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Abstract— Providers of high quality-of-service over telecom- the router, the number of retransmits required over the link,
munication networks require accurate methods for remote mea- and the integrity of router equipment and associated software.
surement of link-level performance. Recent research in network While transmission delays usually remain constant over a

tomography has demonstrated that it is possible to estimate inter- bi int | . del hiahly variabl nd
nal link characteristics, e.g., link delays and packet losses, using probing Intérval, processing delays are highly varabie a

unicast probing schemes in which probes are exchanged betweendre thus commonly modelled as random variables. Thus it is
several pairs of sites in the network. In this paper we present a generally impossible to recover the actual internal link delays
new method for estimation of internal link delay distributions  that probes encounter along their end-to-end path. However,
using the end-to-end packet pair delay statistics gathered by yna getermination of the statistical distribution of the internal
back-to-back packet-pair unicast probes. Our method is based link del f ltio| d-t d del t

on a variant of the penalized maximum likelihood expectation- Ik delays from mu Ip(? e_n - _O'en elay measurements C_an
maximization (PML-EM) algorithm applied to an additive finite ~ be formulated as a statistical inverse problem whose solution
mixture model for the link delay probability density functions. yields estimates of the internal delay distribution [2], [6].
The mixture model incorporates a combination of discrete and These estimates can be used by an autonomous system (AS),
continuous components and we use a minimum message lengthg § an Internet service provider (ISP), to evaluate its average

(MML) penalty for selection of model order. We present results . . . f oth
of matlab and ns-2 simulations to illustrate the promise of our quality of service (QoS) or to assess link performance of other,

network tomography algorithm for light cross-traffic scenarios.  Perhaps competing, AS’s. When acquired over large portions
of the network, link delay estimates can also be used for

detecting network anomalies such as imminent link failures
. INTRODUCTION or coordinated denial of service (DoS) attacks.

Herein we address the problem of determining internal link- The problem of empirically characterizing Internet link de-
delay distributions from multiple end-to-end unicast packédy distributions has been looked at by several researchers, see
probes that are sent across a network of sensors, routersioptexample [7], [8], [9], [10]. A common observation is that
terminals from many different edge node pairs. This is a sulahen the link is lightly loaded, such as in the early morning,
problem of network tomography [1], [2] which is concernedink delay scatterplots appear stationary. Furthermore, while
with reconstruction of unobserved states of a network fromuch of the scatter appears spread out over a continuum of
a set of indirect measurements of these states. For examglelay values, a non-negligable proportion of the delays appear
end-to-end network tomography allows a few agents at theconcentrate at one or more discrete values, see for example
edge of a network to gain important information on globdli0, Fig. 4]. This implies the existence of point masses in
network behavior without cooperation of internal nodes. Thite time-averaged link delay distribution. The positions of
is especially useful when link parameters are inaccessilthese point masses vary according to factors such as: length
or when direct measurement of data traffic statistics are rgft packet; incoming and outgoing queue sizes of routers on
supported by internal switches and routers [1], [2], [3], [4khe link; router configuration; deployment of firewalls; and the
[5]. The unicast tomography methods we present in this paggtysical distance between routers [10].
are applicable to this situation and are designed to performin this paper we propose to capture these empirically
well when the network is lightly loaded. While modificationobserved features by fitting hybrid continuous/discrete finite
of our methods may also be applicable to wireless networkaixture models to the link delay distributions. While our
here we focus on the simpler case of wired networks, suchaigorithms are easily generalizable to multiple discrete point
the Internet. masses, for simplicity we focus here on the case where the

The causes of delays along a packet probe’s path throuficrete component is a single point mass. Unlike purely
the network can be separated into the sum of two types @ntinuous models the hybrid continuous/discrete model is
delays: constant link transmission delays and time-varyiigentifiable and is justified under the lightly loaded scenario. In
link processing delays. Link transmission delays are due tteis scenario there is a non-zero probability that a packet will
the propagation delays through the physical medium, e.g.eacounter an empty queue in which case the packet delay is
wire, or optical fiber. Link processing delays are due to gon-random, being due to fixed propagation and processing
combination of router queueing, buffering and servicing delagglays. While this is unlikely in a congested network, the
that depend on factors such as: the amount of cross-trafficm@ddel is valid for a number of common monitoring situations

. . such as service and performance verification and detection of
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in discrete delay tomography, for which there is a non-zeo§ continuous and a discrete components. We handle the
probability that a packet traverses each link without any delagnvolutive mixture complication by adopting an iterative ML-
(see, e.g., [6]). EM formulation of the estimation problem using an enlarged
Lo Prestiet. al [6] were the first to propose estimatingcomplete data space. We handle the problem of unknown
internal delay distributions from end-to-end measurementaodel order by adapting the unsupervised minimum-message-
These authors uniformly discretized the internal delay dikength (MML) approach used in Figueiredo and Jain [15].
tributions and derived an algorithm based on empirical hiSpecifically, we add an information theoretic order selection
togram estimation. Their method uses multicast probes, whiganalty to the log-likelihood to which a penalized ML-EM
requires cooperation of the network to run a multicast sessi(fPML-EM) algorithm is applied. We handle the presence of
such as RTP during the probing interval. To overcome thimth discrete and continuous link delay components by the
restriction, Coates and Nowak [5] developed an internal deléoflowing simple additive mixture model: the delay density is
histogram estimator based on an alternative unicast probemgunknown) convex combination of a point mass positioned
scheme in which edge sites exchange a succession of closglthe (unknown) transmission delay and a (unknown) number
spaced packet pairs. Their estimator is based on a statistm&Gaussian components with (unknown) means and variances.
inverse problem formulation and used an iterative maximuwiie adopted Gaussian continuous components to simplify the
likelihood via expectation maximization (ML-EM) approachimplementation but heavy-tailed densities can also be easily
In related work these authors also developed a sequensatommodated in our framework.
Monte-Carlo method for tracking changes in non-stationary The outline of the paper is as follows. In Sec. Il we give
networks [11]. The principal restriction of the approaches [5fhe main assumptions underlying our work. In Sec. Il we
[6], [11] is the requirement of discrete-valued link delayseview the continuous and discrete delay models for unicast
Overly coarse discretization, or binning, of the link delaysetwork delay tomography and discuss model identifiability.
leads to excessive model approximation error and causes hiaSec. IV we introduce the hybrid mixture models for delays
in derived estimates such as delay mean and variance. oitthe internal links and present the ML-EM algorithm for
the opposite extreme, excessively fine discretization leadsetstimating the parameters of these models from end-to-end
high runtime complexity of these algorithms. Furthermore, thgelay measurements. In Sec. IV-C we present the PML-
determination of the appropriate number and size of the biB# algorithm with MML penalty to control excessive order
requires tight bounds on link delay characteristics, such astimation of the unpenalized ML-EM algorithm. In Sec. V
maximum and minimum processing delays, which are usuallye illustrate the performance of the ML-EM and PML-EM
unknown . algorithms on simulated data usimgatlab andns-2 [16]
Several alternatives to the fixed and uniform binning schersémulators.
of Lo Prestiet. al[6] have been studied. Duffiekt. al consid-
ered a variable bin size model, where smaller bins are used to
describe probability mass concentrations for small delays [12].
Tseng, Coates, and Nowak [13] proposed a nonparametrids in Coates and Nowak [5] we adopt the back-to-back
algorithm where the number of bins for internal link delaypacket pair probing framework and represent the network
is adapted to the number of measurements. (See papertdyology as a directed logical tréE = (V, E) whereV is
these authors in this Special Issue.) They use a waveldte set of nodes, e.g. routers and terminals, &ni$ the set
based penalized maximum likelihood estimator to smooth tbé links. Let there be a total of links in the network and
estimates. A non-parameteric method was proposed for unicaistnber them fron to L. The logical tree representation has
probing by Shih and Hero [14] in which the statistical inverse single root node, serving as a source, several internal nodes
problem is formulated in the cumulant generating functioaving degree at least 2, and several leaf nodes, containing
(CGF) domain. By sampling the CGF’s arising from the leaseceivers. The edge of the network is the set of leaf nodes
squares solution of the inverse problem, a set of continuopisis the root node. If there are a total Bf leaf nodes then
(un-binned) link delay density estimates can be obtained. there areR possible paths from the root to the receivers. To
Herein we propose a different method for estimation afollect internal link information at the edge nodes, pairs of
internal delay distributions from unicast end-to-end measungackets are transmitted from the source to pairs of leaf nodes.
ments which is based on packet pair unicast probes afdere areS = C{ binary sub-trees of paths, called probe
additive mixture models for the internal link delays. As thé&rees, on which the source can send each pair of packets to
end-to-end delay measurement is a sum of the (assunted different receivers. We define the pair of receivers at the
independent) internal link delays over the probe path, tlelge of probe tregto beW;. Each node in the tree has two or
densities of the measurements are convolutive mixtures rabre child nodes, except the root and leaf nodes. A network
these additive mixture models. This makes our estimatigvith three links is shown in Fig. 1(a) showing a single root
problem more challenging than the standard mixture modabde, a single internal node, and two leaf nodes.
estimation problem which has received much attention inIn a unicast probing session a pair of leaf nodes is (ran-
both the statistical and engineering literature [15], [27], [29Homly) selected by the source and two time stamped packets,
[30]. Additional issues which we address are: 1) the additiaalled a (unicast) probe pair, are sent to them respectively. The
mixture model orders are unknown in practice; and 2) thevo packets are transmitted in rapid succession and encounter
internal link delay distributions are composed of a combinatiadentical delays on the shared links of their paths. Each leaf

II. NETWORK MODEL AND MAIN ASSUMPTIONS



O experienced by a probe pair on shared links does not hold
when a small discrepancy between the two is observed from

Root 1 real network data (see, e.g., [18], [19]). Fortunately this
Q random error has mean close to 0 and can be reduced by
1 random ordering of the two packets [5].
I11. UNICAST NETWORK DELAY TOMOGRAPHY
2 3 A. Discrete Delay Model
In the widely adopted discrete link delay model [5], [6],
Receiver 1 2

[11] a universal bin size is used to discretize link delayks,;
@ ateach linkk = 1,..., L. The time intervalgiq, (i + 1)q|, i =
0,...,D, are called the delay bins. Hefeis a positive integer
Fig. 1. (a) and (b) are two-leaf and four-leaf networks, respectively. ReceivequD = oo can _be used to account for _IOSt pmb_e packets or
are the leaf nodes while the source is the root node. Network (b) is used farge delays which are out of range. Discretization produces
simulations in Sec. V. the discretized delay valuewhen X, falls in thei-th bin. A
probability mass function (pmf), or histogrark; = {p; 4 :
d=0,...,D}, is then associated with the discretized delays

node records the time that a packet is received. Subtract@¥fr linkl, where the probability, s = P(X; € (dq, (d+1)q])

this number from the packet's time stamp gives the end-to-ei§cn unknown to be estimated aptl;, pi.« = 1. For a probe
delay of the packet. End-to-end delays of the probe pairs on ##th containing links, the discretized end-to-end packet delay
same probe tree are random vectors due to the random amby@fies over the range, ...,j - D -g.

cross traffic through links along their paths. If any packet Consider the two-leaf tree network shown in Fig. 1(a), and
in a probe pair is dropped by the network, both packets dfte associated delay pmfB, = {p;q : d = 0,..., D} for
considered lost. Unicast probing is repeated until the sessiofr 1,2,3. Probe pairs are sent from the source to receiver
is over or enough packets are received by each leaf nodelt@nd 2. With assumption (A3) the identifiability df's
perform the next step: network delay tomography. The aifﬂ)m end-to-end delays can be studied in a similar manner to
of network delay tomography is to identify the packet delafpulticast networks. More specifically, in multicast each packet
distribution for each individual internal link from the end-tols replicated by the network at the branching points of its paths
end delays observed by the receivers. Network tomography2id all the packets at the receivers again have common delays
possible since the end-to-end delay is a sum of the internal lifR shared links. Proof of identifiability in discrete network
delays encountered along the probe path and any two path§@y tomography with multicast probes is provided in [6] and

a probe tree must cross at common links. the use of unicast probe pairs can be considered as a special

Let X; be the packet delay encountered by a probe at ifRSe- .
I,1=1,...,L, and letY; = be the end-to-end packet delay The discrete delay model adopted in [5], [6], [11], [12],

along thei-th path,i = 1,..., R. We make the following [13], [18] has two main drawbacks. First, the proper bin size

independence and stationarity assumptions: (&fatial In- needs t(t) :e ca{egflly dseletcteld. Secondi_ a unflversil tb'g f'ze
dependencepacket delays at different links are statisticall;ynay not be surtable gue fo large variation of packet delay
ranges over different links. Although in [6] it was proposed

independent, i.e.X; and X; are independent for # j. (A2) ) o . ) S
Temporal Independence and Stationarfyr a given link, the to_ adopt different bin sizes for different links, those bin sizes
lLJ need to be chosen in advance.

delays encountered by packets in different probe pairs at tﬁg
link are statistically independent and identically distributed
(i.i.d.). For each probe pair we make an additional consistenBy Continuous Delay Model

assumption: (A3) the delays encountered by both packets irODne way to avoid the pitfalls of binning is to use a
a probe pair on the shared links of their paths are the safiexible continuous link delay model. For example, closed
(with probability 1). It is important to point out that while form expressions for the probability density function (pdf) of
(A1) and (A2) are normally not satisfied in practice (see, e.gjueueing delay have been derived for simple queueing models
[17]), these are commonly assumed in order to permit tractalsiech as M/M/1. These expressions could possibly be extended
analysis. An example where spatial independence (Al) ts a network of queues but it is well known that the M/M/1
violated is when there is interaction among different data flowsodel is an inadequate model for Internet traffic [21]. An
along the same path. As for (A2), temporal independence fadlliernative is to approximate each link delay density by a finite
when Internet traffic is bursty or the network has a long latenayixture which, with sufficiently large number of components,
time which correlates different packet pairs. Stationarity failsan describe any continuous density function [22]. fét)
when the unicast probing session has a longer duration th@nthe link delay pdf at link. A finite mixture model for this

the stationarity time of the network. However, experimentsdf is

have shown that the performance of network tomography is Ky

remarkably insensitive to violations o_f (A1) a_lnd (AZ) [4], [5], fi(z) = Z WUmd(;00m), 1=1,...,L (1)

[6], [11], [20]. In (A3) the assumption of identical delays o’



Where kl denoteS the number Of Componen(tﬁ,m, m = (a) Link Delay P.D.F. - Set 1 (b) Link Delay P.D.F. - Set 2

1,...,k;, denotes the mixing parameter for theth com- o 6100 o 6150

ponent (0 <apm <1, Zfﬁﬂ QU = 1), and ¢(z;0;,,) is 02 /\ 02 ]\

a density function over the-domain parameterized by the % 10 20 %0 % 10 2 0w

parameter vecto#; ,,. Many different choices forp(z;6) 04 04

are possible including: Gaussian; generalized Gaussian; ex- o2 Fusa o2 Fuoa

ponential; or uniform. For the case of a Gaussian mixture . A . /\

O1m = [1,m, a,%m] is the vector specifying the position (mean) - -

and width (sqgrt(variance)) of thei-th mixture component at 04 o009 04 .

the [-th link. 02 ' 02 '
However, the use of pure continuous mixture density func- 0 /\ 0

. . . . pe o . 0 10 20 30 40 0 10 20 30 40

tions can cause serious identifiability problems. To illustrate X3 X3

consider again the simple two-leaf tree of Fig. 1. Assume that (6) End-toEnd Delay P.D.F

all link delays are Gaussian, i.&;, ko, k3 = 1 (single com-
ponent mixtures)(z; 0) = exp(—(z — p)?/(20?))/(v/2m0). 006
The end-to-end delayd,Y>) has the following joint pdf:
1
2m\/0}03 + 0302 + 0302 002
1
o {‘m%a% +oto} +o303) 3

35

(03 (V1 — (1 + p2))? + 05 (Ya — (1 + p3)) >+ 0
U%((Yl = Y2) = (2 — U3))2)} (2) Y2 Yo s 7 v

If we look at the mean parameters, they are completejgi- 2.  Example of two sets (a) and (b) of Gaussian internal link delay
nsities along the two probe paths in the network in Fig. 1(a). The two end-

described by thel3 p.aramete;rls: Po+fiy, N2 = po+[i2, and  tg.end delays of each received packet pair obeys a Gaussian bivariate density
N3 = p1 — pe. This gives only two equations for the three unshown in (c). This bivariate density is parameterized by only two location

knowns parameter[&l, U2, /13] so the simple Gaussian modeparameters which is insufficient to recover the three location parameters in

is not identifiable for any value of the mean parameters. A(\?? and (b).

example is shown in Fig. 2 where (a) and (b) are two different

sets of internal link delay distributions for the network in Fig.

1(a). ) ) delay pdf becomes a hybrid discrete/continuous finite mixture

_ One can al_so consu_jer the packet-stripe schemes suggeﬁliggeL Hence, similar to (1), we obtain

in [19], in which a “stripe” of several closely spaced unicast

packets with distinct destinations are sent back-to-back from

the root node. Similarly to packet pair probes, these packets "

are assumed to encounter virtually the same delays on shared

links along their paths. As shown ir)1/[20], packet-str?::)e probing filw) = awod(z = z10) + Z md(@;0im). ()

allows identification of higher order moments of internal link

delays when the branching ratio is larger than two. However,

under the Gaussian mixture link delay model, the link delqie
a

0.04

f(YhYZ) =

40

25

m=1

reag =1 — p, §(z) is a point mass (dirac delta function)

means still cannot be uniquely identified from end-to-en zero andr, o is the pure (non-random) transmission delay

delays. experienced by the packet. All other parameters are defined
as in (1), except now the’'s must satisfyzf,i:0 om =1,
IV. HYBRID FINITE MIXTURE APPROACH ar.m > 0. The discrete mass componéitt) not only makes
A. Hybrid Finite Mixture Model the delay distribution more precisely model the behavior of a

link queue, but as shown below also buys us identifiability of

In analysis of a queueing system, the utilization fagtas . o
y g gsy " gthe link delay distribution parameters.

an important parameter for describing system behavior. Th
parameterp denotes the probability that the system is busy For any probe pair the distributions of the end-to-end probe
serving customers and, for a stable systgmmust satisfy delay densities will be the convolution of the link distributions,
0 < p < 1[23]. A lightly loaded link satisfiepp << 1, i.e. which are also hybrid mixtures. Now, similarly to the previous
there is a non-negligible probability that a packet encountegsction, let's assume that the continuous mixture component
an empty queue, i.e. an idle router, and passes without delaya single Gaussian pdf. Let the point masags = «; and
This suggests placing a point mass component with weigdgsume that they are all concentrated at zero delaygj.g+

1 — p in the link delay mixture model. If this point mass is0. Figure 3 shows the end-to-end joint delay distribution in the
included in addition to the continuous components the linko-leaf tree network of Fig. 1(a), whose mathematical form



is
F(V1,Y2) = B1Bafa f(Y1,Y2) + cnczasd (Y1) (V) +
10336 (Y1) P (Ya; i3, 03) + a1 B2a36(Y2)$(Y1; p2, 03)
+B1a2a3d (Vi — Y2)p(Y1; 1, 07) +
a1823p(Y1; 2, 03)$(Ya; i, 05) +
BrawBsp(Yis py,07)d(Ye — Yi; ps, 03) +
)é(

Yo: DY = Yo: 2 4 Fig. 4. Gaussian mixture examplefy(u) = 0.3N(u;2,2) +
Prbrasd(Yas pn, 01) @Yy = Yai gz, 03), ) 0.5N (u; 8,4) + 0.2N (u; 17, 10)

where, = 1 —q; for [ = 1,2,3 and f(¥1,Y3) is the joint

distribution shown in (2). Due to the point mass in (3), (4) has

additional isolated Gaussian components which appear witet U be a finite mixture random variable with compo-
discrete masses at locations in 11§, Y>) plane specified by nents and pdf of the fornf(U) = an:l am®m(U) where

{1 = 0},{Y> = 0}, and {Y1 = Y>}. It is obvious that anzl am, = 1. An example of a Gaussian mixture with three
identifiability can be achieved as long ag # 0. It might components is given in Fig.4. The solid line depicts the density
seem strange to the reader that the addition of a point mé&ssction and the dashed line shows each component. There are
allows one to uniquely identify the set of parameters of thevo different interpretations of finite mixture models which
internal link components from a single probe tree. Howevegill be useful in the sequel. The first one is simply tifiét/) is

one still needs multiple probe trees to assign these parametersulti-component pdf fot/. The second interpretation is that

to specific links. U is selected at random from a pool of simpler hidden random
variablesUy, ..., U with selection probabilitiesy, ..., ay,
(@) (b) respectively. Define the binary random selection ve&ot
0.4 0413 [Z1,...,Z]" whereZ,, =1 if and only if them-th variable
0.2 ® 02llC D U,, is selected and assigkn to this event probability. U
ﬁJ-Al A can be expressed &5= ) _, Z,,Uy,. Thus, ifU,, has pdf
0 0 om(Un) then this is identically the conditional pdfU | Z,, =
o 10 (C)ZO 30 0 10 20 3 1). Thus f(U) = an:l amdm (U), which is the mixture
0.4 model forU that we started out with. The second interpretation
is critical for development of the ML-EM algorithm which we
0202 F
E address below.
J Assume that we have prior knowledge of all the link mixture
0 10 20 30 orders {k;}}/.,. We will relax this assumption in the next
@ © section. LetN; be the number of packet pairs sent from the

source to the receivers of probe tréeand let M/; be the
set of links along that tree. Defin&"" the delay at link

0.02
[ encountered by the-th packet pair sent to receivers ;.
0.01 Let Z\"" = [Zl(”(;"), e Zl(f,;:’)] be the selection vector for
(i,n)
AY(D [F Xl . .. . . . .
0 With these definitions, maximum likelihood (ML) esti-
40 mation of the set of internal link mixture densities can

be formulated as a missing data problem. The Expectation
Maximization (EM) algorithm has been extensively applied

to approximate ML and penalized ML (PML) estimates for

Fig. 3. Example of internal link delay mixture densities (a) - (c) fomixture models [15], [29], [30]_ LelX = {Xl(i’")} andZ =

links 1,2,3, respectively, over the two-leaf tree of Fig. 1(a). The non-random, (i,n) . . " .
minimum delays for all the links are set to 0. The end-to-end packet pai’i pforalll,i,n. {X,Z} is calledmissing dateor hidden

delay distribution is a hybrid mixture whose purely continuous componentfata, Define Y (#®) = (Yl(i’"),YZ(i’")) as the pair of end-to-

are shown in (d), and components associated with discrete masses are in _ ; ; ;
All link parameters can be identified from this two-dimensional distributioné'eﬂj delays of thew-th packet pair received by two receivers

Here B « (C - F') denotes a function ofys,y») which is the convolution 1N the i-th probe tree. The observablas = {yn}, , are
of the internal link components labelled B, C, and F, in the form ofalled theincomplete datand the se{X,Z,Y} is said to be

[ B@)Cy1 = 2)F(y2 — @)de the complete dataThe EM algorithm generates a sequence
of estimates of the unknown paramet&swhich have the
property that the likelihood sequendg®) = f(Y|O®) is

B. ML-EM Algorithm nondecreasing.
Here we present an ML-EM algorithm for approximating It is easily shown that the IikeC:ihfood of theomplete
the maximum likelihood estimates of the internal link mixturelata can be factorized a<.(®) € fX,Y,Z|®) =

model parameters from end-to-end packet pair measuremetity'|X) f(X, Z|®), and thus maximization ofL.(®) is



equivalent to maximization of the likelihood function To apply the MML algorithm [15] of Figueiredo and Jain
£(©) def £(X,Z|®). For a specific linkl, X, is a mixed to our network delay tomography problem their method has to
random variab7le with density functioy giveh by (3) and be extended to another layer of hidden data. More specifically,
therefore, up to a constant, the complete data log-likeliho¥dle in [15] the realizations from the mixture model were

function is: obsgrvgd directly, in our application only sums of these
N realizations (along probe paths) are observed. In other words,
_ - (i,n) the end-to-end delays are themselves convolutive mixtures of
log £(©) = IZ; %;4 nZ:l {Zlvo log aro + the additive mixtures describing the link delays.

k, The standard incomplete data Fisher Information matrix

Zlin) (4 1 x(m). g (5 I(®) is not closed form, even for a directly observed finite

m2::1 t,m (Ogal’m +log ¢ l’m)) ®) mixture [27]. Therefore, similar to [15] we replace it by the

) ) complete data Fisher information matrix which in the network

The EM algorithm updates parameter estimates by apply'ﬂﬂnography setting ii(@) - _E [V% log f(X Z|G))] _
two steps at each iteration. At theth iteration, the E- . L . ! ;

" : block-diag{n;I;(®;)},_, , whereI,(®,) is the Fisher infor-
step computes conditional expectation of complete data lor%étion matrix associated with the complete data at link
likelihood given observationy and current parameter esti—®l denotes the parameter set of thén link, and n; —

H(t) ' =
mates® > iten, Ni is the total number of packet pairs passing
Q(@’(:)(t)) — B 1Og£(@)|y;@(t)] ] (6) through thel-th Iink: I, itself has block-diagonal structure

o ) ) I (G‘)l) = block-dlag{Al, 0517112 (0[71), Ceey al7klIg (al,kl)} s
The M-step maximizes th@ function computed in the E stepwhere I,(6; ,,,) is the Fisher information matrix associated

with respect to® to produce with the hiddenm-th component delay variabl&,; ,,, on link

R . k

Q+1) — argmax Q(©, @(t))_ (7) l,andA; = diag{al};} Lo any one of they; ,,,’s is zero,

® it is removed fromA; aﬁ&gl is decreased by 1.
The E and M steps for the hybl’ld mixture model is similar to The prior on the parameter set was taken as
_thaAtforaj_lng';AI\e Gaussian mixture model [30] and is illustratefl @) — Ty { flaro, -y ouk) ey fBum) f, where
N Appendix A. flawo,...,arr) and f(6,,) are the non-informative
Jeffreys’ priors [28]: f(auo,-.-,0uk) o< AJA] =

C. PML-EM Algorithm with MML Penalty (001 ---apg)~ %, and f(0m) o /Ta(fm)], fo

When the number of link component%;’s is un- Zf,;:o a;m =1 and0 < oq,, < 1. In addition, as in [15],
known the ML-EM algorithm is not guaranteed to conwe make the approximation. = 1/12. This yields the MML
verge. This is due to a fundamental ambiguity of unknowpenalized likelihood function
model order. To illustrate, consider the estimation ok-a

L Kk
component mixture having the form of (1) with parameters £(®) = log f(Y|®) — Q log ay . —
® = {u,...,a,b1,...,0;}. These parameters have the ©) g f(YI®) 2;2 & m
same likelihood as the: + 1 component mixture®' = b (da1) 41
(e, k1, (1 — B, Bk, b1, ..., 0,01} for any 0 < Z&(logﬂﬁq), ®)
B < 1. One of the most effective ways to eliminate this — 2 12

ambiguity is to add a penalty to the log-likelihood function . . . _ .
which penalizes the addition of more components to gygnered is the dimension of,y,, e.g.,d = 2 for a Gaussian

mixture component mixture.
Many model order penalties have been proposed includinr%'-r0 derive the E step of the PML-EM algorithm applied to

Akaike Information Criterion (AIC) [24], Minimum Descrip- axi_mizing (8) we 'adop.t t_hg same complete data as in Fhe
tion Length (MDL) [25] and Minimum Message I_engthprewous section. With this it is easy to see that the E step is a

(MML) [26]. Figueiredo and Jain [15] applied the MML modification of (6) whereQ(®, ®*)) now has an additional

penalty to finite mixture models by introducing a prior to th&€Nalty given by the second and third additive terms on the
parameters and an information theoretic penalty dependiRf> Of (8)- The modified M-step g|v§§ the u;;dates for ]Ehe
on quantization of parameter space. They developed an xing parameters in (9) (see Appendix A). The M-step for

supervised method for simultaneously selecting model ordh £ remaining parameters depends on the specific form of the

and estimating parameters. The incomplete data penalized | xture dens_|ty components. )
likelihood is expressed as he algorithm uses the following strategy to select the

numberk; of components at théth link. It starts by setting
F@) 2 1 ¢ W kyl=1,... Lt -specified bound and
L'(G)) = 10gf(®)+logf(Y|G))—— log |I(®)|——(1+log lic), all kg, e 0 some user Spe(til Ile upper bouna an
2 2 annihilates components as follows.df'!") = 0, component
whereI(®) is the Fisher information matrix associated withn is removed fromf; and its probability mass is redistributed
the incomplete datd’, |A| denotes the determinant of squarever the other non-zero-probability components at the next
matrix A, c¢ is the dimension 0®, andk. is the so-called iteration. Note that this procedure is myopic since it does
optimal quantizing lattice constant fag°. not allow components to come back to life and therefore



QD) max { (Zi:leMi Yny wz(ln?)) B %70}

= =1,...,k. 9)
l,m k N; (i,n) d N; (i,n) ’ ’
l ) 3
21 Max { (Ei;leMi D oni 1 W ) - 5,0} + 2 iiem; i1 Wi
TABLE | o o.
LINK BANDWIDTH AND LATENCY PARAMETERS USED INNS SIMULATION Truea, = 01500 Trued, = 0.1000

Estimated ay= 0.1726 Estimated ag = 0.1137

0.2 0.2

Link 1 2 3 417567 k=3 ks
Bandwidth (Mbps)| 20 | 20 | 20 | 20 | 15 | 12 | 12

Latency (ms) 100 | 100 | 100 | 30 | 50 | 50 | 40

0.1 0.1[
the estimate is not guaranteed to converge to the MML® ° S s 20 " s s
estimate. However, we restrict our implementation to this o
myopic strategy due to implementation complexity constraints Tuea, = 0.2000 Truea, = 02500

Estimated a, = 0.2037 Estimated a, = 0.2664

0.2] 0.2

k=4 k=2

V. EXPERIMENTAL RESULTS
A. Model Simulation: ML-EM for Known Model Order 01

We simulated a small network with the simple virtual tree -
topology shown in Fig. 1(b). Throughout this first experi- %5 T
ment the numbers of componerits; } 2, are known to the e
estimator. We specialized the EM algorithm to a Gaussiat I Y —
continuous component mixture (see Appendix). From twa Estimated a, = 0,1750 Estimated a, = 0,164
to four Gaussian components were assigned to each link i
addition to a point mass. These simulations were implemente
in matlab and we generated 2000 i.i.d. end-to-end probe*
pair delays for each of the six probe tree paths. The ML-EM
algorithm was applied to estimate the Gaussian component -%& -
their mixing parameters and the weight of the point mass

0.1

15 20 0 5 15 20

10
link 4

0.2
k=3

k=3

15 20 0 5 15 20

10
link 5

at zero. Convergence was achieved after 955 iterations, (

. . . . T =0.1600
approximately 16 iterations per parameter. Fig. 5 compares tt pao a,= 01688 zh_'
estimated Gaussian mixture components to the true Gaussi’’| = s

-7.3]

mixture components. It also lists the number of mixture
components for each link and the true/estimated probabilitiec:
aq,o Of the probe encountering empty queue on linkThe
convergence curve of the log-likelihood is shown in the lowest: ,

~7.4]

15 20 o 250 500 750 1000

0 5 _ 10 500
right graph of the figure. These results illustrate high accuracy finke? ferations
for the case where there is no model error and the numberraf. 5.  True(solid curve) and estimated(dotted curve) Gaussian mixture
components is known. components along with the true(black bar) and estimated(white bar) empty

queue probabilitiega; o} for model simulation. The horizontal axes denote
link packet delays in ms. Here the EM algorithm is used to estimate the

B. NS Simulation: MML for Unknown Model Order mixed Gaussian mixture parameters for simulated measurements obeying a
’ ’ true mixed Gaussian mixture with known numbers of components which are

For a more realistic simulation we usew-2 [16] to listed along V\_/ith the link delay pgjf’s._ZOOO packet pairs are generated for
simulate the network shown in Fig. 1(b) with a variety of cro ectofvgzesn'zepgﬂ?setge]‘eth’zatlgz_|'irll(e'Ti'ﬁ(')old(bf)unzggr:?wesw'ght graph shows
traffic types and router configurations. The links were assigned
bandwidths and latencies listed in Table I. Tiee parameters
for each link were set to a Drop-Tail queue (FIFO queue with
finite buffer). The queue buffer sizes were 50 packets lonfjaction of the Internet traffic [31].. A total oV = 500 packet
Each packet in a probe pair was defined as a 40 byte uppirs for each probe tree are collected at the receiver nodes.
packet. Probe pairs are generated independently and sent alggestimated each probe queueing delay by subtracting the
each of the six tree paths according to a Poisson proc8§imum probe delay over the total samples for the same
with mean interarrival time 8ms and rate 70Kb/sec. Cro§ath.
traffic was also generated in each link bg and consisted The MML algorithm was implemented with Gaussian con-
of 41 Pareto On-Off TCP flows and 25 constant-bit-rate UD#huous mixtures and the estimated number of mixture com-
streams with random noise introduced in the scheduled pacgehents at each link was initialized 9 = 5. To accelerate
departure times. The design of background traffic refledise PML-EM algorithm, as in [15], we used tle®@mponent-
today’s IP network environment in which the UDP traffic isvise EM algorithm for mixture§CEM) [29]. Similarly to the
mainly video/audio data streams and TCP comprises the ma@#*GE algorithm of Fessler and Hero [32] , the CEM algorithm



Link 1 Link 2

updates the parameters sequentially, instead of updating all s 1400
them simultaneously. The monotonicity property of CEM Truea, = 05584
not affected by the order of updating. We adopted a cyclic i
updating procedures as follows: update,, recomputeq), 1250 700
updatea; ; andé; ;, recomputel), and so on, until all the 1
parameters for link 1 are updated; then proceed in the samr qu;:\
way for link 2, 3, and so on, until all link parameters are
updated_ 0 0.6667 ms 1.3333 2 0 0.5 ms 1 15
Link delay pdf estimates are shown in Fig.6. To obtainzeoo- e 1600 S
ground truth the true internal link delay distributions were Truea, = 0.6156 True, = 0.6887
estimated empirically from thas simulated data. The mass L Eotmated a, = 0.6598 Eeimated d, = 0.6264

. . . . k=4 k=4
of the atom, which is denoted as “Trug " in the figure, 800 800
is the empirically estimated probability of an empty queue
at link [ calculated from sample averages. The continuou:
portion of the true distribution is estimated by the histogram | i - 0

. . 0 15 0 1.1667 2.3333 35
of non-zero link delay samples and normalized to have mas. ms
1 — (True a; o). The estimated Gaussian mixtures are showrzsuw L 3000 Se

along with the normalized histogram for comparison. Note Truea, = 06443 Truea, =0.6693
that the probability mass of the mixture 8 — &, for Estimated o, = 0.4555 Eotimate dp = 04543
delays at linkl. The convergence curve of the penalized,,, = 1500 <

Truea, = 0.6652
Estimated ay= 0.6639

k=3

likelihood function is shown in the lowest-right graph in Fig.6.
The vertical lines indicate the iterations when at least one
component is annihilated and the numbers above them sho
the corresponding links.

As shown in Fig.6, the Gaussian mixture components capsoq Hink 7 5 74210° 2,6

ture the profile of the empirical continuous portion of the Truea, = 06570 ml
density for most of the links. They also provide accurate Estimated o, = 0.4057 2695
estimates to all the queueing delays ranges. Some mod,, =

0 0.8333 1.6667 25 0 0.6667 1.3333 2
ms

. . , . , 265
mismatches occur in the estimates at, for example, link :
and 3. This error is probably due to the limitation of the
5 Gaussian + 1 point mass component model. For a bette .
fit to the internal delay histograms it may be necessary tc¢ ° 08333 | 16667 25 25 10 20 a0 400
ass_,lgn more point masses and m(?llee other denglty moqfi'c!f 6. Normalized ns-derived histograms for non-zero link delays and
which are flatter or more heavy-tailed than Gaussian. Oth&fimated Gaussian mixture density for indicated links. The horizontal axes
sources of error might include: violation of the spatial ofenote link packet delays in milliseconds. Here the unsupervised MML
; : - . rithm was initialized with 5 Gaussian components for each link. The
temporal independence a_ssumpuo_ns, llhsuffl.(:lfant number %\f}voest-right graph shows the convergence curve of the MML penalized
probe samples to resolve link densities; insufficient number @&iinood function. The vertical lines denote the iteration number where the
iterations of the MML algorithm; existence of local maximaumber of Gaussian mixture components is reduced. Numbers at the top of
in the likelihood function: and burstiness (non-stationarity) lee convergence graph denote the particular link affected by this reduction.

the traffic. These are topics worthy of additional investigation.

2.605

of this algorithm are not necessarily MML estimates, results
VI. CONCLUSION AND FUTURE WORK of ns-2 simulation showed that reasonably accurate estimates

. L . . of internal link delay distributions are possible.
This paper focuses on the estimation of internal link delay . —

L . : Future work includes finding ways to accelerate conver-
distributions from end-to-end unicast packet pair delay mea-

surements when there is a positive probability of zero queueiﬁence of the ML-EM and PML-EM algorithms for real-

. . e implementation. EM algorithms are quite slow and the
delay, i.e., lightly to moderately loaded networks. We pmposemprovement made by CEMis still limited. This makes it

a new hybrid discrete-continuous finite mixture model which. X . . T
ifficult to perform extensive comparisons. Another direction

circumvents the difficulties of link delay discretization. For . ; : .
. . Is .extension of our model to include spatial dependencies of
the case that mixture model orders are known, we dende

an EM algorithm for approximating the ML estimates. Mode nk delays among different links, especially the links along the

. . ; (?me path. For time-varying scenarios adaptive schemes need
simulation showed that when all model assumptions hof . . .
0 be developed in order to capture possible changes in the

the EM algorithm can very accurately estimate the del%yafﬁc statistics and the network environment. It may also be

distributions for each internal link. When the model orders are .
. . Viable to apply these methods to detecting abnormal changes

unknown, we implemented an MML order selection penalty . L ) )
. . . L link delay distributions. This may help early detection of

and derived an unsupervised algorithm for estimating both the . : - I
: . ossible network failures and/or malicious network activities.

number of mixture components and the continuous denslty

parameters. Although the estimates obtained at convergence APPENDIX



A. DERIVATION OF EM ALGORITHM

step quantities required for ML, PML, CEM algorithms.

Throughout the derivation, we assume the point mass “g#) =

located at zero delay for all the links. Legt(y;®) denote
the end-to-end packet pair delay joint pdf from the root
node to receivers in thé-th probe tree.g; ;) (y;®) is
defined similarly tog;(y; ®), except in the convolutiorf; is

In the case that the’s are Gaussian densitie§,
Here we only sketch the derivation of the E step and nd

Q>
&)
N

= (&,

- Ty

ZzlEM En 1w ileM; n=1
Jz- al,m (z; al(tr)n) i,l((y —x) (&) @) dy
iy 00

replaced by itsn-th component, which isy ¢ whenm = 0 52 (+1) _ 1

or aymé(z;6;m) whenm # 0. This is the likelihood of “im > ZNi (i) Z Z

the end-to-end delays of a packet pair along tHh probe ilEM; Lun=1 ¥lm  HIEM; n=1 X

tree being equal toy when the delay at link is contributed [(z ﬂ,(t:gl))Q 40 ) o(z; G(t) i ((y — x) 07 00)dx

by the m-th hidden componenth;;(y; ®) is also similar
to ¢i(y; ®), except that thel-th link is excluded in the
convolution.

E-step Compute the conditional expectation of the completél]
data log-likelihood in (6) of the-th iteration. Let
Z(i’”) |Y(i,n); (;)(t)] [2
A (3]

(4]

A=

Pz =1,YGm,00)
( Y (in). G) )

giym;00)
form =0,...,k andl =1,...,L. Define 5]
0 Om) = E [ 2050 10g0(X 0, YO 00]

/ ') o0, Yhia((y — x)); 0D) log é(z; 0,m)
gi(y(im; ©®)
(i.n)

kyandl=1,...,L, wherey —x = (y;
x,y,  —x) if link [ is shared by the two probe paths, and
y —x = (y\"™ — 2, 48" if link 1 is on one of the branches 10]
of the probe tree, say branch 1. The conditional expectation
of the log likelihood function in (6) becomes

- 3 5SS e

=1 i:le M; n=1

ZQlln) alm }

(A-1) holds for any ch0|ces of density. If the mixture
components are Gaussw(@n,, )(Glm) has the following form [14]

log 27 H27 ~
2 207,
= 2p1,m) &, S O Vi ((y = %)4); @) do
207,,9i(y(om; ©1)
M-step: Update the parameter estimates by maximizing

Q(®,01) over ®, as shown in (7). The estimator updatel8]
are

dx 7]

(8]

form=1,..., [9]

(i,n)

N [11]
Q(®,00)

[12]
(A-1)
(13]

_w(zvn)

L,m

[15]

+logoy,m +

J (=

[16]

[17]

19

A1) D leM; En 1 wlln?) — -
altt — =0,...,k

7 Siiem, Ni 120

éz(ii” = argmax > Z Q(Z " m=1L....k, (21

wleEM; n=1

gi(y(im; @)
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