
Spam Deobfuscation using a Hidden Markov Model

Honglak Lee
Computer Science Department &
Department of Applied Physics

Stanford University
Stanford, CA 94305

Andrew Y. Ng
Computer Science Department

Stanford University
Stanford, CA 94305

Abstract

To circumvent spam filters, many spam-
mers attempt to obfuscate their emails by
deliberately misspelling words or introduc-
ing other errors into the text. For exam-
ple viagra may be written vigra, or mort-
gage written m0rt gage. Even though hu-
mans have little difficulty reading obfus-
cated emails, most content-based filters are
unable to recognize these obfuscated spam
words. In this paper, we present a hid-
den Markov model for deobfuscating spam
emails. We empirically demonstrate that our
model is robust to many types of obfusca-
tion including misspellings, incorrect segmen-
tations (adding/removing spaces), and sub-
stitutions/insertions of non-alphabetic char-
acters.

1 Introduction

Text-based spam filters are workhorses in the battle
against spam emails, and work by examining the con-
tent of an email to determine if it is spam. For ex-
ample, the naive Bayes algorithm [Sahami et al., 1998]
estimates the probability of an email being spam based
on the words contained in the message. Thus, an email
containing words like viagra and mortgage will typi-
cally be classified as spam.

To circumvent such spam filters, spam emails fre-
quently contain obfuscated words in their subject lines
or message bodies. Humans can still recognize the
original words regardless of extra, missing, or replaced
characters, but these words are no longer recognized
by most text-based filters. For example, some obfus-
cated words seen in actual spam emails include:

Original word Obfuscated words
refinance r.efina.nce, r-efin-ance, re xe finance
mortgage mort gage, mo>rtglage, mor;tg2age
viagra v*1agra, v-i-a-g-r-a, v1@gra, vjaggra
unsubscribe u.n sabcjbe, un susc ribe

Note that some of these obfuscation examples include
adding extra spaces to a word; for emails containing
this type of obfuscation, a naive tokenizer (for an al-
gorithm such as naive Bayes) will not even correctly
identify word boundaries.

Some anti-spam systems use carefully hand-crafted
regular expressions to detect obfuscated words. How-
ever, these are expensive to maintain, and are not par-
ticularly robust to the wide range of possible obfusca-
tion. For example, regular expressions generated by
CMOScript1 fail to correctly detect 6 of the 12 exam-
ples above. Also, CMOScript is not particularly ro-
bust to misspellings, and thus fails on most examples
involving insertions or deletions of alphabetic char-
acters. There has also been work on using string
edit distance [Ristad and Yianilos, 1997]; for exam-
ple, [Oliver, 2005] uses a hand-crafted lexicographical
distance to detect specific spam words.

In principle, a learning algorithm for anti-spam may,
given sufficient data, eventually learn to classify obfus-
cated emails as spam. For example, given a few exam-
ples of spam with the phrase mort gage, naive Bayes
(or any other reasonable learning algorithm) will learn
that mort and gage are tokens that are indicative of
spam, and thus learn to classify future emails with
mort gage as spam. However, given the essentially
unlimited number of ways to obfuscate any word (see
the table above), in practice it seems unlikely that any
standard learning algorithm will be able to see, and
thereby learn to detect, all of them in any reasonable
amount of time.

In this paper, we propose a deobfuscation method
based on a hidden Markov model (HMM). An HMM
is a statistical model, and is derived by assuming
that the system under consideration is a Markov pro-
cess with hidden states. [Rabiner, 1989] HMMs have

1CMOScript is a regular expression rule genera-
tor, and is used by SpamAssassin to detect obfus-
cation. For more information, see the SpamAssas-
sin (http://spamassassin.apache.org/) and the CMOScript
(http://sandgnat.com/cmos/) websites.



found significant successes in automatic speech recog-
nition [Jurafsky and Martin, 2000], natural language
processing [Manning and Schutze, 1999], and compu-
tational biology [Durbin et al., 1998]. This paper de-
velops an HMM model for converting obfuscated text
back into the original text intended by the sender. The
HMM is given an obfuscated word (or sentence) as
input (observation), and produces the deobfuscated
word (or sentence) as output. Thus, the HMM has
to correct deliberate misspellings, incorrect segmenta-
tions (adding/removing spaces), and other word mod-
ifications such as substitutions and insertions of non-
alphabetic characters.

2 Preliminaries

A hidden Markov model [Rabiner, 1989] is char-
acterized by N hidden states, M emission (ob-
servation) symbols, a state transition probability
table P (Xt+1|Xt), an emission probability table
P (Ot+1|Xt → Xt+1) specifying the probability of an
emission under different state transitions,2 and an ini-
tial state X0.3 The HMM model defines a generative
random process that proceeds as follows: First, the
system is at initial state X0 at time t = 0. Then,
the state Xt (t = 0, 1, 2, . . .) evolves according to a
Markov process with transition probabilities given by
P (Xt+1|Xt). On each state transition, an observa-
tion is emitted with probability governed by the emis-
sion probabilities P (Ot+1|Xt → Xt+1). There is also a
distinguished observation corresponding to the empty
string (in which nothing is emitted). Such a state tran-
sition on which nothing is emitted is conventionally
called an epsilon (null) transition [Jelinek, 1999].

In a typical HMM application, only the emissions Ot

can be observed directly, and the states Xt are hid-
den. Thus, the sequence of hidden states x1...T =
(x1x2 . . . xT ) must typically be inferred using the ob-
servations o1...T = (o1o2 . . . oT ). More formally, one of
the basic tasks in HMM inference is finding the maxi-
mum a posteriori (MAP) sequence of states:

xMAP
1...T = arg maxx1...T

P (x1...T |o1...T ),

The Viterbi algorithm [Viterbi, 1967] is a dynamic
programming algorithm for efficiently finding the
MAP sequence.

Another basic task in HMM applications is to estimate
the parameters, such as the state transition proba-
bilities and the emission probabilities, from data. If
we have a training set comprising sequences of both

2In this paper, we assume the emission depends on the
state transition (Mealy machine). HMMs in which the
emission depends only on the current state P (Ot|Xt) can
also be used (Moore machine).

3In the fully general case, the initial state is sampled
from some initial-state distribution π. In this paper, for
simplicity we assume π(X0) = 1.

states x1...,T and observations o1...,T , we can straight-
forwardly compute the maximum likelihood estimates
(MLE) of the parameters; if only the observations are
available during training, the EM (Baum-Welch) algo-
rithm [Rabiner, 1989] can be applied.

3 Lexicon Tree Hidden Markov Model

In this section, we describe our first model, which we
call the lexicon tree hidden Markov model. In order to
deobfuscate mortg3ge into mortgage, clearly the sys-
tem must know that mortgage is an English word, so
that it can distinguish it from other, seemingly equally
likely strings, such as mortgege and mortgige.

Thus, our model integrates lexicon (dictionary) and
context information into the HMM. More formally, the
state space of our HMM consists of one start state S0,
one final state Sf , and additional states corresponding
to all the characters of each word in the dictionary.
For computational efficiency, this HMM is represented
as a prefix tree with all terminal nodes4 connected to
Sf , and Sf connected to S0.5 We used a standard
English dictionary (45475 words), and built a lexicon
tree HMM with 110919 states. The transition diagram
for this HMM is shown in Figure 1.

The set of emission symbols consists of 70 characters
including the 26 letters of the alphabet, the space, and
all other standard ASCII characters6 except the con-
trol characters. For simplicity, all letters in the text
were converted to lowercase as a preprocessing step.
From most states of the HMM, we can make a non-
epsilon state transition in which we print out one char-
acter and advance to the next character in the word.
Self-transitions (in which the state remains the same
after printing out a character) are also possible. In
detail, assuming for the moment that we only wish
to model character substitutions and insertions within
words, we define the state transition probabilities as
follows:
P0(Xt+1|Xt)

=


1− η if Xt+1 = Xt

η fXt+1/fXt
if Xt+1 is Xt’s child

η hXt/fXt if Xt+1 = Sf , Xt is a terminal node
0 otherwise.

Here, η is a parameter that controls the self-transition
(single character insertion) probability, fX is defined
as the total frequency of all words sharing the common

4Every terminal node corresponds to the last character
of some word in the dictionary. Actually, in our model, we
allow a small but non-zero probability of the state-sequence
ending at a “non-terminal node” (for example, if a text is
truncated), and thus technically all nodes are potentially
terminal nodes. But for ease of exposition, we will abuse
terminology and refer only to these distinguished end-of-
word nodes as “terminal nodes.”

5In our model, P (S0|Sf ) = 1, with no emissions.
6I.e., the first 128 ASCII characters



Figure 1: Transition diagram of lexicon tree HMM.
For simplicity, only six words (aardvark, act, actor,
actress, action, zurich) are shown. The arrows in this
figure indicate the set of possible successor states Xt+1

that we can make a transition to from Xt. Thus, a
valid sequence of states corresponds to a sequence of
words in the dictionary. If Xt = Sf , then the state
makes an epsilon-transition back to S0.

prefix (S0 . . . X)7, and hX
8 is defined as the frequency

of the word (S0 . . . X). For Sf , the probability of tran-
sitioning back to S0 is 1. Note that if η is 1, then the
probability of taking a path corresponding to a certain
word is proportional to the empirical frequency of that
word in normal English usage.

Now, to take into account character deletions, we aug-
ment our model by allowing epsilon transitions,9 and
define an augmented set of transition probabilities as
follows:

Q(Xt+1|Xt) = εP0(Xt+1|Xt)
P (Xt+1|Xt) = (1− ε)P0(Xt+1|Xt).

Here, ε is a parameter that controls the chance of an
epsilon transition; Q(Xt+1|Xt) is the chance of making
an epsilon transition from Xt to Xt+1 (without emit-
ting an observation); P (Xt+1|Xt) is the non-epsilon

7(S0 . . . X) denotes a string corresponding to the path
in the graph from S0 to X. All frequency statistics such as
fX and hX were measured from a large email corpus.

8Note that hX is nonzero only for terminal nodes (the
last character of any word).

9In principle, a character deletion can occur at any
point in a word. Thus, there can be an epsilon transi-
tion at any state. For computational efficiency, we re-
strict our HMM so that epsilon transitions cannot form a
loop. [Jelinek, 1999] We do so by disallowing epsilon tran-
sitions from the initial state (S0) to the first character of
each word. This roughly corresponds to assuming that the
first character of the original word (or an obfuscated ver-
sion of this character) appears in the text. By considering
the rest of the word, the resulting model is typically still
able to correctly identify obfuscated words in which the
first character is missing.

state transition probability.10 The term P0(Xt+1|Xt)
is as defined in the previous paragraph.
We parameterize the emission probabilities as follows:

P (Ot+1|Xt → Xt+1)

=


(1− τ)Pemit(Ot+1|Xt+1)

+τPrandom(Ot+1) if Xt+1 = Xt 6= S0

Prandom(Ot+1) if Xt+1 = Xt = S0

Pemit(Ot+1|Xt+1) otherwise,

where τ is a parameter of the model. Informally,
Pemit(Ot+1|Xt+1) will be a (learned) distribution of
characters Ot+1 that are commonly used to represent
Xt+1. For example, P (Ot+1 =‘1’|Xt+1 =‘l’) may be
large, since ‘1’ (one) is often used to obfuscate ‘l’ (the
letter ell). Prandom(Ot+1) is a distribution over non-
meaningful characters that may be inserted into the
middle of a word to obfuscate it (as in mort***gage).
Note that the parameterization for emission probabil-
ity under a self-transition (when Xt 6= S0) includes
both the terms Prandom and Pemit. This parameteriza-
tion reflects an observation that self-transition emis-
sions are usually either non-meaningful obfuscation
characters (such as “***”) or repetitions of the current
state character (as in viaaagra).

3.1 Feature-based Model of Emission
Probability

We now describe how the probabilities Pemit and
Prandom were estimated from data.

We collected a training set corpus of obfuscated spam
emails (160 lines of text), and hand-annotated them
with the true (unobfuscated) text. The unobfuscated
text was manually aligned to the obfuscated text, so
that we know the true state of the HMM during each
character emission. For example, m0rt*g*age (obfus-
cated) is annotated with mort-g-age (unobfuscated)
where ‘-’ refers to a self-transition.

Given this training data, one straightforward approach
to estimating Pemit(O|X) would have been to use a
maximum likelihood-like estimate, in which we esti-
mate Pemit(O|X) as the fraction of times in the train-
ing set that O was observed during a transition into
state X. However, the size of the training set is too
small to accurately obtain estimates this way. Fur-
ther, spammers frequently use new characters O to
obfuscate a character X. For example, spammers are
more likely to use the character ‘<’ than the charac-
ter ‘>’ to obfuscate the letter ‘c’ (because ‘<’ looks
more visually similar to ‘c’). But unless we observe
this particular example in our training set, this would
not be captured by a straightforward maximum like-
lihood estimate of the parameters using a 40x70 table
to represent Pemit(O|X). More specifically, this algo-
rithm would easily be defeated by spammers finding

10Note that
∑

X
P (X|Xt) + Q(X|Xt) = 1.

See [Jelinek, 1999] for more details.



new characters to obfuscate old ones. (For example,
‘ç’, ‘(’, ‘[’, ‘{’, ‘<’, can all be used to obfuscate ‘c’.)

Thus, to improve the generalization of the algo-
rithm, we took an approach in which features of O
and X are used to estimate Pemit(O|X). More for-
mally, we used a softmax regression/maximum en-
tropy [Della Pietra et al., 1997] model:

Pemit(O|X) =
exp(

∑
k λkfk(O,X))∑

O exp(
∑

k λkfk(O,X))
. (1)

Here, fk(O,X)’s are features measuring the “similar-
ity” between the characters O and X,11 and the λk’s
are parameters of the model.

The features indicate quantities such as whether O
and X are the same character; their visual similarity
(shape context similarity [Belongie et al., 2002]; pixel-
level similarity); phonetic similarity (e.g., Sialis for
Cialis); and additional features for certain special
characters such as spaces. More precisely, we used
the following features:

1. Character Equality (denoted CE).

f1(O|X) =
{

1 if O and X are the same character
0 otherwise

2. Shape Context Similarity (denoted SC).
The “shape context distance” algo-
rithm [Belongie et al., 2002] measures the
visual similarity between two characters, and
currently has the best reported result in the
literature for handwritten digit recognition.12

We used f2(O, X) = −DSC(O, X).

3. Pixel-Level Similarity (denoted PL).
f3(O,X) = −min(DPL(O, X), DPL(X, O)).
Here, DPL measures the pixel-level dissimilarity
between the characters O and X.13

11Here, “the character X” really means “the character
corresponding to the HMM state X.” But in this section
we will use X to simply denote its corresponding character,
since there is little risk of confusion.

12To compute DSC(O, X), we rendered the characters X
and O in Arial font, and measured their image similarity
using [Belongie et al., 2002]. We found empirically that
this measure of similarity worked best on simple, and sans
serif, fonts such as Arial.

13Implementational details: To achieve invariance to
the scaling (size) and translation of the character, we used

DPL(I1, I2) = min
mx,my

min
dx,dy

M(I1, Tmx,my,dx,dy (I2))

N(I1) + N(Tmx,my,dx,dy (I2))
,

where I1 and I2 are rendered images corresponding to the
characters; mx, my (=1.0, 1.1, ..., 1.5) and dx, dy are scal-
ing and translation factors along the x and y directions;
Tmx,my,dx,dy (I2) is I2 scaled and translated according to
mx, my, dx, dy; M(I1, I2) is the number of mismatched pix-
els between I1 and I2; and N(I) is the number of non-white
pixels in I.

4. Phonetic Similarity (denoted PH).
This measures whether the two characters O
and X are phonetically similar. For example,
b, p, f and v are phonetically similar; and so
are d and t, etc. Based on the Soundex algo-
rithm [Setter, 1997].14

5. Space Features (2 binary-valued features, denoted
SP).
f5(O, X) = 1 ⇐⇒ O is punctuation, X is space

f6(O, X) = 1 ⇐⇒ O is not punctuation, X is space

The model for Pemit was trained using softmax regres-
sion/maximum likelihood, implemented using New-
ton’s method.15

Finally, the model for Prandom(Ot) was learned also
using the same softmax parameterization as in Equa-
tion (1) (but with features fk(O, X) replaced by
fk(O)), and using the following three binary-valued
features:

Random Character Features (denoted RC).
f1(O) = 1 ⇐⇒ O is a letter
f2(O) = 1 ⇐⇒ O is a number (0-9)
f3(O) = 1 ⇐⇒ O is punctuation

Section 3.4 will also present results from an ablation
analysis in which we use only a subset of the features
above.

3.2 Decoding Method

Given obfuscated input ~o = o1...T , we want to find the
most likely sequence of true states ~xMAP = xMAP

1...T .
Thus we want to maximize the posterior probability
P (~x|~o, ~θ). Here, ~θ are the parameters of the model.

~xMAP = arg max~x P (~x|~o, ~θ)
= arg max~x P (~x, ~o|~θ)
= arg max~x P (~x|~θ)P (~o|~x, ~θ)

Above, P (~x|~θ) and P (~o|~x, ~θ) are the total transition
and emission probabilities for the sequence.

The Viterbi algorithm [Viterbi, 1967] can be used to
perform this maximization, but a straightforward im-
plementation of it has time complexity O(N2T ), where
T is length of the input and N ≈ 105 is the number
of states. Using a sparse representation of the state
transition probabilities, this is improved to O(NKT ),

14More formally, f4(O, X) = 1 ⇐⇒ {O, X} ⊆ one of
{b,p,f,v}, {c,s,g,j,k,q,x,z}, {d,t}, {l}, {m,n}, {r}, {b,d,g}.
See [Setter, 1997] for details.

15Only emissions for non-self transitions were used as
the “training set” for learning Pemit; and emissions for
self-transitions were used to learn Prandom. The latter
introduces a little error into the model, since some self-
transitions may have resulted in observations generated
from Pemit, but in practice this simple procedure appears
to work well.



where K is the maximum out-degree (number of possi-
ble successor states) of any state in the HMM. (K ≈ 40
in our HMM.) However, this is still too slow, and even
in our carefully optimized implementation, was able to
process text only at a rate of about 10 characters per
second.

We can further speed up the algorithm by applying
beam search [Jelinek, 1999]. In our implementation,
we used a beam width of 10,000,000. The resulting
algorithm is able to deobfuscate 240 characters/sec—
a 20-fold speedup.

3.3 Parameter Learning

Apart from the parameters λk used to define Prandom

and Pemit (see Section 3.1), our model has five addi-
tional parameters that have to be learned.16 Letting
~θ denote these parameters, we learn ~θ using locally
greedy hillclimbing search to maximize the log likeli-
hood of the training data:

arg max~θ

∑
i log P (~x(i)

true, ~o
(i)|~θ)

= arg max~θ

∑
i log P (~x(i)

true|~θ)P (~o(i)|~x(i)
true,

~θ).

Here, ~x
(i)
true is the sequence of true states in the ith

training example. Note that, in the training set, ~x
(i)
true

is aligned to the corresponding sequence of emissions.
Thus, the objective in the optimization above does not
require decoding, and can be computed quickly (in the
inner loop of greedy hillclimbing search). We learned
the parameters ~θ using the same training set as the
one used to estimate the λk’s for Prandom and Pemit.

3.4 Experimental Results

To informally test the basic functionality of our model,
we applied it to 60 obfuscated variants of viagra.17 Our
algorithm correctly decoded 59 of the 60 examples.18

We also performed more rigorous testing on a held-out
test set of 606 lines of actual spam containing 849 ob-
fuscated words. We define the deobfuscation accuracy
as the fraction of correctly deobfuscated words. Ta-
ble 1 shows the accuracy of our algorithm for different
types of obfuscation, such as insertion, substitution,
misspelling, etc.19 Examples of these types of deob-
fuscation are given in Table 2; and some examples of

16The parameters η, τ, ε were described in the text. Two
additional parameters δ and ζ were used to adjust the prob-
ability of transition from S0 to its children, and of transi-
tion into Sf (i.e., controlling the probability of continuing
vs. terminating the sequence at the end of a word). Details
omitted due to space constraints.

17These obfuscated variants of viagra were obtained from
http://www.cockeyed.com/lessons/viagra/viagra.html.

18For example, Viagorea, ViagDrHa, VyAGRA, via---
gra, viagrga, etc. The only error was viaverga, which was
decoded as “via verge.”

19Because the different types of obfuscation are not mu-
tually exclusive, the first four rows in the table do not sum
up to equal the “all obfuscations” line. The “all words”

deobfuscated text are shown in Table 3. Words in the
output that were modified from the original (i.e., ones
that were deobfuscated) are written in italics, and the
algorithm’s errors are underlined. From Table 1, we
see that our model appears to do well on misspelling,
segmentation, insertion and substitution obfuscations.

Table 1: Results of lexicon tree HMM decoding

Type Correct Total Accuracy

Insertion 408 425 0.96
Substitution 160 176 0.909
Misspelling 268 293 0.915
Segmentation 65 68 0.956
All obfuscations 796 849 0.938
All words 4542 4805 0.945

Table 4: Accuracy on all obfuscated words, using dif-
ferent feature subsets.

Features Deobfuscation Accuracy

CE only 0.867
CE+RC 0.931
CE+RC+PL 0.934
CE+RC+PL+PH 0.936
CE+RC+PL+PH+SC 0.938
All features 0.938

We also perform an experiment to analyze the utility
of the different features in our feature-based emission
probability model. Table 4 shows the result of run-
ning an ablation analysis, in which the experiment is
repeated using different subsets of the features. We
see that the most important features are the “random
character features” (RC), used to model the emissions
of non-meaningful characters during self-transitions.
Also, the “pixel-level similarity feature” (PL) and the
“phonetic similarity feature” (PH) significantly im-
prove accuracy. However, the “shape context feature”
(SC) and the “space features” (SP) appeared to play
a minor role in the algorithm’s performance.20

line shows accuracy on all words, including ones not orig-
inally obfuscated. Note that in all cases, individual lines
(not words) of text are given as input to the algorithm,
and thus it must choose its own segmentation of the text
into words.

20Although the shape context method works very well for
handwritten digit recognition and for general shape com-
parisons [Belongie et al., 2002], there appear to be many
instances in which shape context penalizes for slight vari-
ations in a character’s shape, while pixel-level similarity
does not (for example, in the slight differences between ‘1’,
‘I’, ‘l’, and ‘|’). Empirically, the shape context distance is
large when one image cannot be easily transformed to the
other by an affine transformation. For example, ‘|’ cannot
be easily changed to ‘1’ or ‘I’ by an affine transformation,
and thus the corresponding shape context distances are
large, even though the characters are visually very similar.



Table 2: Examples of different types of deobfuscation

Type Obfuscated Input Deobfuscated Output

Insertion+Misspelling u-n-s-u-s-c-r-i-b-e link unsubscribe link
Insertion+Segmentation Re xe finance refinance
Substitution M/\ cromei)i/\ macromedia
Substitution gre4t pr1ces great prices
Misspelling heyllooo it’s me Chelsea hello it’s me chelsea
Misspelling veerrryyy cheeaapp very cheap
Misspelling u.n sabscjbe unsubscribe
Segmentation+Insertion con. tains forwa. rdlook. ing sta. tements contains forward looking statements
Segmentation+Insertion pa, rty for sen, ding this re.port. party for sending this report
Segmentation+Substitution get your u n iversi t y d i pl0 m a get your university diploma
Segmentation+Misspelling ree movee below: remove below

Table 3: Additional examples of obfuscated text and of HMM output

Obfuscated Input Deobfuscated Output

hello dear home owpyner, hello dear homeowner
we h;avve been n3otifie∧d that you∧r mo>rtglage rate we have been notified that your mortgage rate
is fi>xegvd avqt a very hivgh in tevrest rate. is fixed data very high interest rate
therefor%e you arge current overpapying, therefore you are current overpaying
which s:ums-up to t‘housxarn ds oabf dolltyrars annuallly . which sums up to thousands of dollars annually
l:uckily fafor you wtce cuqan gqjufuarantee luckily for you the cuban guarantee
th’e lowest rates in thkhe u.s. (3.50%). the lowest rates in the us
so huzmrry beqcause the rate f:orecast is npot looking goo d! so hurry because the rate forecast is not looking good
there iws no obligations, ahsnd iwt free there is no obligations and it free
lock ostn the 3.50*%, even with baiwd cr’ezsdit!! lockout the even with baird credit
cx6lick h’ere nepow for details click here new for details

4 Out-of-dictionary HMM

Although our model has a large dictionary with 45475
words, real input text usually contains many words
that do not appear in the dictionary. In this section,
we reduce the decoding error of our HMM in such sit-
uations by using a bigram model for out-of-dictionary
words.

More formally, this augments our previous model by
adding to it 26 additional states (corresponding to the
letters of the alphabet). Each of the 26 states may
transition to any other state (including itself), in ad-
dition to a final state Sf indicating the end of a word.
The transition diagram of the resulting HMM is shown
in Figure 2.

The state transition probabilities for the 26 new states
simply indicate the distribution over the next char-
acter in a word given the previous character (or the
probability of a word terminating after that character).
These probabilities are estimated from a large text cor-
pus. (Thus, for example, P (Xt+1 =‘u’|Xt =‘q’) will be
close to 1, since ‘u’ usually follows ‘q’.)

The emission probability P (Ot|Xt) for the out-of-
dictionary portion of the HMM is identical to that used

in the lexicon tree HMM.

Finally, the state transition distribution out of the ini-
tial state (P (Xt+1|Xt = S0)) was also modified to as-
sign a positive probability to transitioning to each of
the 26 new states (proportional to the probability that
an English word starts with that letter).

The HMM formalism allows us to combine the out-of-
dictionary HMM with the lexicon tree HMM (as shown
in Figure 2). Using this construction, Viterbi decoding
automatically selects a path through one of the two
models, thereby identifying both within-lexicon and
out-of-dictionary words in the obfuscated text.21

Table 5 shows experimental results using the out-of-
dictionary HMM. We see that its accuracy in decod-
ing obfuscated words is slightly lower than the model
using only the lexicon tree HMM. This is because al-
most all obfuscated words are in our dictionary. The
decoding accuracy of misspelled words in emails is also
slightly reduced, since the model is now more likely to
attribute a misspelling to an out-of-dictionary word.

21Implementational details: We calibrated the relative
probabilities of transitioning to the lexicon tree HMM
vs. the out-of-dictionary HMM using the method given
in [Raina et al., 2003] (essentially logistic regression).



Figure 2: Lexicon tree HMM combined with out-of-
dictionary HMM

However, the out-of-dictionary HMM causes the de-
coding accuracy for out-of-dictionary words to be sig-
nificantly improved. As a result, overall decoding ac-
curacy is improved compared to the original lexicon
tree HMM.

These results suggest that there is a trade-off between
deobfuscation accuracy and out-of-dictionary word de-
coding accuracy. Assuming that a content-based filter
is applied to the output of our algorithm to identify
spam, its classification accuracy will not be signifi-
cantly affected by the decoding errors made on out-of-
dictionary words.22 This is because most spam words
will be already included in (or can easily be added to)
the dictionary. Thus, for the particular application
of spam filtering, it may not be necessary to use an
out-of-dictionary HMM during deobfuscation.

Table 5: Accuracy of out-of-dictionary (OOD) HMM

Type Success Total Accuracy

Insertion 403 425 0.948
Substitution 160 176 0.909
Misspelling 253 293 0.863
Segmentation 64 68 0.941
All obfuscations 781 849 0.92
OOD words 80 162 0.494
All words 4592 4805 0.956

5 Identifying Obfuscated Emails

So far, our discussion has focused on the problem of
deobfuscating spam email, so that a separate text-

22One exception that is theoretically possible is if a non-
spam out-of-dictionary word is incorrectly decoded as a
spam word. However, we have not observed a single in-
stance of this in any of our experiments.

Table 6: Examples of out-of-dictionary (OOD) words,
decoded using the lexicon tree HMM with and without
the OOD HMM.

Original With OOD Without OOD

caliphate caliphate calibrate
corvette corvette corbett
dieting dieting editing
fuki sushi fuki sushi fujitsu hi
inexpiable inexpiable inexplicable
kournikova kournikova our nikolai
lodleveler lodleveler leveler
palomino palomino palming
panasonic panasonic pan sonic
scathing scathing scratching
seraphim seraphim serafin
teetotalers teetotalers the totallers

based filter can correctly detect the spam words. How-
ever, if it were possible to detect whether an email
was deliberately obfuscated—which one might hope is
an easier problem than actually recovering the origi-
nal, deobfuscated content—then this would have been
equally useful for identifying spam. This is because
the fact that an email was deliberately obfuscated is
a strong indicator that it is spam. However, we show
in our experiments that the problem of deciding if an
email was deliberately obfuscated is surprisingly dif-
ficult. In particular, a straightforward application of
supervised learning (without attempting to deobfus-
cate the email) performs worse than our HMM (which
does attempt to deobfuscate the email) on the task of
deciding if an email was deliberately obfuscated.

To rigorously explore this idea, we consider a simple
feature-based model for identifying obfuscation. We
used logistic regression to learn to predict if an email
was deliberately obfuscated. Our model used the fol-
lowing features:

1. Number of non-alphabetic characters inside words

2. Average length of words

3. Number of out-of-dictionary words

4. Number of tokens.

Trained on 100 examples (lines of text) and tested on
a balanced held-out test set, this model gave 70% clas-
sification accuracy (8% false positives, and 22% false
negatives). This high error rate suggests that it may
be difficult to achieve high anti-spam accuracy using
an approach that does not attempt to decode the text,
but instead relies only on detecting obfuscation.23

23Note that this algorithm does incorporate lexical in-
formation (the third feature). If this feature is removed,
the error increases to 36%. Also, giving the algorithm an
entire email rather than a single line would reduce these
error rates, but we still view our results as strongly indica-



We also experimented with a variation of the HMM
model for determining if an email is obfuscated. De-
tails are omitted due to space, but briefly, we built two
separate HMM models, one for P (O, X| obfuscated)
and one for P (O,X|non-obfuscated). Thus, for exam-
ple, under the non-obfuscated HMM model, the chance
of replacing ‘i’ with ‘1’ (as in v1agra) is much lower.
Given a new email, we then predict that it was ob-
fuscated if P (O| obfuscated) > P (O|non-obfuscated),
and that it was non-obfuscated otherwise.24 This algo-
rithm attained 84% accuracy on the test-set. The rea-
son appears to be that even normal, non-obfuscated,
email contains many out-of-dictionary words, mis-
spelled words, and non-alphabetic characters (for ex-
ample, in emoticons, unusual URLs, signature files,
etc.), and thus can appear to the algorithm to be ob-
fuscated.

While there is clearly still room for improvement in
detecting obfuscation—and given sufficient engineer-
ing effort, a better obfuscation classifier can certainly
be built—these experiments seem to indicate that it
is important to actually decode/deobfuscate an email
(so that a content-based classifier can determine if it is
spam), rather than blindly try to detect the obfusca-
tion attempt without also trying to decode the email.

6 Discussion and Conclusions

In this paper, we proposed an HMM-based model
for spam deobfuscation. This model can be used
to deobfuscate an email prior to applying a content-
based filter. The lexicon tree HMM version of our
model exhibited good performance for different kinds
of obfuscation patterns including insertions, substitu-
tions, misspellings, and segmentations. The out-of-
dictionary HMM version, in contrast, has lower overall
decoding error, but slightly higher error on obfuscated
spam words. We believe that these methods hold rich
promise in applications to spam filtering.
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