2g. It is obvious that
identifiability can be achieved as long as�l 6= 0. It might
seem strange to the reader that the addition of a point mass
allows one to uniquely identify the set of parameters of the
internal link components from a single probe tree. However,
one still needs multiple probe trees to assign these parameters
to specific links.
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Fig. 3. Example of internal link delay mixture densities (a) - (c) for
links 1,2,3, respectively, over the two-leaf tree of Fig. 1(a). The non-random
minimum delays for all the links are set to 0. The end-to-end packet pair
delay distribution is a hybrid mixture whose purely continuous components
are shown in (d), and components associated with discrete masses are in (e).
All link parameters can be identified from this two-dimensional distribution.
HereB � (C � F ) denotes a function of(y1; y2) which is the convolution
of the internal link components labelled B, C, and F, in the form ofR
B(x)C(y1 � x)F (y2 � x)dx

B. ML-EM Algorithm

Here we present an ML-EM algorithm for approximating
the maximum likelihood estimates of the internal link mixture
model parameters from end-to-end packet pair measurements.
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0.12

Fig. 4. Gaussian mixture example.fU (u) = 0:3N(u; 2; 2) +
0:5N(u; 8; 4) + 0:2N(u; 17; 10)

Let U be a finite mixture random variable withk compo-
nents and pdf of the formf(U) =

Pk
m=1 �m�m(U) wherePk

m=1 �m = 1. An example of a Gaussian mixture with three
components is given in Fig.4. The solid line depicts the density
function and the dashed line shows each component. There are
two different interpretations of finite mixture models which
will be useful in the sequel. The first one is simply thatf(U) is
a multi-component pdf forU . The second interpretation is that
U is selected at random from a pool of simpler hidden random
variablesU1; : : : ; Uk with selection probabilities�1; : : : ; �k,
respectively. Define the binary random selection vectorZ =
[Z1; : : : ; Zk]

T whereZm = 1 if and only if them-th variable
Um is selected and assign to this event probability�m. U
can be expressed asU =

Pk
m=1 ZmUm. Thus, ifUm has pdf

�m(Um) then this is identically the conditional pdff(U jZm =
1). Thus f(U) =

Pk
m=1 �m�m(U), which is the mixture

model forU that we started out with. The second interpretation
is critical for development of the ML-EM algorithm which we
address below.

Assume that we have prior knowledge of all the link mixture
orders fklgLl=1. We will relax this assumption in the next
section. LetNi be the number of packet pairs sent from the
source to the receivers of probe treei and let Mi be the
set of links along that tree. DefineX(i;n)

l the delay at link
l encountered by then-th packet pair sent to receivers inWi.
Let Z(i;n)

l =
h
Z
(i;n)
l;0 ; : : : ; Z

(i;n)
l;kl

i
be the selection vector for

X
(i;n)
l .
With these definitions, maximum likelihood (ML) esti-

mation of the set of internal link mixture densities can
be formulated as a missing data problem. The Expectation
Maximization (EM) algorithm has been extensively applied
to approximate ML and penalized ML (PML) estimates for
mixture models [15], [29], [30]. LetX = fX(i;n)

l g andZ =

fZ(i;n)
l g for all l; i; n. fX;Zg is calledmissing dataor hidden

data. DefineY(i;n) = (Y
(i;n)
1 ; Y

(i;n)
2 ) as the pair of end-to-

end delays of then-th packet pair received by two receivers
in the i-th probe tree. The observablesY = fY(i;n)gi;n are
called theincomplete dataand the setfX;Z;Yg is said to be
the complete data. The EM algorithm generates a sequence
of estimates of the unknown parameters� which have the
property that the likelihood sequenceL(�) = f(Yj�) is
nondecreasing.

It is easily shown that the likelihood of thecomplete

data can be factorized asLc(�)
def
= f(X;Y;Zj�) =

f(YjX)f(X;Zj�); and thus maximization ofLc(�) is
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equivalent to maximization of the likelihood function

L(�)
def
= f(X;Zj�). For a specific linkl, Xl is a mixed

random variable with density functionfl given by (3) and
therefore, up to a constant, the complete data log-likelihood
function is:

logL(�) =

LX
l=1

X
i:l2Mi

NiX
n=1

(
Z
(i;n)
l;0 log�l;0 +

klX
m=1

Z
(i;n)
l;m

�
log�l;m + log�(X

(i;n)
l ; �l;m)

�)
: (5)

The EM algorithm updates parameter estimates by applying
two steps at each iteration. At thet-th iteration, the E-
step computes conditional expectation of complete data log-
likelihood given observationsY and current parameter esti-
mates�̂(t)

Q(�; �̂(t)) = E
h
logL(�)jY; �̂(t)

i
: (6)

The M-step maximizes theQ function computed in the E step
with respect to� to produce

�̂(t+1) = argmax
�

Q(�; �̂(t)): (7)

The E and M steps for the hybrid mixture model is similar to
that for a single Gaussian mixture model [30] and is illustrated
in Appendix A.

C. PML-EM Algorithm with MML Penalty

When the number of link componentskl’s is un-
known the ML-EM algorithm is not guaranteed to con-
verge. This is due to a fundamental ambiguity of unknown
model order. To illustrate, consider the estimation of ak-
component mixture having the form of (1) with parameters
� = f�1; : : : ; �k; �1; : : : ; �kg. These parameters have the
same likelihood as thek + 1 component mixture�0 =
f�1; : : : ; �k�1; (1 � �)�k; ��k ; �1; : : : ; �k; �kg for any 0 <
� < 1. One of the most effective ways to eliminate this
ambiguity is to add a penalty to the log-likelihood function
which penalizes the addition of more components to the
mixture.

Many model order penalties have been proposed including:
Akaike Information Criterion (AIC) [24], Minimum Descrip-
tion Length (MDL) [25] and Minimum Message Length
(MML) [26]. Figueiredo and Jain [15] applied the MML
penalty to finite mixture models by introducing a prior to the
parameters and an information theoretic penalty depending
on quantization of parameter space. They developed an un-
supervised method for simultaneously selecting model order
and estimating parameters. The incomplete data penalized log-
likelihood is expressed as

~L(�)
4
= log f(�)+log f(Yj�)�1

2
log jI(�)j� c

2
(1+log�c);

whereI(�) is the Fisher information matrix associated with
the incomplete dataY, jAj denotes the determinant of square
matrix A, c is the dimension of�, and�c is the so-called
optimal quantizing lattice constant for<c.

To apply the MML algorithm [15] of Figueiredo and Jain
to our network delay tomography problem their method has to
be extended to another layer of hidden data. More specifically,
while in [15] the realizations from the mixture model were
observed directly, in our application only sums of these
realizations (along probe paths) are observed. In other words,
the end-to-end delays are themselves convolutive mixtures of
the additive mixtures describing the link delays.

The standard incomplete data Fisher Information matrix
I(�) is not closed form, even for a directly observed finite
mixture [27]. Therefore, similar to [15] we replace it by the
complete data Fisher information matrix which in the network
tomography setting is~I(�) = �E �r2

�
log f(X;Zj�)

�
=

block-diagfnlI1(�l)gLl=1 ; whereI1(�l) is the Fisher infor-
mation matrix associated with the complete data at linkl,
�l denotes the parameter set of thel-th link, and nl =P

i:l2Mi
Ni is the total number of packet pairs passing

through thel-th link. I1 itself has block-diagonal structure
I1(�l) = block-diagfAl; �l;1I2(�l;1); : : : ; �l;klI2(�l;kl)g ;
where I2(�l;m) is the Fisher information matrix associated
with the hiddenm-th component delay variableXl;m on link

l, andAl = diag
n
��1l;m

okl
m=0

. If any one of the�l;m’s is zero,
it is removed fromAl andkl is decreased by 1.

The prior on the parameter set was taken as
f(�) =

QL
l=1

n
f(�l;0; : : : ; �l;kl)

Qkl
m=1 f(�l;m)

o
; where

f(�l;0; : : : ; �l;kl) and f(�l;m) are the non-informative
Jeffreys’ priors [28]: f(�l;0; : : : ; �l;kl) / pjAj =
(�l;0�l;1 : : : �l;kl)

�1=2; and f(�l;m) / pjI2(�l;m)j; forPkl
m=0 �l;m = 1 and 0 < �l;m < 1. In addition, as in [15],

we make the approximation�c = 1=12. This yields the MML
penalized likelihood function

~L(�) = log f(Yj�) � d

2

LX
l=1

klX
m=1

log�l;m�

LX
l=1

kl(d+ 1) + 1

2

�
log

nl
12

+ 1
�
; (8)

whered is the dimension of�l;m, e.g.,d = 2 for a Gaussian
component mixture.

To derive the E step of the PML-EM algorithm applied to
maximizing (8) we adopt the same complete data as in the
previous section. With this it is easy to see that the E step is a
modification of (6) whereQ(�; �̂(t)) now has an additional
penalty given by the second and third additive terms on the
RHS of (8). The modified M-step gives the updates for the
mixing parameters in (9) (see Appendix A). The M-step for
the remaining parameters depends on the specific form of the
mixture density components.

The algorithm uses the following strategy to select the
numberkl of components at thel-th link. It starts by setting
all kl; l = 1; : : : ; L to some user-specified upper bound and
annihilates components as follows. If�(t+1)

l;m = 0, component
m is removed fromfl and its probability mass is redistributed
over the other non-zero-probability components at the next
iteration. Note that this procedure is myopic since it does
not allow components to come back to life and therefore
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�
(t+1)
l;m

=
max

n�P
i:l2Mi

PNi

n=1 !
(i;n)
l;m

�
� d

2
; 0
o

Pkl
m=1max

n�P
i:l2Mi

PNi

n=1 !
(i;n)
l;m

�
� d

2
; 0
o
+
P

i:l2Mi

PNi

n=1 !
(i;n)
l;0

m = 1; : : : ; kl: (9)

TABLE I

L INK BANDWIDTH AND LATENCY PARAMETERS USED IN ns SIMULATION

Link 1 2 3 4 5 6 7
Bandwidth (Mbps) 20 20 20 20 15 12 12

Latency (ms) 100 100 100 30 50 50 40

the estimate is not guaranteed to converge to the MML
estimate. However, we restrict our implementation to this
myopic strategy due to implementation complexity constraints.

V. EXPERIMENTAL RESULTS

A. Model Simulation: ML-EM for Known Model Order

We simulated a small network with the simple virtual tree
topology shown in Fig. 1(b). Throughout this first experi-
ment the numbers of componentsfklgLl=1 are known to the
estimator. We specialized the EM algorithm to a Gaussian
continuous component mixture (see Appendix). From two
to four Gaussian components were assigned to each link in
addition to a point mass. These simulations were implemented
in matlab and we generated 2000 i.i.d. end-to-end probe
pair delays for each of the six probe tree paths. The ML-EM
algorithm was applied to estimate the Gaussian components,
their mixing parameters and the weight of the point mass
at zero. Convergence was achieved after 955 iterations, or
approximately 16 iterations per parameter. Fig. 5 compares the
estimated Gaussian mixture components to the true Gaussian
mixture components. It also lists the number of mixture
components for each link and the true/estimated probabilities
�l;0 of the probe encountering empty queue on linkl. The
convergence curve of the log-likelihood is shown in the lowest-
right graph of the figure. These results illustrate high accuracy
for the case where there is no model error and the number of
components is known.

B. NS Simulation: MML for Unknown Model Order

For a more realistic simulation we usedns-2 [16] to
simulate the network shown in Fig. 1(b) with a variety of cross
traffic types and router configurations. The links were assigned
bandwidths and latencies listed in Table I. Thens parameters
for each link were set to a Drop-Tail queue (FIFO queue with
finite buffer). The queue buffer sizes were 50 packets long.
Each packet in a probe pair was defined as a 40 byte UDP
packet. Probe pairs are generated independently and sent along
each of the six tree paths according to a Poisson process
with mean interarrival time 8ms and rate 70Kb/sec. Cross
traffic was also generated in each link byns and consisted
of 41 Pareto On-Off TCP flows and 25 constant-bit-rate UDP
streams with random noise introduced in the scheduled packet
departure times. The design of background traffic reflects
today’s IP network environment in which the UDP traffic is
mainly video/audio data streams and TCP comprises the major
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Fig. 5. True(solid curve) and estimated(dotted curve) Gaussian mixture
components along with the true(black bar) and estimated(white bar) empty
queue probabilitiesf�l;0g for model simulation. The horizontal axes denote
link packet delays in ms. Here the EM algorithm is used to estimate the
mixed Gaussian mixture parameters for simulated measurements obeying a
true mixed Gaussian mixture with known numbers of components which are
listed along with the link delay pdf’s. 2000 packet pairs are generated for
each of the six probe tree paths in Fig. 1(b). The lowest-right graph shows
the convergence curve of the log-likelihood function.

fraction of the Internet traffic [31].. A total ofN = 500 packet
pairs for each probe tree are collected at the receiver nodes.
We estimated each probe queueing delay by subtracting the
minimum probe delay over the total samples for the same
path.

The MML algorithm was implemented with Gaussian con-
tinuous mixtures and the estimated number of mixture com-
ponents at each link was initialized tokl = 5. To accelerate
the PML-EM algorithm, as in [15], we used thecomponent-
wise EM algorithm for mixtures(CEM) [29]. Similarly to the
SAGE algorithm of Fessler and Hero [32] , the CEM algorithm
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updates the parameters sequentially, instead of updating all of
them simultaneously. The monotonicity property of CEM2 is
not affected by the order of updating. We adopted a cyclic
updating procedures as follows: update�1;0, recomputeQ,
update�1;1 and �1;1, recomputeQ, and so on, until all the
parameters for link 1 are updated; then proceed in the same
way for link 2, 3, and so on, until all link parameters are
updated.

Link delay pdf estimates are shown in Fig.6. To obtain
ground truth the true internal link delay distributions were
estimated empirically from thens simulated data. The mass
of the atom, which is denoted as “True�l;0” in the figure,
is the empirically estimated probability of an empty queue
at link l calculated from sample averages. The continuous
portion of the true distribution is estimated by the histogram
of non-zero link delay samples and normalized to have mass
1 � (True�l;0). The estimated Gaussian mixtures are shown
along with the normalized histogram for comparison. Note
that the probability mass of the mixture is1 � �̂l;0 for
delays at link l. The convergence curve of the penalized
likelihood function is shown in the lowest-right graph in Fig.6.
The vertical lines indicate the iterations when at least one
component is annihilated and the numbers above them show
the corresponding links.

As shown in Fig.6, the Gaussian mixture components cap-
ture the profile of the empirical continuous portion of the
density for most of the links. They also provide accurate
estimates to all the queueing delays ranges. Some modal
mismatches occur in the estimates at, for example, link 2
and 3. This error is probably due to the limitation of the
5 Gaussian + 1 point mass component model. For a better
fit to the internal delay histograms it may be necessary to
assign more point masses and include other density models
which are flatter or more heavy-tailed than Gaussian. Other
sources of error might include: violation of the spatial or
temporal independence assumptions; insufficient number of
probe samples to resolve link densities; insufficient number of
iterations of the MML algorithm; existence of local maxima
in the likelihood function; and burstiness (non-stationarity) of
the traffic. These are topics worthy of additional investigation.

VI. CONCLUSION AND FUTURE WORK

This paper focuses on the estimation of internal link delay
distributions from end-to-end unicast packet pair delay mea-
surements when there is a positive probability of zero queueing
delay, i.e., lightly to moderately loaded networks. We proposed
a new hybrid discrete-continuous finite mixture model which
circumvents the difficulties of link delay discretization. For
the case that mixture model orders are known, we derived
an EM algorithm for approximating the ML estimates. Model
simulation showed that when all model assumptions hold
the EM algorithm can very accurately estimate the delay
distributions for each internal link. When the model orders are
unknown, we implemented an MML order selection penalty
and derived an unsupervised algorithm for estimating both the
number of mixture components and the continuous density
parameters. Although the estimates obtained at convergence
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Fig. 6. Normalized ns-derived histograms for non-zero link delays and
estimated Gaussian mixture density for indicated links. The horizontal axes
denote link packet delays in milliseconds. Here the unsupervised MML
algorithm was initialized with 5 Gaussian components for each link. The
lowest-right graph shows the convergence curve of the MML penalized
likelihood function. The vertical lines denote the iteration number where the
number of Gaussian mixture components is reduced. Numbers at the top of
the convergence graph denote the particular link affected by this reduction.

of this algorithm are not necessarily MML estimates, results
of ns-2 simulation showed that reasonably accurate estimates
of internal link delay distributions are possible.

Future work includes finding ways to accelerate conver-
gence of the ML-EM and PML-EM algorithms for real-
time implementation. EM algorithms are quite slow and the
improvement made by CEM2 is still limited. This makes it
difficult to perform extensive comparisons. Another direction
is extension of our model to include spatial dependencies of
link delays among different links, especially the links along the
same path. For time-varying scenarios adaptive schemes need
to be developed in order to capture possible changes in the
traffic statistics and the network environment. It may also be
viable to apply these methods to detecting abnormal changes
in link delay distributions. This may help early detection of
possible network failures and/or malicious network activities.

APPENDIX
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A. DERIVATION OF EM ALGORITHM

Here we only sketch the derivation of the E step and M
step quantities required for ML, PML, CEM algorithms.
Throughout the derivation, we assume the point mass is
located at zero delay for all the links. Letgi(y;�) denote
the end-to-end packet pair delay joint pdf from the root
node to receivers in thei-th probe tree.gi;(l;m)(y;�) is
defined similarly togi(y;�), except in the convolutionfl is
replaced by itsm-th component, which is�l;0 whenm = 0
or �l;m�(x; �l;m) when m 6= 0. This is the likelihood of
the end-to-end delays of a packet pair along thei-th probe
tree being equal toy when the delay at linkl is contributed
by the m-th hidden component.hi;l(y;�) is also similar
to gi(y;�), except that thel-th link is excluded in the
convolution.

E-step: Compute the conditional expectation of the complete
data log-likelihood in (6) of thet-th iteration. Let

!
(i;n)
l;m = E

h
Z
(i;n)
l;m jY(i;n); �̂(t)

i

=
P (Z

(i;n)
l;m = 1;Y(i;n); �̂(t))

P (Y(i;n); �̂(t))
=
gi;(l;m)(y

(i;n); �̂(t))

gi(y(i;n); �̂(t))

for m = 0; : : : ; kl and l = 1; : : : ; L. Define

Q
(i;n)
l;m (�l;m) = E

h
Z
(i;n)
l;m log�(X

(i;n)
l ; �l;m)jY(i;n); �̂(t)

i

=

Z
�̂
(t)
l;m�(x; �̂

(t)
l;m)hi;l((y � x)(i;n); �̂(t)) log�(x; �l;m)

gi(y(i;n); �̂(t))
dx

for m = 1; : : : ; kl and l = 1; : : : ; L, wherey � x = (y
(i;n)
1 �

x; y
(i;n)
2 � x) if link l is shared by the two probe paths, and

y � x = (y
(i;n)
1 �x; y

(i;n)
2 ) if link l is on one of the branches

of the probe tree, say branch 1. The conditional expectation
of the log likelihood function in (6) becomes

Q(�; �̂(t)) =
LX
l=1

X
i:l2Mi

NiX
n=1

(
klX

m=0

!
(i;n)
l;m log�l;m+

klX
m=1

Q
(i;n)
l;m (�l;m)

)
: (A-1)

(A-1) holds for any choices of density�. If the mixture
components are Gaussian,Q

(i;n)
l;m (�l;m) has the following form

Q
(i;n)
l;m (�l;m) = �!(i;n)

l;m

 
log 2�

2
+ log�l;m +

�2l;m
2�2l;m

!
�

R
(x2 � 2�l;mx)�̂

(t)
l;m�(x; �̂

(t)
l;m)hi;l((y � x)(i;n); �̂(t))dx

2�2l;mgi(y
(i;n); �̂(t))

:

M-step: Update the parameter estimates by maximizing
Q(�; �̂(t)) over�, as shown in (7). The estimator updates
are

�̂
(t+1)
l;m =

P
i:l2Mi

PNi

n=1 !
(i;n)
l;mP

i:l2Mi
Ni

m = 0; : : : ; kl

�̂
(t+1)
l;m = argmax

�

X
i:l2Mi

NiX
n=1

Q
(i;n)
l;m (�) m = 1; : : : ; kl;

In the case that the�’s are Gaussian densities,�̂ = (�̂; �̂2)
and

�̂
(t+1)
l;m =

1P
i:l2Mi

PNi

n=1 !
(i;n)
l;m

�
X

i:l2Mi

NiX
n=1R

x � �̂(t)l;m�(x; �̂(t)l;m)hi;l((y � x)(i;n); �̂(t))dx

gi(y(i;n); �̂(t))

�̂
2 (t+1)
l;m =

1P
i:l2Mi

PNi

n=1 !
(i;n)
l;m

�
X

i:l2Mi

NiX
n=1R

(x� �̂
(t+1)
l;m )2�̂

(t)
l;m�(x; �̂

(t)
l;m)hi;l((y � x)(i;n); �̂(t))dx

gi(y(i;n); �̂(t))
:
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